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ABSTRACT 

Background: Long COVID, also known as post-acute sequelae of COVID-19 (PASC), 

is a poorly understood condition with symptoms across a range of biological domains 

that often have debilitating consequences. Some have recently suggested that lingering 

SARS-CoV-2 virus in the gut may impede serotonin production and that low serotonin 

may drive many Long COVID symptoms across a range of biological systems. 

Therefore, selective serotonin reuptake inhibitors (SSRIs), which increase synaptic 

serotonin availability, may prevent or treat Long COVID. SSRIs are commonly 

prescribed for depression, therefore restricting a study sample to only include patients 

with depression can reduce the concern of confounding by indication. Methods: In an 

observational sample of electronic health records from patients in the National COVID 

Cohort Collaborative (N3C) with a COVID-19 diagnosis between September 1, 2021, 

and December 1, 2022, and pre-existing major depressive disorder, the leading 

indication for SSRI use, we evaluated the relationship between SSRI use at the time of 

COVID-19 infection and subsequent 12-month risk of Long COVID (defined by ICD-10 

code U09.9). We defined SSRI use as a prescription for SSRI medication beginning at 

least 30 days before COVID-19 infection and not ending before COVID-19 infection.  To 

minimize bias, we estimated the causal associations of interest using a nonparametric 

approach, targeted maximum likelihood estimation, to aggressively adjust for high-

dimensional covariates. Results: We analyzed a sample (n = 506,903) of patients with 

a diagnosis of major depressive disorder before COVID-19 diagnosis, where 124,928 

(25%) were using an SSRI. We found that SSRI users had a significantly lower risk of 

Long COVID compared to nonusers (adjusted causal relative risk 0.90, 95% CI (0.86, 

0.94)). Conclusion: These findings suggest that SSRI use during COVID-19 infection 

may be protective against Long COVID, supporting the hypothesis that serotonin may 

be a key mechanistic biomarker of Long COVID. 
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BACKGROUND 

COVID-19 infection can have debilitating long-term consequences. Long COVID, 

also known as post-acute sequelae of COVID-19 (PASC), includes symptoms across a 

range of biological systems that can occur following COVID-19 infection. Millions of 

adults in the United States may be experiencing Long COVID, the majority of whom 

only experienced mild to moderate COVID-19 infection.1,2 Even though more than 10% 

of COVID-19 patients develop PASC, we have few insights regarding options for 

treatment and prevention.3 Insights regarding treatments that may prevent Long COVID 

are crucial to preventing this condition and understanding its etiology.  

Investigators have hypothesized several biological mechanisms that drive Long 

COVID and lead to clusters of symptoms. These explanations include (1) persistent 

COVID-19 viral load, (2) chronic hyperinflammation, (3) platelet and coagulation issues, 

and (4) central nervous system dysfunction.4,5 Previous studies have clustered these 

symptoms and speculated that these pathways may be distinct disorders caused by 

different components of acute COVID-19 infection.6 On the other hand, recent 

investigations have highlighted reduced serotonin as a driver of all four of these 

symptom clusters.4 A metabolomics investigation found that persistent COVID-19 viral 

load led to sustained interferon response, decreased uptake of tryptophan (a serotonin 

precursor), hypercoagulation, and subsequent decrease in serotonin.4 This peripheral 

serotonin deficiency leads to reduced vagus nerve activity, which subsequently 

contributes to decreased hippocampal activity, which can result in memory loss and 

cognitive dysfunction.4  

SSRIs are the first-line medication class used to treat depression. They have 

high tolerability and are considered safe and effective.7,8 SSRI’s mechanism of action is 

to prevent serotonin reuptake by inhibiting serotonin transporter at the presynaptic axon 

terminal. The prevention of this reuptake allows for a greater concentration of serotonin 

in the synaptic cleft that can bind to receptors.7 Compared with other classes of 

antidepressants, such as tricyclic antidepressants or monoamine oxidase inhibitors, 

SSRIs have fewer side effects due to fewer effects on other neurotransmitters and 
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receptors.7 Given SSRI’s specific targeting of serotonin, it is an ideal candidate to 

evaluate the role of serotonin in the development of Long COVID. 

Several studies have investigated the relationship between SSRI use and acute 

COVID-19 infection as well as Long COVID. The TOGETHER trial found that early 

treatment with the SSRI fluvoxamine improved COVID-19 patient recovery.9 On the 

other hand, the COVID-OUT trial found that fluvoxamine treatment during acute COVID-

19 infection did not reduce the cumulative incidence of Long COVID (1.36, 95% CI 

(0.78–2.34)), although this analysis included a relatively small sample size (334 patients 

assigned to fluvoxamine) and may have been underpowered.10 More broadly, previous 

studies have found that SSRI use may reduce the probability of hospitalization or 

mortality due to COVID-19 infection.11,12 A 2022 study evaluated the relationship 

between SSRI use and the predicted PASC and found that SSRI use was associated 

with 0.75 (95% CI, 0.62, 0.90) times the risk of predicted PASC compared to non-use.13 

While this observational study provided evidence that SSRI use may be protective 

against Long COVID, this study used predicted PASC diagnosis (via XGboost machine 

learning) as its primary endpoint, rather than an actual  PASC diagnosis. This predicted 

