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ABSTRACT 

Background: SGLT2 inhibitors (SGLT2is) and GLP-1 receptor agonists (GLP1-RAs) reduce 

major adverse cardiovascular events (MACE) in patients with type 2 diabetes mellitus (T2DM). 

However, their effectiveness relative to each other and other second-line antihyperglycemic 

agents is unknown, without any major ongoing head-to-head trials. 

Methods: Across the LEGEND-T2DM network, we included ten federated international data 

sources, spanning 1992-2021. We identified 1,492,855 patients with T2DM and established 

cardiovascular disease (CVD) on metformin monotherapy who initiated one of four second-line 

agents (SGLT2is, GLP1-RAs, dipeptidyl peptidase 4 inhibitor [DPP4is], sulfonylureas [SUs]). 

We used large-scale propensity score models to conduct an active comparator, target trial 

emulation for pairwise comparisons. After evaluating empirical equipoise and population 

generalizability, we fit on-treatment Cox proportional hazard models for 3-point MACE 

(myocardial infarction, stroke, death) and 4-point MACE (3-point MACE + heart failure 

hospitalization) risk, and combined hazard ratio (HR) estimates in a random-effects meta-

analysis.  

Findings: Across cohorts, 16·4%, 8·3%, 27·7%, and 47·6% of individuals with T2DM initiated 

SGLT2is, GLP1-RAs, DPP4is, and SUs, respectively. Over 5·2 million patient-years of follow-up 

and 489 million patient-days of time at-risk, there were 25,982 3-point MACE and 41,447 4-point 

MACE events. SGLT2is and GLP1-RAs were associated with a lower risk for 3-point MACE 

compared with DPP4is (HR 0·89 [95% CI, 0·79-1·00] and 0·83 [0·70-0·98]), and SUs (HR 0·76 

[0·65-0·89] and 0·71 [0·59-0·86]). DPP4is were associated with a lower 3-point MACE risk 

versus SUs (HR 0·87 [0·79-0·95]). The pattern was consistent for 4-point MACE for the 

comparisons above. There were no significant differences between SGLT2is and GLP1-RAs for 

3-point or 4-point MACE (HR 1·06 [0·96-1·17] and 1·05 [0·97-1·13]). 

Interpretation: In patients with T2DM and established CVD, we found comparable 

cardiovascular risk reduction with SGLT2is and GLP1-RAs, with both agents more effective than 
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DPP4is, which in turn were more effective than SUs. These findings suggest that the use of 

GLP1-RAs and SGLT2is should be prioritized as second-line agents in those with established 

CVD. 

Funding: National Institutes of Health, United States Department of Veterans Affairs 
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RESEARCH IN CONTEXT 

Evidence before this study  

Sodium-glucose co-transporter-2 inhibitors (SGLT2is) and glucagon-like peptide-1 receptor 

agonists (GLP1-RAs) exert cardiovascular benefits beyond blood glucose control, transforming 

the landscape of treating type 2 diabetes mellitus (T2DM) over the past decade. Large 

randomized clinical trials have substantiated the cardiovascular benefits of SGLT2is and GLP1-

RAs in decreasing major adverse cardiovascular events. However, trials of SGLT2is and GLP1-

RAs have not been designed as head-to-head comparisons with each other or older 

antihyperglycemic agents such as dipeptidyl peptidase-4 inhibitors (DPP4is) and sulfonylureas 

(SUs). Therefore, the comparative cardiovascular effectiveness of these antihyperglycemic 

agents is not established. Recent work also shows a substantial proportion of patients with 

T2DM are often initiated on DPP4is and SUs in the absence of information on their 

cardiovascular effectiveness. These knowledge gaps in evidence challenge the development of 

treatment recommendations based on cardiovascular risk profiles in T2DM.  

Added value of this study  

The Large-scale Evidence Generation and Evaluation across a Network of Databases for Type 

2 Diabetes Mellitus (LEGEND-T2DM) initiative is a large-scale, systematic, federated evaluation 

of individuals with T2DM across multiple international observational data sources, where we 

leveraged robust state-of-the-art methodological and analytic strategies to minimize residual 

confounding, publication bias, and p-hacking. In this largest study of 1·5 million patients with 

T2DM and established cardiovascular disease (CVD) across ten cohorts from four countries 

initiating a second-line antihyperglycemic agent — SGLT2is, GLP1-RAs, DPP4is, or SUs — 

after metformin monotherapy, there was no significant difference in the cardiovascular 

effectiveness of SGLT2is and GLP1-RAs. These agents are associated with an 11% and 17% 

lower risk of cardiovascular events compared with DPP4is, respectively. All three agents were 

associated with lower cardiovascular events than SUs, with 24% and 28% lower risk with 
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SGLT2is and GLP1-RAs, and 12% lower risk with DPP4is. These patterns were consistent 

across both ischemic events, such as MI and stroke, as well as for heart failure.  

