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Abstract 
INTRODUCTION: Representative data of recent Alzheimer’s Disease (AD) trials are difficult 
to obtain. We aimed to generate a synthetic version of an original real-world observational 
dataset, subsequently apply a plausible AD treatment effect, and make our method open-
source available.  

METHODS: Synthetic data was generated in the following steps: (1) Obtain real-world data 
from the ADNI study on demographic (age, sex, education), clinical (cognition: MMSE and 
ADAS; function: FAQ; composite cognition/function: CDR, ADCOMS) and biological 
(genetics: APOE4; cerebrospinal fluid: ABeta, Tau; imaging: PET-SUVR-centiloid) outcomes 
at baseline, 6, 12 and/or 18-month follow-up (35 variables), with missing data multiple-
imputed to obtain 10 sets of 537 individuals. (2) Estimate (theoretical) minimum and 
maximum (all continuous variables) and proportions (all categorical variables). (3) Rescale to 
0-1 range (continuous). (4) Estimate beta distribution shape parameters (method of 
moments; continuous). (5) Transform to cumulative probability distribution function (using 
shape parameters; continuous) and to cumulative probability (categorical). (6) Transform to a 
normal distribution. (7) Estimate variance-covariance matrix. (8) Generate random correlated 
normal data using Cholesky decomposition of variance-covariance. (9) Transform to 
cumulative probability distribution function. (10) Transform to beta distribution (using shape 
parameters; continuous). (11) Rescale to original range. (12) Keep half as control arm, and 
half as intervention arm, and estimate change from baseline. (13) Multiply intervention 
change from baseline with self-defined hypothetical relative treatment effect. We assumed 
correlations on normalized scale were similar to correlations on original scale. R code is 
available on github: https://github.com/ronhandels/synthetic-correlated-data.  
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RESULTS: The synthetic distribution and mean over time showed large similarity to the 
original data (visually assessed). The absolute difference in pairwise correlations between 
original and synthetic data median was 0.02 (95th percentile=0.11, max=0.18).  

CONCLUSION: We judged our method sufficiently valid to generate synthetic correlated 
plausible hypothetical trial results.  
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Introduction 
Recent Alzheimer’s disease (AD) treatments have shown significant effects on short-term 
surrogate outcomes [van Dyck et al, 2023; Sims et al, 2023]. To assess the health-economic 
impact of AD treatment their short-term outcomes must likely be extrapolated over lifetime 
using a decision-analytic model. To improve understanding, transparency and credibility of 
different available models they have been cross-compared using a conceptually defined 
benchmark treatment effect [Handels et al., 2023]. This could be improved by using real-
world individual-level trial data. However, we experienced limited availability of data from AD 
trials.  

Individual-level data in healthcare are controlled due to privacy issues and therewith limitedly 
available. A recent review has showed 7 use cases of synthetic datasets in health care, 
being “a) simulation and prediction research, b) hypothesis, methods, and algorithm testing, 
c) epidemiology/public health research, d) health IT development, e) education and training, 
f) public release of datasets, and g) linking data” [Gonzales et al., 2023].  

We aimed to generate a synthetic version of an original real-world observational dataset, 
subsequently apply a plausible AD treatment effect, and make our method open-source 
available. The results of this study are targeted for being implemented in health-economic 
decision-analytic models and subsequently cross-compare them on health-economic 
outcomes.  

Methods 
We (RH, LJ, LLR) determined the characteristics of a plausible future trial based on an open 
discussion. This was set in terms of participants recruited in a memory clinic with the 
following inclusion criteria: age between 55-85 years; objective impairment in episodic 
memory (based on Wechsler Memory Scale-IV Logical Memory II); amyloid positive via 
amyloid cerebrospinal fluid Amyloid Beta or amyloid Positron Emission Tomography (PET); 
Clinical Dementia Rating (CDR) = 0.5; Mini-Mental State Examination (MMSE) ≥ 24; and the 
following exclusion criteria: MRI based confounding pathologies (e.g., acute or sub-acute 
hemorrhage); Unstable dose of Acetylcholinesterase inhibitor (AChEI).  