PASC status did not directly include SSRI use in its prediction, but it did use a myriad of 

other diagnoses and medications, which may be correlated with SSRI use and may 

have induced bias. Furthermore, the study used a general sample of SSRI users and 

non-users rather than restricting to conditions that may yield SSRI use, leading to the 

possibility of residual confounding by indication. In addition, a recent observational 

study found that patients experiencing Long COVID experienced improvement in self-

reported symptoms following treatment with SSRIs.14 

Several studies to date have evaluated the impact of individual types of SSRIs on 

Long COVID. A multi-system study of the relationship between serotonin and Long 

COVID hypothesized that fluoxetine may be particularly effective in preventing and 

treating Long COVID, and they found that treating mice with fluoxetine improved 

cognitive function and restored tryptophan levels.4 Furthermore, animal models 

involving fruit flies have demonstrated that the specific SSRI types fluoxetine, 

escitalopram, citalopram, and paroxetine may differentially impact serotonin reuptake.15 

A systematic review of studies evaluating the use of fluvoxamine for COVID-19 and 
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Long COVID suggested that baseline use of fluvoxamine may reduce the risk of Long 

COVID due to the drug’s sigma 1 receptor agonist activity and the role of sigma 1 

receptor activity in acute COVID-19 infection.16 Observational analyses of human 

electronic health record (EHR) data did not find a significant difference in the 

relationship between moderate to high-affinity sigma 1 receptor agonist SSRIs 

(fluvoxamine, fluoxetine, escitalopram, and citalopram) versus non-high affinity SSRIs 

(sertraline and paroxetine) in their impact on Long COVID.13  

Identifying interventions that prevent Long COVID is crucial for clinical 

applications as well as our understanding of underlying biological mechanisms that 

cause Long COVID. Nationally sampled EHR databases, such as the National COVID 

Cohort Collaborative (N3C), provide an excellent opportunity to evaluate these 

hypotheses but require analytic methods that can aggressively adjust for high-

dimensional confounders without making bias-inducing parametric assumptions.17–22 

While randomized controlled trials may eventually provide definitive evidence regarding 

the benefit of SSRI use to prevent or treat Long COVID, observational analyses, using 

appropriate methods that are designed to leverage the complexity, including missing 

data, and large sample sizes characteristic of EHR real-world data (RWD) can provide 

early insights regarding the relationship between SSRI use and Long COVID. Thus, to 

evaluate the relationship between SSRI use during COVID-19 infection and Long 

COVID cumulative incidence, we conducted an observational analysis of individuals in 

N3C with an acute COVID-19 infection and comorbid depression diagnosis using a 

machine-learning-based method targeted to reduce bias due to confounding and 

missing data (Targeted Machine Learning).17,18,20–22 

Figure 1. Hypothesized mechanism of the relationship between serotonin and Long 

COVID4,23 
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METHODS 

Study sample, data source, and study design 

Our primary study sample included individuals with a diagnosis of acute COVID-

19 infection between September 1, 2021 (PASC ICD-10 code U09.9 released October 

1, 2021) and December 1, 2022, as well as a comorbid diagnosis of major depressive 

disorder.24 This sample was drawn from patients in N3C (DUR-80D09B6), which 

includes 22 million patients from 82 healthcare institutions.19 N3C provides high-

dimensional data on these participants, which enables researchers to conduct 

evaluations of a wide range of factors related to Long COVID and acute COVID-19 

infection while rigorously adjusting for factors related to medical history and 

sociodemographic information.  

We constructed a retrospective cohort of patients in N3C who were diagnosed 

with major depressive disorder (depression) before their acute COVID-19 infection. As 

SSRI prescription is often indicated by depression, we restricted our sample to only 

include those with depression to limit confounding by indication. We evaluated SSRI 

use (as a time-invariant, binary variable) at the time of acute COVID-19 infection, and 

we assessed patients’ cumulative incidence of Long COVID (PASC) between 1 and 12 

months following acute COVID-19 infection, comparing SSRI users to nonusers. We 
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included patients from 80 data partners (contributors of patient data) in N3C. We found that 23% 

of data partners did not report PASC diagnosis, and 6% of data partners did not report SSRI 

use in this study sample.  

N3C identified patients with acute COVID-19 infection as patients who had either 

(1) at least one laboratory test with a positive result, (2) at least one “strong positive” 

diagnostic code in ICD-10 or SNOMED, (3) at least two “weak positive” diagnostic 

codes in ICD-10 or SNOMED.25 N3C defines the acute COVID-19 infection date as the 

date of the first positive diagnostic code or laboratory rest.  

Key covariates 

Exposures: We defined the exposure of interest as a binary variable that 

represents SSRI use (fluoxetine, sertraline, paroxetine, citalopram, escitalopram, 

fluvoxamine, and vilazodone, phenotyped using RxNorm) during incident COVID-19 

infection. We defined SSRI users as patients who began using an SSRI at least 30 days 

before COVID-19 infection and continued through acute COVID-19 infection (binary, 

time-invariant), and we defined all other patients as nonusers.  