Implications of all the available evidence  

Our study defines strong empirical evidence in support of contemporary clinical practice 

guidelines that suggest SGLT2is and GLP1-RAs are used for those with T2DM and CVD. Our 

observations also provide support for exclusive second-line use of SGLT2is and GLP1-RAs 

among those with CVD.   
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INTRODUCTION 

Over the past decade, the therapeutic options for type 2 diabetes mellitus (T2DM) have 

undergone a significant transformation.1,2 Sodium-glucose co-transporter-2 inhibitors (SGLT2is) 

and glucagon-like peptide-1 receptor agonists (GLP1-RAs) have expanded the role of 

antihyperglycemic agents from managing high blood glucose to addressing the elevated 

cardiovascular risk in patients with T2DM.3–6 In several large randomized clinical trials (RCTs), 

SGLT2is and GLP1-RAs reduced major adverse cardiovascular events (MACE), such as 

myocardial infarction (MI), hospitalization for heart failure, and cardiovascular mortality.7–14 

While older antihyperglycemic agents, like sulfonylureas (SUs), have not undergone similarly 

comprehensive trials to evaluate their cardiovascular efficacy or safety, some studies suggested 

their neutral effect on cardiovascular outcomes and risk of hypoglycemia.15–17 Furthermore, 

direct comparisons of SGLT2is and GLP1-RAs with dipeptidyl peptidase-4 inhibitors (DPP4is), 

which are antihyperglycemic agents with neutral effects on MACE, have not been conducted 

and no major trials are in progress. Nevertheless, DPP4is and SUs continue to be used in 

clinical practice and are recommended as second-line T2DM agents in national clinical practice 

guidelines.18–22  

Despite the availability of evidence from SGLT2i and GLP1-RA trials, several gaps in 

evidence challenge the development of treatment recommendations in T2DM.18,23,24 Specifically, 

trials of SGLT2is and GLP1-RAs were not designed as head-to-head comparisons with older 

agents but rather as additive treatments on top of commonly used T2DM agents.8,9,25 As a 

result, the relative cardiovascular efficacy of newer versus older agents is not known. Moreover, 

the comparative cardiovascular efficacy of SGLT2is and GLP1-RAs have not been evaluated. 

Thus far, comparative effectiveness assessments have been based on indirect estimates from 

clinical trials or comparative effectiveness drawn from a limited number of data sources.26–28 The 

findings from observational studies using single data sources are challenged by our 

observations that the uptake of these agents, and therefore, the selective pressures on the use 
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of these agents, varies considerably across sites,21 with the potential to introduce bias in the 

evaluation of comparative effectiveness. These evidence gaps pose a significant challenge in 

designing treatment algorithms that rely on the comparative effectiveness and safety of drugs.24 

As a result, there is a large variation in clinical practice guidelines and clinical practice with 

regard to these medications, with many patients initiated on the newer therapies and many 

others treated with older regimens.21,29 

To address this, we conducted the Large-scale Evidence Generation and Evaluation 

across a Network of Databases for Type 2 Diabetes Mellitus (LEGEND-T2DM) initiative,30 a 

large-scale, systematic, federated evaluation of 4·7 million patients with T2DM across multiple 

international observational data sources, where we leveraged robust state-of-the-art 

methodological and analytic strategies to minimize residual confounding, publication bias, and 

p-hacking. Here, we compared the cardiovascular effectiveness of four second-line 

antihyperglycemic agents — SGLT2is, GLP1-RAs, DPP4is, or SUs — when initiated on the 

background of metformin therapy in T2DM.  