We considered a sub-selection of the data from the ADNI as representative for this target 
population. Data from the ADNI has been collected in a multicenter longitudinal study the US 
and Canada and tracked AD progression with clinical, imaging, genetic and biospecimen 
biomarkers through the process of normal aging, mild cognitive impairment and dementia.  

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 
The primary goal of ADNI has been to test whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the progression of mild 
cognitive impairment (MCI) and early Alzheimer’s disease (AD).  

We considered that the following selection of ADNI participants reflected this target setting 
and selection criteria. Therefore, we estimated the distribution, mean over time (except what 
we determined as demographics only obtained at baseline) and correlation of a set of 
variables. The following set of variables were expected to be measured in a plausible future 
trial and available in ADNI: age, sex, years of education, ethnicity Hispanic or Latino yes/no, 
ApoE4 status, CDR sum of boxes (CDR-SB), CDR global score, MMSE total score, 
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Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-Cog13) total score, 
Functional Activities Questionnaire (FAQ) total score, AD Composite Score (ADCOM), 
cerebrospinal fluid (CSF) amyloid beta (ABETA), CSF total tau (TAU), CSF phosphorelated 
tau (PTAU), Amyloid PET standardised uptake value ratios centiloid score (PET- SUVr-CL) 
based on PIB, AV45 or Florbetaben.  

 

Box 1: steps for generating synthetic data.  

Part A: Original Data 
1. Original real-world data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study on  

i) demographic (age, sex, education),  
ii) clinical (cognition: Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment 
Scale (ADAS); function: Functional Activities Questionnaire  (FAQ); composite cognition/function: 
Clinical Dementia Rating (CDR), Alzheimer’s Disease Composite Score (ADCOMS)) and  
iii) biological (genetics: APOE4; cerebrospinal fluid: ABeta, Tau; imaging: PET-SUVR-centiloid)  
outcomes at baseline, 6, 12 and/or 18-month follow-up (35 variables), with missing data multiple-
imputed to obtain 10 sets of 537 individuals.  

2. Estimate (theoretical) minimum and maximum (all continuous variables) and proportions (all 
categorical variables).  

3. Rescale to 0-1 range (continuous).  
4. Estimate beta distribution shape parameters (method of moments; continuous).  
5. Transform to cumulative probability distribution function (CDF) (using shape parameters; continuous) 

and to cumulative probability (categorical).  
6. Transform to a normal distribution (using quantile function, i.e., inverse cumulative distribution 

function).  
7. Estimate variance-covariance matrix.  

Part B: Synthetic data 
8. Generate random correlated normal data (mean=0, SD=1) using Cholesky decomposition of variance-

covariance matrix from step 7.  
9. Transform to cumulative probability distribution function (CDF).  
10. Transform to beta distribution (using quantile function, i.e., inverse cumulative distribution function) 

(using beta distribution shape parameters from step 4; continuous).  
11. Rescale to original range (using minimum and maximum and proportions from step 2).  

Part C: Treatment effect 
12. Keep half as control arm, and half as intervention arm, and estimate change from baseline.  
13. Multiply intervention change from baseline with self-defined hypothetical relative treatment effect.  

 

 

Figure 1: Overview of steps (1-11) taken to create synthetic correlated data from original 
data (abbreviation: CDF, cumulative probability distribution function). 

Data from the merged ADNI file were used as a basis. Data from additional files on CDR, 
ADAS and MMSE were added to obtain item-level scores to calculate the ADCOMS score. 
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Data from additional file florbetaben were added to obtain PET SUVR florbetaben scores. 
Multiple imputation was used to impute missing data.  

Generating synthetic data 
The selected data from the ADNI was synthetically recreated (part A and B described in box 
1 as steps 1-11, also visualized in Figure 1 with matching step numbers and colors). Then, a 
hypothetical treatment effect was implemented by manually manipulating half of the synthetic 
(part C described in box 1 as steps 12-13).  

Validating synthetic data 
Original ADNI data and its synthetically recreated data were plotted in terms of distribution, 
mean over time and correlation. The validity of the synthetic data regarding these 3 aspects 
was visually assessed.  