Outcomes: Our outcome of interest was observed PASC diagnosis, which was 

defined by ICD code U09.9, between 1 and 12 months following acute COVID-19 

infection.26 We included observed PASC (U09.9) diagnosis as our outcome of interest, 

as it provides a standardized metric of Long COVID incidence across diagnostic 

settings. In contrast, using the predicted probability of PASC diagnosis (e.g. via 

machine learning methods) may induce bias if the predictions are generated using the 

same EHR data as the exposures of interest.13 We ensured that all participants would 

have 12 months of follow-up by restricting to participants who were diagnosed with 

COVID-19 infection between September 1, 2021 (1 month before the implementation of 

ICD code U09.9),24 and December 1, 2022, and including PASC diagnosis data within 

12 months of COVID-19 infection (i.e. up to December 1, 2023). We will describe PASC 

(ICD code U09.9) as “Long COVID” hereafter.  

Subgroups of interest: We created subgroups of individuals with specific SSRI 

drug type exposures for SSRIs with a sufficient sample size, which included fluoxetine, 

sertraline, paroxetine, citalopram, and escitalopram. Vilazodone and fluvoxamine had 
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insufficient sample size and therefore were excluded from subgroup analyses. We 

constructed separate models for each SSRI of interest to assess potential effect 

heterogeneity. Furthermore, we conducted exploratory analyses of potential dose-

response relationships by analyzing subgroups defined by SSRI dosage among 

fluoxetine users, given fluoxetine’s large sample size and hypothesized relationship with 

Long COVID.13  

Confounders and other covariates: We were able to extract extensive medical 

histories from patients in N3C to adjust for a rich history of patient data and thus avoid 

unmeasured confounding.  Our set of baseline covariates included the following: 

healthcare utilization rate (number of visits pre-COVID-19 infection and healthcare visits 

per month before COVID-19 infection), sex, age at acute COVID-19 infection, race/ 

ethnicity, common data model format, region of residence, body mass index (BMI), 

tobacco smoking status, obesity, diabetes, chronic lung disease, heart failure, 

hypertension, use of systemic corticosteroids, depression severity, bipolar disorder, 

whether the patient was immunocompromised, and the number of COVID-19 

vaccination doses before infection.27 We defined a healthcare visit as a single visit, or 

cluster of visits, to a healthcare provider that was associated with a given medical 

condition, diagnosis, or procedure. We included county-level socioeconomic variables 

that included the percent of the county with an income level below the poverty line and 

the county’s social deprivation index score.  We also used methods that can minimize 

bias due to differential monitoring among patients, by including an indicator variable for 

whether the patient had a documented healthcare visit between 1 and 12 months 

following acute COVID-19 infection (the outcome observation period). We have included 

additional details regarding covariates in Appendix 1. 

 Negative control outcome: We sought to evaluate a negative control outcome to 

evaluate the possibility of bias in the underlying data. We evaluated bone fracture 

diagnosis between 1 and 12 months after acute COVID-19 diagnosis as a negative 

control outcome.  

Analysis  
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To accomplish the goals of using nonparametric statistical methods that could 

adjust for rich, messy patient history and monitoring data, we applied a Targeted 

Learning approach, which is well-suited for this context of observational analyses of 

electronic health record data.17,18,21,28 Traditional parametric analyses make assumptions 

regarding model form and relationships between covariates, and these assumptions will 

inevitably be violated in this high-dimensional setting. This potential model 

misspecification would increase bias and the probability of Type 1 error, particularly 

given our large sample size.17,18,21,28 On the other hand, Targeted Learning (TL) utilizes 

advances in machine learning and causal inference by capitalizing on the extensive 

data to minimize bias introduced by arbitrary modeling assumptions, which can result in 

improper under-adjustment of confounders.  In addition, TL methods provide robust 

statistical inference despite data-adaptive, machine-learning methods being used to 

estimate the statistical relationships of interest. 

Our goal was to estimate the impact of SSRI use at the time of COVID-19 

infection on the probability of developing Long Covid by comparing the predicted 

distribution of Long Covid under universal versus no use of SSRIs among our target 

population, patients with major depressive disorder, under a scenario of universal 

monitoring of patients between 1 and 12 months after acute COVID-19 infection. Our 

analysis approach first used Super Learner, an ensemble machine learning algorithm, 

to predict Long COVID status given individual covariate status (diagnoses, treatment, 

demographics, and other history).29,30 Super Learner uses cross-validation to determine 

the optimal weighting of candidate algorithms to maximize a parameter of interest. Next, 

we used Targeted Maximum Likelihood Estimation to estimate the causal parameter of 

interest (the risk ratio) comparing Long COVID incidence in the exposed versus 

unexposed population.17,18,21,28 Targeted Maximum Likelihood Estimation allows us to 

generate interpretable measures of association, such as a risk ratio while reducing bias. 

In addition, Targeted Maximum Likelihood Estimation is doubly robust, meaning that it 

guarantees consistent estimation as long as the outcome regression or propensity score 

is estimated consistently.17,18,21,28  

As Super Learner guarantees that the ensemble will perform at least as well as 

the best-performing candidate learner, given sufficient sample size, we sought to 
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include a diverse library of parametric and nonparametric candidate algorithms to 

ensure optimal performance.29,30 We included the following candidate algorithms: 

generalized linear models (SL.glm), Bayesian Additive Regression Trees 

(tmle.SL.dbarts2), Generalized Linear models net (SL.glmnet), XGBoost (SL.xgboost), 

Caret (SL.caret), Caret Recursive Partitioning and Regression Trees (SL.caret.rpart), K 