 

METHODS 

Data Sources  

In this study, we included ten real-world data sources from the LEGEND-T2DM network, 

including six administrative claims and four EHR databases across four countries during 1992-

2021 (figure 1). These represent data from six national-level and four health-system datasets 

from the US, as well as data sources from Germany, Spain, and the United Kingdom. The vast 

majority of patient records span from the mid-2000s to today, covering two decades of T2DM 

treatment as well as the introduction of many second-line antihyperglycemic agents. All 

LEGEND-T2DM data sources were previously standardized to the Observational Health Data 

Sciences and Informatics (OHDSI)’s Observational Medical Outcomes Partnership (OMOP) 

common data model (CDM) version 5,31 which mapped international coding systems into 
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standard vocabulary concepts. The use of the OMOP CDM allows a federated analysis of data, 

without patient-level data sharing, using consistent cohort definitions and study design. All data 

partners received institutional approval or exemption for their participation. Details of data 

sources are presented in appendix pp 17-19. 

  

Study Design 

We identified patients with T2DM and established cardiovascular disease (CVD) on metformin 

monotherapy who initiated on any of the drug ingredients within one of the SGLT2i, GLP1-RA, 

DPP4i, or SU drug classes (appendix pp 2-10, 20).21 Each exposure cohort thus consists of 

new users of each drug class. We require patients with T2DM and CVD to have at least one 

year of prior observation in the database, with at least 3 months of prior metformin use before 

initiating a second-line agent, and no prior exposure to a comparator second-line or other 

antihyperglycemic agent or more than 30 days of insulin exposure (appendix pp 2-10). To 

ensure statistical power, we executed analyses for comparisons and data sources with at least 

1,000 patients in each arm. To evaluate the comparative effectiveness of antihyperglycemic 

agents, we constructed target–comparator–database combinations, where we compared one 

antihyperglycemic agent (target) with another agent (comparator) across data sources. 

For this, we employed a new-user cohort design for target and comparator agents within each 

data source in order to emulate the hypothetical target trial.32,33 Methodological principles in the 

study design have been carefully constructed based on the evidence by experts and were 

leveraged previously to minimize bias and improve reproducibility.30,34  

 

Study Outcomes 

Across all data sources and pairwise exposure cohorts, we assess the relative risks of two 

primary and four secondary cardiovascular outcomes. The two primary outcomes of interest are 

(1) 3-point MACE, including acute MI, stroke, and sudden cardiac death, and (2) 4-point MACE, 
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which additionally includes hospitalization for heart failure. Secondary outcomes of interest 

include the four individual MACE components. We construct outcome cohorts based on 

previously developed phenotypes validated and tested in prior work (appendix pp 11-14).34–39  

For each outcome cohort, we included patients with no events prior to treatment initiation 

and defined continuous drug exposure as consecutive drug prescriptions with less than 30-day 

prescription gaps. We considered an on-treatment time-at-risk (TAR) definition that follows a 

patient from treatment initiation to treatment discontinuation, which captures direct treatment 

effects while allowing for escalation with additional T2DM agents. 

 

Statistical Analysis 

We employed a systematic federated analytic framework to address residual confounding, 

publication bias, and p-hacking.30,40 This framework uses data-driven, large-scale propensity 

score (PS) adjustment for measured confounding,41 a large set of negative control outcome 

experiments to address unmeasured confounding and systematic bias,42–44 study diagnostics to 

ensure validity and generalizability,44,45 and a principled meta-analysis approach to aggregate 

evidence across data sources. We used standardized vocabularies to construct consistent 

computable definitions of all study cohorts, covariates, and outcomes. We provide full disclosure 

of all hypotheses investigated and pre-specify and report all analytical procedures in the 

published protocol of LEGEND-T2DM.30 To promote open science and avoid publication bias, 

we have disseminated all results in a publicly available R ShinyApp 

(https://data.ohdsi.org/LegendT2dmClassEvidenceExplorer/), and all analytic code is publicly 

available on GitHub (https://github.com/ohdsi-studies/LegendT2dm).  

Within each data source, we estimated the relative risks of all six outcomes between 

each pair of new-user cohorts, taking one exposure cohort as the target and the other as a 

comparator. For each pairwise comparison and each data source, we adjusted for measured 

confounding and improved balance between cohorts through both matching and stratifying on 
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PS.46 We estimated the PS by a data-driven approach that adjusts for a broad range of 

predefined baseline patient characteristics through regularized regression.41 These 

characteristics included demographics, comorbidities, concomitant medication use, and 

healthcare utilization in the period before the initiation of the second-line antihyperglycemic 

agent. The choice of PS stratification vs. matching was based on the approach that achieves a 

standardized mean difference (SMD) <0·15 across all covariates.47 When both stratification and 

matching provide sufficient balance, we preferred stratification over matching and thus reported 

results based on stratification when available, as the former improves patient inclusion and, 

therefore, generalizability. We then used Cox proportional hazards models to estimate hazard 

ratios (HRs) of each outcome for each comparison, conditional on PS stratification or variable-

ratio patient matching.  