R code and tutorial 
A simplified version of the code including a tutorial of the validation for part A and B (steps 1-
11) is available on GitHub via https://github.com/ronhandels/synthetic-correlated-data. An 
ISPOR conference poster describing our method is also available [Handels et al., 2023].  

We note the example data available on GitHub was generated by taking the original ADNI 
data and adding a fixed change as well as large random variation to each variable. 
Therefore, this example data does not contain any original data from ADNI data, it does not 
represent ADNI data, and we think it does not represent clinical correctness. We therefore 
recommend using the example data only for the purpose of understanding our method in our 
tutorial in which these example data are used.  

Results 
The distribution and mean over time from the synthetic data showed relatively large similarity 
to the original data (visually assessed, see Figure 2 and Figure 3). The absolute differences 
in pairwise correlations between original data and synthetic data showed had a median of 
0.04, a 95th percentile of 0.20 and a maximum of 0.30. Figure 4 shows a heatmap of each 
absolute difference in pairwise correlation.  

After applying the self-defined hypothetical relative treatment effect, the data were 
summarized into a set of tables and graphs which we considered plausible in terms of being 
reported in a real-world trial publication. These can be found in Tables 1, Table 2 and Table 
3, and Figure 5. These include reportion of confidence intervals and results of regression 
analysis to test for significant differences.  
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Figure 2: Histogram of original data, density line of original data (black solid line), density 
line of the beta distribution parameters (black dashed line), and density line of simulated data 
(blue) all on rescaled 0-1 range. Density line of original data should be similar to density line 
of the beta distribution parameters as well as to the density line of the simulated data. 

 

 

Figure 3: Mean and 95% confidence interval of original data and synthetically recreated data 
over time. 
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Figure 4: Heatmap of the absolute values of the correlation matrix fitted to the original data 
(on its original scale) minus the correlation matrix fitted to the simulated data (on its final 
scale). 

 

Discussion 
We generated plausible AD treatment effect individual-level data by synthetically recreating 
real-world observational dataset combined with a hypothetical treatment effect.  

We think the similarity between the original and synthetically recreated data argues for their 
face validity, and therewith its usability as benchmark for cross-comparing health-economic 
decision-analytic models in AD.  

We note the self-defined hypothetical relative effect was not disclosed as the hypothetical 
trial results have been aimed for being implemented in health-economic decision-analytic 
models. For the purpose of implementing them the original intended treatment effect is not 
disclosed.  

Among alternative methods for generating synthetic correlated data from different 
distributions is R package ‘synthpop’ [Nowok et al., 2016]. A comparison to this method is 
beyond the scope of our study, as is a review of alternative technologies from areas of 
multiple imputation, generalized mixed models or artificial intelligence.  
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Limitations 
The results of this study are subject to several limitations. First, correlations among the data 
were estimated on normalized scale and assumed representative for correlations on the 
original scale. This assumption is likely incorrect in case data is not normally distributed. 
However, for much data the impact seems relatively small as reflected by a relatively small 
deviation on correlation in the observed and synthetically recreated data. Second, missing 
data or drop-out were not simulated, limiting the representativeness of the data to a real-
world setting in which missing data or drop-out in trials is common. Third, generally we 
believe synthetic data are as good as the underlying models parameterizing them. Our 
method is based on the assumption that the data can be correctly described by the 
parameters of the beta distribution and the correlation coefficient. Likely, data from 
multimodal distribution or with non-linear associations are incorrectly synthetically recreated 
by our method.  

Conclusion 
We generated a synthetic version of an original real-world observational dataset, applied a 
plausible AD treatment effect, and made our method open-source available. We judged our 
method sufficiently valid to generate synthetic correlated plausible hypothetical trial results.  

 

Table 1: Trial hypothetical inclusion and exclusion criteria. 

Inclusion criteria:  
Age between 55-85 years 
Objective impairment in episodic memory (based on Wechsler Memory Scale-IV Logical Memory II) 
Amyloid positive* via amyloid cerebrospinal fluid Amyloid Beta or amyloid PET 
CDR = 0.5 
MMSE ≥ 24 
Exclusion criteria:  
MRI based confounding pathologies (e.g., acute or sub-acute hemorrhage) 
Unstable dose of AChEI 
* Definitions of positivity might vary across studies/measures/tools.  