Nearest Neighbors (SL.knn), Neural Net (SL.nnet), Random Forest (SL.randomForest), 

and Recursive Partitioning and Regression Trees (SL.rpart).29,30 We also used cross-

validated (cross-fitted) Targeted Maximum Likelihood Estimation (TMLE), which avoids 

overfitting and adds robustness.17,18,21,28 

We applied a W, A, 𝛥, 𝛥𝑌 data structure, where W referred to our baseline 

confounders and covariates of interest, A referred to our exposure of interest, 𝛥 referred 

to participant observation during the outcome period (months 1-12), and  𝛥𝑌 referred to 

our observed outcome. If a participant did not have a healthcare visit during the 

outcome window (months 1-12 following COVID-19 infection), which could be due to 

lack of healthcare engagement or patient death before observation, Delta would be 

equal to 0. We defined our causal parameter of interest as 𝐸(𝑌(1,1) − 𝑌(0,1)), where 

𝑌(𝑎, 𝛥 = 1) is defined as the counterfactual outcome if SSRI status is set to A=a, and 

the person was monitored during the at-risk period (𝛥 = 1).  We intervened on 𝛥 to 

ensure that all participants were observed (had at least one healthcare visit) during the 

outcome window (between 1 and 12 months following COVID-19 infection). We make 

the assumption that the subset of confounders that are observed for each subject was 

sufficient to adjust for confounding; operationally, this was done by adding new basis 

functions for confounders with missing values, which were indicators that the variable 

was observed, and imputed values for the missing covariate. This allows us to 

aggressively adjust for confounding and keep observations with missing covariate 

information (W).22,27  

Sensitivity analyses: In order to evaluate underlying biases in our analysis and 

data, we conducted a nonparametric sensitivity analysis.31 This nonparametric 

sensitivity analysis allows us to compare the theoretical bias that would nullify our 

results to benchmarks, such as the difference between our observed adjusted estimate 

and unadjusted estimate, that could explain the magnitude of our observed association. 
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Furthermore, we evaluated the relationship between SSRI use during COVID-19 

infection and bone fracture between 1 and 12 months following COVID-19 infection as a 

negative control outcome analysis. We compared our observed, adjusted result to the 

(1) unadjusted association and (2) the negative control outcome association. 

RESULTS 

Descriptive statistics 

 We analyzed electronic health records from a sample of 506,903 patients who 

were diagnosed with major depressive disorder before COVID-19 diagnosis. Among 

these patients, 124,928 (25%) were using an SSRI at the time of COVID-19 infection 

and 381,975 (75%) were not (Table 1). We found that SSRI users generally had a 

greater burden of disease and more markers of poor health than SSRI non-users. 

Among SSRI users, 17% were morbidly obese compared to 15% of non-users,13% had 

experienced heart failure compared to 10% of non-users, 35% had experienced lung 

disease compared to 30% of nonusers, 6% were diagnosed with bipolar disorder 

compared to 5% of nonusers, 19% were smokers compared to 17% of nonusers, and 

64% used systemic corticosteroids compared to 49% of non-users. We also found that 

9% of SSRI users had severe major depressive disorder, compared with 7% of non-

SSRI users. SSRI users had a healthcare utilization rate of 2.9 healthcare visits per 

month, while nonusers had 2.5 healthcare visits per month. We found that 30% of SSRI 

users had at least one dose of a COVID-19 vaccination, and 34% of nonusers had at 

least one vaccination dose. 

Relationship between SSRI use and Long COVID 

We found that SSRI users had a lower risk of Long COVID (adjusted risk ratio 

(aRR) 0.901, 95% confidence interval (CI) (0.861, 0.943)) compared to nonusers 

(Figure 2). Adjustment for baseline confounders shifted the estimate a fair distance from 

the unadjusted association, which indicated a positive relationship between SSRI use 

and Long COVID (unadjusted RR 1.231, 95% CI (1.183, 1.280)) (Table 2).  

Figure 2. Relationship between SSRI use (overall and by SSRI type) and Long COVID 
among patients with depression. 
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 We evaluated the relationship between individual SSRI types and Long COVID 

(fluoxetine, sertraline, paroxetine, escitalopram, and citalopram). In our subgroup analysis, 

comparing the use of each of the five SSRIs to no SSRI use, we found that fluoxetine 

(aRR 0.847, 95% CI (0.763, 0.940)), sertraline (aRR 0.905, 95% CI (0.0.838, 0.979), 

and escitalopram (aRR 0.887, 95% CI (0.814, 0.967)) were associated with a lower 

cumulative incidence of Long COVID. We did not detect an association between the use 

of paroxetine (aRR 0.807, 95% CI (0.638, 1.020)) or citalopram (aRR 0.963, 95% CI 

(0.855, 1.085)) and the risk of Long COVID. We did not find evidence of a dose-

response relationship between fluoxetine dose and risk of Long COVID (60 mg vs. 10 

mg aRR 1.421, 95% CI (0.656, 3.080)) (Supplemental Table 1). 