 We also sought to address residual bias, which may persist in observational studies 

even after PS adjustment that controls for measured confounding.42,43 For this, we conducted 

negative control (falsification) outcome experiments for each comparison and outcome, where 

the null hypothesis of no differential effect (i.e., HR = 1) is believed to be true for each outcome. 

We selected 100 negative controls through a data-driven algorithm that identifies OMOP 

condition concept occurrences with similar prevalence to the outcomes of interest that lack 

evidence of association with exposures in published literature, drug–product labels, and 

spontaneous reports, which we then confirmed by expert review (appendix p 15).48 We list 

these negative controls in appendix pp 21-22. From these negative control experiments, we 

learn an empirical null distribution that informs residual study bias, i.e., a deviation from the 

empirical null across all outcomes represents a quantitative surrogate for the residual bias. We 

calibrate each original HR estimate to compute a calibrated HR estimate and 95% confidence 

interval (CI).42 We declare an HR as significantly different from the null if the calibrated p-value 

is <0·05 without considering multiple testing corrections.  
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We assessed, while blinded to the results, study diagnostics to ensure reliability and 

generalizability for all comparisons and only report estimates that pass the diagnostics.44,45 

These study diagnostics included (1) minimum detectable risk ratio (MDRR) as a metric for 

statistical power, (2) preference score distributions between the target and comparator cohorts 

to evaluate empirical equipoise and population generalizability, and (3) cohort balance before 

and after propensity score (PS) adjustment, defined by the absolute SMDs on extensive patient 

characteristics. A study passed diagnostics if MDRR was less than 4, and >25% of patients had 

a preference score between 0·3 and 0·7 on both arms and maximum SMD <0·15 after PS 

adjustment. Additional diagnostics for visual examination included (4) calibration plots on 

negative control outcomes to examine residual bias, and (5) Kaplan-Meier plots to check 

proportionality assumptions for the Cox models. 

We reported all HR estimates, their 95% CIs, and p-values post-calibration for studies 

that passed diagnostics. To aggregate evidence across non-overlapping data sources, we 

combined all calibrated HR estimates for each comparison using a random effects meta-

analysis approach.49 

 

RESULTS 

Cohort Characteristics 

Across ten federated longitudinal data sources from four countries, we identified 4,730,887 

patients with T2DM. This included 1,492,855 patients with T2DM and established CVD on 

metformin monotherapy who initiated one of the four second-line antihyperglycemic agents and 

had no prior use of any other antihyperglycemic agents (figure 1, appendix p 17). Among 

these patients, 244,694 (16·4%) initiated SGLT2is, 123,991 (8·3%) GLP1-RAs, 413,236 (27·7%) 

DPP4is, and 710,934 (47·6%) SUs (table 1). US Open Claims (USOC) with 1,163,413 patients 

with T2DM and established CVD, followed by Optum Clinformatics Extended Data Mart - Date 

of Death (OCEDM) (N=80,159) and Optum de-identified Electronic Health Record Dataset 
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(OEHR) (N=66,417) contributed the most patients to the study population. Median on-treatment 

time-at-risk for patients varied by drug class and database between 2·0 and 23·2 months. At 

least 25% of the patients were exposed to their first drug class for more than 12 months across 

a majority of databases (table 1).  

 

Addressing Confounding Across Target-Comparator-Database Combinations 

PS adjustment achieved pre-specified covariate balance in patient baseline characteristics for 

pairwise class comparisons across all databases (figure 2, appendix pp 23-108). The 

maximum SMD across target–comparator–database combinations consistently decreased after 

PS stratification (figure 2). For example, in comparison of patients initiating SGLT2is (target) 

with patients initiating DPP4is (comparator) in the IBM MarketScan Commercial Claims and 

Encounters (CCAE) database, before PS adjustment, patients initiating SGLT2is were more 

frequently men and had obesity and heart failure relative to patients initiating DPP4is. However, 

after PS adjustment, the SGLT2is or DPP4is populations were well balanced on all 

demographic and clinical patient characteristics (appendix pp 33-34).  