 

Table 2: Sample characteristics at baseline (standard deviation of the mean). 

 Control (SOC + 
placebo) 
n=654 

Intervention (SOC 
+ DMT) 
n=654 

p-value 

Age, mean (SD) 73 (6.7) 73 (6.8) 0.420 
Female, % 42% 39% 0.400 
Education (years), mean (SD) 16.5 (3.5) 16.1 (3.6) 0.079 
ApoE e4/e4, % 18% 19% 0.620 
CDR SOB, mean (SD) 1.71 (1.01) 1.70 (0.99) 0.870 
MMSE, mean (SD) 27.4 (2.4) 27.2 (2.4) 0.350 
ADAS-Cog13, mean (SD) 18.0 (7.4) 18.6 (7.3) 0.110 
ADCOMS, mean (SD) 0.23 (0.12) 0.23 (0.12) 0.580 
FAQ, mean (SD) 4.30 (6.72) 4.43 (6.73) 0.730 
CSF ABeta24 (pg/mL), mean (SD) 718 (242) 705 (232) 0.340 
CSF total tau (pg/mL), mean (SD) 311 (133) 325 (146) 0.067 
CSF phosphorylated tau (pg/mL), mean (SD) 31 (15.0) 33 (16.5) 0.023 
Amyloid PET SUVr centiloid, mean (SD) 68 (40) 72 (42) 0.041 
Abbreviations: ADAS-Cog13, Alzheimer’s Disease Assessment Scale-cognitive subscale; ADCOMS, AD 
Composite Score; CDR SOB, Clinical Dementia Rating sum of boxes; CSF, cerebrospinal fluid; DMT, disease-
modifying treatment; FAQ, functional activities questionnaire; MMSE, Mini-Mental State Examination; PET SUVr, 
positron emission tomography standard uptake value ratio; SD, standard deviation; SOC, standard of care.  
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Table 3: Efficacy outcomes in terms of number or mean change from baseline after 18 
months (standard error). 

 Control (SOC + 
placebo) 
n=654 

Intervention (SOC 
+ DMT) n=654 

p-value 

CDR global, n (%)   0.463 
   -0.5  (from 0.5 to 0) 34 (5%) 54 (8%)  
   +0    (from 0.5 to 0.5) 484 (74%) 473 (72%)  
   +0.5 (from 0.5 to 1) 136 (21%) 127 (19%)  
   +1.5 (from 0.5 to 2) 0 0  
   +2.5 (from 0.5 to 3) 0 0  
CDR-SB, mean (SE) 0.84 (0.06) 0.59 (0.06) 0.004 
MMSE, mean (SE) -1.7 (0.2) -1.1 (0.2) 0.021 
ADAS-Cog13, mean (SE) 3.8 (0.3) 2.2 (0.3) 0.000 
ADCOMS, mean (SE) 0.12 (0.01) 0.08 (0.01) 0.000 
FAQ, mean (SE) 2.6 (0.3) 1.9 (0.3) 0.058 
CSF ABeta24 (pg/mL), mean (SE) -36 (6) 267 (6) 0.000 
CSF total tau (pg/mL), mean (SE) 6.8 (2.3) -125.7 (2.3) 0.000 
CSF phosphorylated tau (pg/mL), mean (SE) 0.2 (0.3) -20.1 (0.3) 0.000 
Amyloid PET SUVr centiloid, mean (SE) 5.9 (0.9) -45.3 (0.9) 0.000 
Abbreviations: ADAS-Cog13, Alzheimer’s Disease Assessment Scale-cognitive subscale; ADCOMS, AD 
Composite Score; CDR SOB, Clinical Dementia Rating sum of boxes; CSF, cerebrospinal fluid; DMT, disease-
modifying treatment; FAQ, functional activities questionnaire; MMSE, Mini-Mental State Examination; PET SUVr, 
positron emission tomography standard uptake value ratio; SE, standard error; SOC, standard of care.  

The data reflected an intention-to-treat population and were assumed adjusted for conditional missingness as this 
was to be expected in practice. 

 

 

Figure 5: Efficacy outcomes: mean change from baseline (standard error presented in bars). 
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