Sensitivity analyses and confounding 

 We found that the relationship between SSRI use and Long COVID was strongly 

and qualitatively confounded, as the unadjusted estimate indicated a positive (harmful) 

correlation, but the adjusted estimate indicated a negative (protective) correlation. We 

observed the change in estimate following the backward exclusion of each covariate, 

where we defined “confounder RR” as the risk ratio in the fully-adjusted model divided 

by the risk ratio of the partially-adjusted model (with the covariate excluded) 

(Supplemental Table 2). We found that the strongest confounders of the relationship 

between SSRI use and Long COVID were baseline systemic corticosteroid use 

(confounder RR 0.983), monitoring during the outcome window (binary indicator of 

healthcare visitation between 1 and 12 months after acute COVID-19) (confounder RR 

0.989), number of healthcare visits at baseline (confounder RR 0.995), and social 
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deprivation index (confounder RR 1.005). We also evaluated the impact of excluding 

two groups of covariates, healthcare utilization (number of healthcare visits before 

baseline, healthcare visitation rate before baseline, and monitoring during the outcome 

window) and baseline general health and comorbidities general health and 

comorbidities (BMI, chronic lung disease, diabetes, obesity, immunocompromised 

status, smoking, corticosteroid use, hypertension, and COVID-19 vaccinations). We 

found that excluding factors related to healthcare utilization led to a confounder RR of 

0.969 while excluding factors related to baseline comorbidities and health led to a 

confounder RR of 0.979. 

We conducted a nonparametric sensitivity analysis to evaluate the potential 

impact of bias on our results (Figure 3). We found that 0.33 units of bias, where one unit 

corresponds to the difference between our adjusted and unadjusted estimate, could 

lead to a value as extreme as our observed estimate, due to random variation alone. 

Figure 3. Nonparametric sensitivity analysis depicting the observed, adjusted risk ratio 
(TMLE+SL) as well as the unadjusted risk ratio (unadjusted) and the results of an 

analysis of a negative control outcome (bone fracture). 

 

DISCUSSION 

We found a protective effect of SSRI use at the time of acute COVID-19 infection 

on subsequent 12-month risk of Long COVID. These results are consistent with the 

hypothesis that SSRIs may be an effective intervention to prevent Long COVID, which 
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also supports the hypothesis that serotonin may play a role in the development of Long 

COVID.  Randomized controlled trials are currently underway to evaluate the ability of 

SSRIs to prevent or treat Long COVID (NCT05874037, NCT06128967). With ongoing 

COVID-19 transmission, the risk of Long COVID remains prevalent, and finding 

interventions to prevent Long COVID remains prudent. SSRIs may serve as an 

important tool in preventing this condition and limiting the rippling effects of the COVID-

19 pandemic. 

 Our findings regarding the protective effect of SSRI use on Long COVID risk are 

consistent with previous studies. This observed treatment effect, a risk ratio of 0.90 

(95% CI 0.86, 0.94), is less protective than a previous analysis, which found a risk ratio 

of 0.76 (95% CI 0.62, 0.90).13 The difference in these effects may be attributed to 

several potential factors, including the previous study’s use of predicted Long COVID 

status rather than observed diagnosis (yielding a prevalence of 15% rather than 2%) as 

well as our restriction to only include patients with a diagnosis of major depressive 

disorder.13 These considerations may avoid bias and confounding due to indication, 

respectively. 

The observed unadjusted and adjusted estimates varied qualitatively (from 

harmful to protective). The unadjusted association indicating a harmful relationship 

between SSRI use and Long COVID may be explained by strong confounding due to 

various factors and is supported by our finding of imbalance and confounding due to 

healthcare utilization, medication usage, and socioeconomic factors. This phenomenon 

is referred to as Simpson’s paradox, where findings can vary drastically when causal 

inference considerations are taken into account.32 Our nonparametric sensitivity 

analysis contextualizes these relationships and indicates that, for our observed, 

adjusted estimate to be a Type 1 error, we would need to have 0.33 units of bias, where 

one unit refers to the difference between adjusted and unadjusted estimates.31 The 

qualitative shift in our observed measure of association following multivariate 

adjustment underscores the need for additional research in this area. Furthermore, our 

finding that factors related to healthcare utilization rate (number of healthcare visits 

before baseline and outcome monitoring indicator) were strong confounders of our 

observed relationship highlights the importance of addressing differential healthcare 
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utilization rates and other causal considerations in observational studies that rely on 

Long COVID diagnosis as an outcome of interest.27 

These findings provide additional support for the hypothesis that low serotonin is 

a driver of Long COVID incidence and that SSRIs may prevent or treat Long COVID. 

Although SSRI treatment may not directly intervene on remnants of the SARS-CoV-2 

virus, which leads to the sustained release of viral RNA-induced type 1 interferons, 

which decreases tryptophan uptake and prevents cortisol production, SSRI use may still 

interrupt this causal pathway of disease etiology.4 This potential biological pathway may 

include the increase of synaptically available serotonin, through inhibited serotonin 

reuptake, which increases vagal signaling to prevent neurological and cognitive 

symptoms of Long COVID.7 As this hypothesis posits that low serotonin is a 

downstream effect of lingering SARS-CoV-2 virus and sustained interferon 1 response, 

these findings also hint at interventions that aim to detect or treat persistent viral load of 

SARS-CoV-2 or viral RNA-induced type 1 interferon. 

We did not find evidence of heterogeneity of the relationship between SSRI use 

and Long COVID depending on SSRI type. This finding is consistent with a previous 

study, which did not find a differential impact of moderate to high-affinity sigma 1 

receptor agonist SSRIs (fluvoxamine, fluoxetine, escitalopram, and citalopram) versus 

non-high affinity SSRIs (sertraline and paroxetine) in their relationship with Long 

COVID.13 We caution readers to consider this finding in the context of a few limitations. 