 

Empirical Equipoise Across Target-Comparator-Database Combinations 

For most data sources, all executed class comparisons were in empirical equipoise (>25% of 

patients had preference scores between 0·3 and 0·7 on both arms) (appendix pp 146-155). 

GDA, SIDIAP, and VA databases showed less equipoise for comparisons involving SGLT2is 

and DPP4is. However, in general, PS adjustment achieved sufficient covariate balance in terms 

of preference score distribution to reduce concerns that measured the estimated effects of 

baseline confounding biases (appendix pp 156-175). Furthermore, the study had limited 

residual systematic error, where calibration of effect estimates using negative control outcomes 

resulted in an increase in the proportion of nominal 95% CIs that included 1 for control 

outcomes across a majority of comparisons and databases (appendix pp 176-195). For 
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example, for SGLT2is vs DPP4is comparison in SIDIAP using PS matching, before calibration, 

the nominal CIs covered 75·0% of control estimates; after calibration, they covered 91·7% 

(appendix p 192). 

 

Comparative Effectiveness for Primary Endpoints 

During 1,337,809 patient-years of follow-up, there were 25,982 3-point MACE and 41,447 4-

point MACE events. SGLT2is and GLP1-RAs were associated with a lower hazard of 3-point 

MACE compared with DPP4is (HR 0·89 [95% CI, 0·79-1·00] and 0·83 [0·70-0·98], respectively), 

and with even lower HRs of 0·76 (95% CI, 0·65-0·89) and 0·72 (95% CI, 0·58-0·88) versus SUs, 

respectively. DPP4is were associated with a lower risk of 3-point MACE risk versus SUs (0·87 

[0·79-0·95]). A consistent pattern was observed for 4-point MACE across the above-mentioned 

comparisons. In direct comparisons of SGLT2is and GLP1-RAs, there were no differences in 

either 3-point or 4-point MACE (1·06 [0·96-1·17], and 1·05 [0·97-1·13], respectively) (appendix 

pp 109-121, figure 3). 

 

Comparative Effectiveness for Secondary Endpoints 

Acute MI 

There were 13,536 episodes of acute MI across data sources during the follow-up. SGLT2is, 

GLP1-RAs, and DPP4is were associated with a lower hazard of acute MI compared with SUs 

(0·81 [0·69-0·95], 0·70 [0·56-0·87], and 0·86 [0·77-0·95], respectively). While GLP1-RAs were 

associated with a lower risk of AMI compared with DPP4is (0·85 [0·73-0·99]), the hazard of 

acute MI was comparable for SGLT2is vs DPP4is (0·95 [0·83-1·08]). Compared with GLP1-RAs, 

SGLT2is were associated with a higher hazard of acute MI (1·19 [1·05-1·35]) (appendix pp 

109, 122-127, figure 3). 

 

Stroke 
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There were 13,999 episodes of stroke events across data sources during the follow-up. 

SGLT2is, GLP1-RAs, and DPP4is were associated with a lower hazard of stroke compared with 

SUs (0·77 [0·65-0·92], 0·79 [0·63-0·98], and 0·90 [0·81-0·99], respectively). Compared with 

DPP4is, SGLT2is and GLP1-RAs had a comparable hazard of stroke (0·89 [0·74-1·07] and 0·89 

[0·77-1·03], respectively). There was no significant difference between SGLT2is and GLP1-RAs 

(0·93 [0·82-1·05]) regarding the hazard of stroke (appendix pp 109, 128-133, figure 3). 

 

SCD 

Over follow-up, 3,789 SCD occurred across data sources. SGLT2is and GLP1-RAs were 

associated with a lower hazard of SCD compared with DPP4is (0·62 (0·51-0·75), and 0·65 

[0·44-0·96], respectively) and SUs (0·60 [0·48-0·73], and 0·57 [0·42-0·78], respectively). DPP4is 

versus SUs and SGLT2is versus GLP1-RAs had comparable hazards of SCD (0·96 [0·81-1·13], 

and 1·11 [0·84-1·45], respectively) (appendix pp 109, 134-139, figure 3). 