Residual confounding due to indication, as different depressive symptomatology, 

comorbidities, side effects, and tolerance may lead providers to prescribe a specific 

SSRI over another SSRI. For instance, citalopram and paroxetine are often prescribed 

for obsessive-compulsive disorder, which may be associated with Long COVID 

symptoms.33–36  Furthermore, our analysis of paroxetine was limited by a small sample 

size of users (n = 7,189). We also did not find evidence of a dose-response relationship 

between fluoxetine and Long COVID. This may be explained due to a large proportion 

of missingness of dose information leading to a small functional sample size. Future 

studies should further explore the possibility of a dose-response relationship.8 

Strengths and Limitations: 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.24302352doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.05.24302352
http://creativecommons.org/licenses/by/4.0/


16 

A strength of this study is its large, national sample size of participants and the 

broad range of high-dimensional data that we included via N3C. This rich data source 

allows us to construct a cohort of patients with a diagnosis of major depressive disorder, 

assess their SSRI use at the time of COVID-19 infection, and evaluate their probability 

of Long COVID diagnosis. Furthermore, the documentation of comorbidities, 

sociodemographic information, and other medical history allows for rigorous multivariate 

adjustment. 

A second strength of this study is the analytic methods that we applied. A 

Targeted Learning approach, involving Super Learner and targeted maximum likelihood 

estimation, allows for efficient and flexible estimation while making minimal parametric 

assumptions.17,18,21,29,37 With this large sample size of high-dimensional data, this allows 

us to aggressively reduce bias due to measured, potentially high-dimensional 

confounding and to do so with nearly no model assumptions. Furthermore, these 

methods allowed us to intervene on participant observation during the outcome window, 

which is an important driver of differential outcome ascertainment.27,31 Finally, 

nonparametric sensitivity analyses allowed us to determine the extent to which our 

results are vulnerable to bias. Cumulatively, these methods provide a replicable 

framework for investigators to conduct rigorous observational analyses using electronic 

health record databases such as N3C. 

A third strength of this study was its ability to flexibly account for and intervene on 

the missingness of the outcome and heterogeneous monitoring.31 There is significant 

heterogeneity in N3C’s documentation of Long COVID diagnoses (our outcome of 

interest), as is common with electronic health record databases. Previous studies have 

found that Long COVID diagnosis is strongly correlated with healthcare utilization 

rate.27,38 We sought to control for healthcare utilization rate by adjusting for multiple 

factors related to healthcare utilization, including healthcare visits per month before 

COVID-19 infection. In addition, we were able to use novel causal inference framing to 

define our parameter of interest at the ratio of probabilities of PASC under universal 

monitoring, i.e., by “intervening” on whether an individual had a healthcare visit between 

1 and 12 months following acute COVID-19 infection (the period at-risk for Long 

COVID), to observe the counterfactual impact of SSRI exposure given that all 
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participants were observed during the period at-risk for the outcome.39,40 It remains 

possible that residual confounding due to healthcare utilization rate remains, although 

this would likely bias our estimate towards the null, indicating that our observed 

measure of association is likely conservative.27 

This study had several limitations. We defined the exposure of interest as a 

binary, time-invariant variable based on SSRI use during COVID-19 infection. It remains 

possible that factors related to the duration of SSRI use, timing of SSRI use, or SSRI 

dosage may modify this relationship and should be explored in a future study. 

Furthermore, PASC diagnosis (ICD code U09.9) has limited sensitivity and may fail to 

reflect heterogeneity within Long COVID subtypes (e.g. neurological versus 

gastrointestinal symptoms). Finally, as an observational study, this analysis may be 

subject to residual bias and investigators should conduct randomized controlled trials to 

corroborate these findings. The generalizability of N3C patients has been described 

previously.6,38,41 N3C is a broad, national sample of participants, as it relies on electronic 

health record data, but it skews towards participants who engage more with healthcare 

systems. This yields a study population that is generally older, has more comorbidities 

than the general population, and underrepresents un- or underinsured patients.42  

CONCLUSION 

This study suggests that the use of SSRIs during acute COVID-19 infection is 

associated with a lower risk of Long COVID among patients with major depressive 

disorder. These results support the hypothesis that serotonin is a key mechanistic 

biomarker of Long COVID and that SSRIs may be an effective intervention to prevent 