 

HF Hospitalization 

During the follow-up, 30,743 HF hospitalizations were recorded across all databases. SGLT2is 

and GLP1-RAs were associated with a lower risk of HF hospitalization compared with DPP4is 

(0·80 [0·68-0·95] and 0·76 [0·67-0·86], respectively) and SUs (0·68 [0·58-0·80] and 0·64 [0·52-

0·78], respectively). DPP4is were associated with a lower hazard of HF hospitalization 

compared with SUs (0·90 [0·82-0·99]). Compared with GLP1-RAs, SGLT2is had a comparable 

hazard for HF hospitalization (1·02 [0·93-1·12]) (appendix pp 109, 140-145, figure 3). 

 

Sensitivity Analyses 

Across all outcomes, 98·4% (690/701) of calibrated relative risk estimates remained within the 

confidence intervals of the primary meta-analysis when systematically removing each data 

source from the leave-one-out meta-analysis. Within the primary endpoints of 3-point MACE 
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and 4-point MACE and secondary endpoints of acute MI and hospitalization for heart failure, 

none of the leave-one-out analyses were outside of the confidence intervals of the meta-

analysis (figure 4, appendix pp 196-201).   

 

DISCUSSION 

In this largest, multinational, federated study of 1·5 million patients with T2DM and established 

CVD across ten cohorts initiating a second-line antihyperglycemic agent after metformin 

monotherapy, SGLT2is and GLP1-RAs were associated with an 11% and 17% lower risk of 

cardiovascular events compared with DPP4is, respectively, the class of drugs approved before 

the US FDA-mandated cardiovascular outcomes trials for antihyperglycemic agents.50,51 All 

three agents were associated with lower cardiovascular events than SUs, with 24% and 28% 

lower risk with SGLT2is and GLP1-RAs and 12% lower risk with DPP4is. These patterns were 

consistent across both ischemic events, such as MI and stroke, as well as for heart failure. 

Between SGLT2i and GLP1-RAs, there was no difference in composite cardiovascular 

effectiveness outcomes – both 3-point and 4-point MACE, but there was a lower risk of AMI with 

GLP1-RAs compared with SGLT2i. The study accounted for multiple null control outcomes and 

calibrated all estimates for residual bias on null control outcomes, with multiple sensitivity 

analyses confirming the findings of the primary analysis. 

This builds on the evidence of comparative cardiovascular effectiveness of currently 

used antihyperglycemic therapies, especially in the absence of head-to-head RCTs of any of 

these agents. There are no ongoing or future trials expected to fill this knowledge gap. A few 

observational studies have used single data sources to evaluate the cardiovascular outcomes 

associated with these drugs.52–56 Moreover, some associations observed in the present study, 

such as those with DPP4i, contrast with others where the smaller study population may have 

necessitated studying a combination of drugs directly against SU but challenges isolating an 

effect.57 These analyses are limited by local patterns of treatment use and challenges with 
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exposure and outcome ascertainment in individual sources that may confound the observed 

association of these agents with outcomes. Our recent work shows that the use of 

antihyperglycemic agents varies substantially in populations across the world.21 In the present 

study, we developed the target trial for head-to-head of these agents, focusing explicitly on the 

same disease stage, i.e. when escalation to a second-line agent is being initiated. We 

conducted the same study across ten different data sources, ensuring that the effects of the 

intervention were not limited to the selective pressures or outcome differences in a single 

population. We ensured the empirical equipoise by comparing SMDs before and after PS 

stratification. Finally, we ensured that unmeasured confounding, potentially manifesting as 

directional effects across several negative control outcomes, were used to calibrate the PS 

stratified effect estimates.   

The findings have important implications for clinical practice. Current clinical practice 

guidelines offer the use of SGLT2is and GLP1-RAs as suggested agents to be used among 

those with existing cardiovascular risk.18,23,58 We find strong evidence supportive of that 

suggestion. However, our recent work shows a substantial proportion of patients with T2DM are 

often initiated on DPP4is and SUs despite their limited cardiovascular effectiveness or known 

superiority on other glycemic or other diabetes-related outcomes.59–61 Our observations would 

favor stronger support for exclusive second-line use of SGLT2is and GLP1-RAs among 

individuals with established CVD. There is also evidence that suggests a potentially larger 

reduction in risk of AMI with GLP1-RAs compared with SGLT2is, which were not replicated for 

stroke, questioning whether the current guideline recommendation for preferential use of GLP1-

RAs in ASCVD is appropriate. Moreover, we did not observe an exclusive role of decreased HF 

risk with SGLT2i, as suggested in current guidelines, as there was no observed difference in HF 

risk among those receiving SGLT2i or GLP1-RA. The original recommendations for HF were 

based on inference from RCTs of individual agents and emerging evidence, such as from the 