Long COVID.  
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Translational Research Institute (SCTR) • Montefiore Medical Center — UL1TR002556: 
Institute for Clinical and Translational Research at Einstein and Montefiore • Nemours 
— U54GM104941: Delaware CTR ACCEL Program • NorthShore University 
HealthSystem — UL1TR002389: The Institute for Translational Medicine (ITM) • 
Northwestern University at Chicago — UL1TR001422: Northwestern University Clinical 
and Translational Science Institute (NUCATS) • OCHIN — INV-018455: Bill and Melinda 
Gates Foundation grant to Sage Bionetworks • Oregon Health & Science University — 
UL1TR002369: Oregon Clinical and Translational Research Institute • Penn State 
Health Milton S. Hershey Medical Center — UL1TR002014: Penn State Clinical and 
Translational Science Institute • Rush University Medical Center — UL1TR002389: The 
Institute for Translational Medicine (ITM) • Rutgers, The State University of New Jersey 
— UL1TR003017: New Jersey Alliance for Clinical and Translational Science • Stony 
Brook University — U24TR002306 • The Ohio State University — UL1TR002733: 
Center for Clinical and Translational Science • The State University of New York at 
Buffalo — UL1TR001412: Clinical and Translational Science Institute • The University of 
Chicago — UL1TR002389: The Institute for Translational Medicine (ITM) • The 
University of Iowa — UL1TR002537: Institute for Clinical and Translational Science • 
The University of Miami Leonard M. Miller School of Medicine — UL1TR002736: 
University of Miami Clinical and Translational Science Institute • The University of 
Michigan at Ann Arbor — UL1TR002240: Michigan Institute for Clinical and Health 
Research • The University of Texas Health Science Center at Houston — 
UL1TR003167: Center for Clinical and Translational Sciences (CCTS) • The University 
of Texas Medical Branch at Galveston — UL1TR001439: The Institute for Translational 
Sciences • The University of Utah — UL1TR002538: Uhealth Center for Clinical and 
Translational Science • Tufts Medical Center — UL1TR002544: Tufts Clinical and 
Translational Science Institute • Tulane University — UL1TR003096: Center for Clinical 
and Translational Science • University Medical Center New Orleans — U54GM104940: 
Louisiana Clinical and Translational Science (LA CaTS) Center • University of Alabama 
at Birmingham — UL1TR003096: Center for Clinical and Translational Science • 
University of Arkansas for Medical Sciences — UL1TR003107: UAMS Translational 
Research Institute • University of Cincinnati — UL1TR001425: Center for Clinical and 
Translational Science and Training • University of Colorado Denver, Anschutz Medical 
Campus — UL1TR002535: Colorado Clinical and Translational Sciences Institute • 
University of Illinois at Chicago — UL1TR002003: UIC Center for Clinical and 
Translational Science • University of Kansas Medical Center — UL1TR002366: 
Frontiers: University of Kansas Clinical and Translational Science Institute • University 
of Kentucky — UL1TR001998: UK Center for Clinical and Translational Science • 
University of Massachusetts Medical School Worcester — UL1TR001453: The UMass 
Center for Clinical and Translational Science (UMCCTS) • University of Minnesota — 
UL1TR002494: Clinical and Translational Science Institute • University of Mississippi 
Medical Center — U54GM115428: Mississippi Center for Clinical and Translational 
Research (CCTR) • University of Nebraska Medical Center — U54GM115458: Great 
Plains IDeA-Clinical & Translational Research • University of North Carolina at Chapel 
Hill — UL1TR002489: North Carolina Translational and Clinical Science Institute • 
University of Oklahoma Health Sciences Center — U54GM104938: Oklahoma Clinical 
and Translational Science Institute (OCTSI) • University of Rochester — UL1TR002001: 
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UR Clinical & Translational Science Institute • University of Southern California — 
UL1TR001855: The Southern California Clinical and Translational Science Institute (SC 
CTSI) • University of Vermont — U54GM115516: Northern New England Clinical & 
Translational Research (NNE-CTR) Network • University of Virginia — UL1TR003015: 
iTHRIV Integrated Translational health Research Institute of Virginia • University of 
Washington — UL1TR002319: Institute of Translational Health Sciences • University of 
Wisconsin-Madison — UL1TR002373: UW Institute for Clinical and Translational 
Research • Vanderbilt University Medical Center — UL1TR002243: Vanderbilt Institute 
for Clinical and Translational Research • Virginia Commonwealth University — 
UL1TR002649: C. Kenneth and Dianne Wright Center for Clinical and Translational 
Research • Wake Forest University Health Sciences — UL1TR001420: Wake Forest 
Clinical and Translational Science Institute • Washington University in St. Louis — 
UL1TR002345: Institute of Clinical and Translational Sciences • Weill Medical College 
of Cornell University — UL1TR002384: Weill Cornell Medicine Clinical and Translational 
Science Center • West Virginia University — U54GM104942: West Virginia Clinical and 
Translational Science Institute (WVCTSI) 
Submitted: Icahn School of Medicine at Mount Sinai — UL1TR001433: ConduITS 
Institute for Translational Sciences • The University of Texas Health Science Center at 
Tyler — UL1TR003167: Center for Clinical and Translational Sciences (CCTS) • 
University of California, Davis — UL1TR001860: UCDavis Health Clinical and 
Translational Science Center • University of California, Irvine — UL1TR001414: The UC 
Irvine Institute for Clinical and Translational Science (ICTS) • University of California, 
Los Angeles — UL1TR001881: UCLA Clinical Translational Science Institute • 
University of California, San Diego — UL1TR001442: Altman Clinical and Translational 
Research Institute • University of California, San Francisco — UL1TR001872: UCSF 
Clinical and Translational Science Institute 
Pending: Arkansas Children’s Hospital — UL1TR003107: UAMS Translational 
Research Institute • Baylor College of Medicine — None (Voluntary) • Children’s 
Hospital of Philadelphia — UL1TR001878: Institute for Translational Medicine and 
Therapeutics • Cincinnati Children’s Hospital Medical Center — UL1TR001425: Center 
for Clinical and Translational Science and Training • Emory University — 
UL1TR002378: Georgia Clinical and Translational Science Alliance • HonorHealth — 
None (Voluntary) • Loyola University Chicago — UL1TR002389: The Institute for 
Translational Medicine (ITM) • Medical College of Wisconsin — UL1TR001436: Clinical 
and Translational Science Institute of Southeast Wisconsin • MedStar Health Research 
Institute — UL1TR001409: The Georgetown-Howard Universities Center for Clinical and 
Translational Science (GHUCCTS) • MetroHealth — None (Voluntary) • Montana State 
University — U54GM115371: American Indian/Alaska Native CTR • NYU Langone 
Medical Center — UL1TR001445: Langone Health’s Clinical and Translational Science 
Institute • Ochsner Medical Center — U54GM104940: Louisiana Clinical and 
Translational Science (LA CaTS) Center • Regenstrief Institute — UL1TR002529: 
Indiana Clinical and Translational Science Institute • Sanford Research — None 
(Voluntary) • Stanford University — UL1TR003142: Spectrum: The Stanford Center for 
Clinical and Translational Research and Education • The Rockefeller University — 
UL1TR001866: Center for Clinical and Translational Science • The Scripps Research 
Institute — UL1TR002550: Scripps Research Translational Institute • University of 
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Florida — UL1TR001427: UF Clinical and Translational Science Institute • University of 
New Mexico Health Sciences Center — UL1TR001449: University of New Mexico 
Clinical and Translational Science Center • University of Texas Health Science Center 
at San Antonio — UL1TR002645: Institute for Integration of Medicine and Science • 
Yale New Haven Hospital — UL1TR001863: Yale Center for Clinical Investigation  
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Characteristic Value
SSRI Users 
Count/Mean