STEP2-HFpEF trial that found improvements in heart failure outcomes with semaglutide support 
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the potential role of GLP1-RAs on HF outcomes as well.62 Our study favors the continued 

evaluation of GLP1-RA as a therapy to reduce HF risk and improve outcomes of those with 

HF.63,64 

There are limitations that merit consideration. First, to enable the ability to capture 

information across data sources spanning administrative and EHR data sources necessitated 

the use of administrative definitions of both exposures and outcomes. However, to ensure the 

information is accurately captured, we used definitions that have been validated in prior 

studies.65–67 Second, we expect the identification of the exposure and outcomes to vary across 

data sources. However, the consistency of effect estimates across data sources further confirms 

the validity of the observations. Third, capturing outcomes for EHR-based datasets, such as for 

recurrent hospitalizations and deaths, differs from administrative sources that track events 

across institutions and capture out-of-hospital death events.68,69 However, we find that sources 

that capture cross-institution out-of-hospital information did not differ and had similar outcomes 

as those that focused on institutionally captured death events, further supporting the robustness 

of the drug association with outcomes. Fourth, we do not have information on adherence to 

therapies and whether differential adherence of agents would confound the observations. 

However, these agents are widely used without substantial adverse effects.18,19 Moreover, lack 

of adherence will likely bias these observations to the null, and the observed positive 

association across agents with known cardiovascular benefits suggests that it is not driving the 

observed associations. Finally, inference on all outcomes can still be subject to residual 

confounding. However, our use of calibrated estimates explicitly addresses the identification of 

residual confounding across a series of null control outcomes. 

 

CONCLUSIONS 

Our large, rigorous multinational network study of patients with T2DM and established CVD 

found cardiovascular risk reduction with SGLT2is and GLP1-RAs, with both agents more 
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effective than DPP4is, which in turn were more effective than SUs. These findings suggest that 

the use of GLP1-RAs and SGLT2is should be prioritized as second-line agents in those with 

established CVD. 
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Tables and Figures 
Table 1: Population Size and Follow-up Time for Initiators of SGLT2is, GLP1-RAs, 
DPP4is, and SUs Across Databases. 

Drug/Data Source Patients, No. 
On-treatment Follow-up Time (days), 

Median [IQR] 
SGLT2i   

CCAE 10,135 161 [62 - 537] 
GDA 4,337 181 [97 - 537] 
MDCD 1,314 114 [30 - 383] 
MDCR 2,013 112 [34 - 541] 
OCEDM 11,597 118 [55 - 423] 
OEHR 8,996 71 [29 - 181] 
SIDIAP 2,281 322 [103 - 895] 
USOC 196,710 143 [61 - 525] 
VA 7,311 135 [71 - 443] 

Total 244,694  
GLP1-RA   

CCAE 7,446 116 [45 - 441] 
MDCR 1,120 94 [29 - 443] 
OCEDM 6,546 98 [36 - 368] 
OEHR 4,525 60 [29 - 173] 
USOC 104,354 112 [52 - 432] 

Total 123,991  
DPP4i   

CCAE 22,801 159 [63 - 597] 
GDA 10,428 221 [97 - 741] 
IMRD 4,024 354 [122 - 1,174] 
MDCD 4,449 142 [56 - 555] 
MDCR 10,541 187 [81 - 713] 
OCEDM 23,918 150 [59 - 569] 
OEHR 18,145 95 [89 - 312] 
SIDIAP 8,126 695 [204 - 1,916] 
USOC 299,835 157 [59 - 657] 
VA 10,969 220 [90 - 707] 

Total 413,236  
SU   

CCAE 18,093 148 [59 - 559] 
GDA 1,235 216 [119 - 684] 
IMRD 846 350 [106 - 1312] 
MDCD 6,758 124 [33 - 503] 
MDCR 8,887 159 [59 - 632] 
OCEDM 38,098 177 [85 - 652] 
OEHR 34,751 110 [89 - 386] 
SIDIAP 619 600 [158 - 1,809] 
USOC 562,514 183 [89 - 752] 
VA 39,133 186 [90 - 689] 

Total 710,934  
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Abbreviations: CCAE, IBM MarketScan® Commercial Claims and Encounters Data; DPP4i, 
dipeptidyl peptidase 4 inhibitor; GDA, Germany Disease Analyzer; GLP1-RA, glucagon-like 
peptide-1 receptor agonist; IMRD, UK-IQVIA Medical Research Data; MDCD, IBM Health 
MarketScan® Multi-State Medicaid Database; IQR, interquartile range; MDCR, IBM Health 
MarketScan® Medicare Supplemental and Coordination of Benefits Database; OCEDM, 
Optum© Clinformatics Extended Data Mart - Date of Death; OEHR, Optum© de-identified 
Electronic Health Record Dataset; SGLT2i, sodium-glucose co-transporter-2 inhibitor; SIDIAP, 
Information System for Research in Primary Care; SU, Sulfonylurea; USOC, United States 
Open Claims; VA, Department of Veterans Affairs Healthcare System. 
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Figure 1: Study Design and Analytical Methodology to Evaluate the Comparative 
Effectiveness of SGLT2is, GLP1-RAs, DPP4is, and SUs for Cardiovascular Outcomes. 

 
Abbreviations: CCAE, IBM MarketScan® Commercial Claims and Encounters Data; CVD, 
cardiovascular disease; GDA, Germany Disease Analyser; IMRD, UK-IQVIA Medical Research 
Data; MACE, major adverse cardiovascular events; MDCD, IBM Health MarketScan® Multi-
State Medicaid Database; MDCR, IBM Health MarketScan® Medicare Supplemental and 
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Coordination of Benefits Database; OCEDM, Optum© Clinformatics Extended Data Mart - Date 
of Death; OEHR, Optum© de-identified Electronic Health Record Dataset; OMOP-CDM, 
Observational Medical Outcomes Partnership-common data model; SIDIAP, Information System 
for Research in Primary Care; T2DM, type 2 diabetes mellitus; USOC, United States Open 
Claims; VA, Department of Veterans Affairs Healthcare System. 
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Figure 2: Maximum Standardized Mean Difference Before and After Propensity Score 
Stratification for All Covariates Across Target-Comparator-Database Combinations. 

 
Abbreviations: CCAE, IBM MarketScan® Commercial Claims and Encounters Data; DPP4i, 
dipeptidyl peptidase 4 inhibitor; GDA, Germany Disease Analyzer; GLP1-RA, glucagon-like 
peptide-1 receptor agonist; IMRD, UK-IQVIA Medical Research Data; MDCD, IBM Health 
MarketScan® Multi-State Medicaid Database; IQR, interquartile range; MDCR, IBM Health 
MarketScan® Medicare Supplemental and Coordination of Benefits Database; OCEDM, 
Optum© Clinformatics Extended Data Mart - Date of Death; OEHR, Optum© de-identified 
Electronic Health Record Dataset; PS, propensity score; SGLT2i, sodium-glucose co-
transporter-2 inhibitor; SIDIAP, Information System for Research in Primary Care; SMD, 
standardized mean difference; SU, Sulfonylurea; USOC, United States Open Claims; VA, 
Department of Veterans Affairs Healthcare System. 
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Figure 3: Meta-analytic Calibrated Hazard Ratio Estimates for Comparative Effectiveness 
of SGLT2is, GLP1-RAs, DPP4is, and SUs for Cardiovascular Outcomes. 

 

 
Abbreviations: DPP4i, dipeptidyl peptidase 4 inhibitor; GLP1-RA, glucagon-like peptide-1 
receptor agonist; HF, heart failure; HR, hazard ratio; MACE, major adverse cardiovascular 
events; MI, myocardial infarction; SGLT2i, sodium-glucose co-transporter-2 inhibitor; SU, 
Sulfonylurea. 
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Figure 4: Swarm Plot of Calibrated Hazard Ratio Estimates of Major Outcome Meta-
analysis and Leave-one-out Meta-analysis. Circles depict the calibrated relative risk of each 
leave-one-out study in which one original data source is removed from the meta-analysis. 
Diamonds depict the original meta-analysis with all sources. Points are color-coded by major 
outcomes, y-axis includes the medication comparators, and x-axis on log-scale measures the 
calibrated relative risk of each outcome-comparator combination. 
 

 
Abbreviations: DPP4i, dipeptidyl peptidase 4 inhibitor; GLP1-RA, glucagon-like peptide-1 
receptor agonist; HF, heart failure; MACE, major adverse cardiovascular events; MI, myocardial 
infarction; SGLT2i, sodium-glucose co-transporter-2 inhibitor; SU, Sulfonylurea. 
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