SSRI Users 
Percentage/

Non SSRI Users 
Count/Mean

Non SSRI Users 
Percentage/Std Dev

Total 506903 124928 381975

Sex Other/missing 33 0.03 110 0.03

FEMALE 92956 74.41 272861 71.43

MALE 31939 25.57 109004 28.54

Age (years) (49.0, 70.0] 43600 34.9 128537 33.7

(70.0, 108.0] 21217 17 56151 14.7

(0.0, 17.0] 4069 3.3 17278 4.5

(17.0, 49.0] 55903 44.7 179010 46.9

Missing 139 0.1 999 0.3

Race-ethnicity White Non-Hispanic 92075 73.7 268026 70.2

Black or African American Non-Hispanic 13475 10.8 44707 11.7

Asian Non-Hispanic 2116 1.7 7766 2

Other Non-Hispanic/Unknown 1405 1.1 9181 2.4

Hispanic or Latino Any Race 9657 7.7 35657 9.3

Unknown 6200 5 16638 4.4

Body mass index (0.0, 25.0] 17202 13.8 59013 15.4

(25.0, 30.0] 23051 18.5 73328 19.2

(30.0, 35.0] 22231 17.8 65935 17.3

(35.0, 40.0] 16103 12.9 45197 11.8

(40.0, 100.0] 20819 16.7 56660 14.8

Missing 25522 20.4 81842 21.4

Comorbidities Systemic Corticosteroids 79504 63.6 186957 48.9

Bipolar Disorder 7169 5.7 20585 5.4

Diabetes 32542 26 85143 22.3

Other Immunocompromised 18651 14.9 48141 12.6

Hypertension 63243 50.6 170281 44.6

Lung Disease 43103 34.5 115790 30.3

Smoking 23713 19 66630 17.4

Heart Failure 16773 13.4 38868 10.2

Depression severity Moderately severe major depression <20 <0.01 <20 <0.01

Severe major depression ~11520* 0.09 ~28350* 0.07

Mild major depression ~15210* 0.12 ~38590* 0.10

Unknown ~98200* 0.79 ~315030* 0.82

Socioeconomic factorsPercent of County Below Poverty Line 15 5.25 14.96 5.24

Social Deprivation Index 44.9 28.01 46.38 29.74

Medical utilization rateMedical Visits per Month Prior to COVID-19 Infection 2.9 3.67 2.5 3.47

COVID-19 factors Number of COVID-19 Vaccinations 0.7 1.15 0.78 1.17

Covid Associated Hospitalization 27927 22.4 96479 25.3

at lease one dose of vaccine 37989 30.4 129804 34

*Approximate values to mitigate risk of reidentification
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Table 2. Relationships between SSRI use during acute COVID-19 infection and 12-month Long COVID risk 

SSRI Type
Sample size Using 
Drug

Sample size not 
using drug

Unadjusted risk 
using drug

Unadjusted Risk not 
using Drug

Unadjusted 
RR  CI (lower) CI (upper)

Adjusted risk 
using drug

Adjusted Risk not 
using drug Adjusted RR (95% CI)

Any SSRI 124928 381975 0.027 0.0217 1.2306 1.1827 1.2804 0.0211 0.0234 0.9010 (0.8607, 0.9433)

Fluoxetine 28275 381975 0.027 0.0217 1.2557 1.1675 1.3506 0.0187 0.0221 0.8471 (0.7636, 0.9398)

Sertraline 47348 381975 0.026 0.0217 1.1891 1.1206 1.2617 0.0203 0.0224 0.9058 (0.8378, 0.9792)

Paroxetine 7189 381975 0.027 0.0217 1.2315 1.0694 1.4182 0.0176 0.0219 0.8068 (0.6379, 1.0204)

Citalopram 19967 381975 0.028 0.0217 1.3048 1.1996 1.4191 0.0213 0.0221 0.9630 (0.8548, 1.0849)

Escitalopram 37171 381975 0.027 0.0217 1.2653 1.1867 1.3491 0.0198 0.0223 0.8875 (0.8140, 0.9676)
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