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Abstract— Rising diabetes rates have led to increased health-
care costs and health complications. An estimated half of
diabetes cases remain undiagnosed. Early and accurate diag-
nosis is crucial to mitigate disease progression and associated
risks. This study addresses the challenge of predicting dia-
betes prevalence in Canadian adults by employing machine
learning (ML) techniques to primary care data. We leveraged
the Canadian Primary Care Sentinel Surveillance Network
(CPCSSN), Canada’s premier multi-disease electronic medical
record surveillance system, and developed and tuned seven
ML classification models to predict the likelihood of diabetes.
The models were tested and validated, focusing on clinical
patient characteristics influential in predicting diabetes. We
found XGBoost performed best out of all the models, with
an AUC of 92%. The most important features contributing
to model prediction were HbA1c, LDL, and hypertension
medication. Our research aims to aid healthcare professionals in
early diagnosis and to identify key characteristics for targeted
interventions. This study contributes to an understanding of
how ML can enhance public health planning and reduce
healthcare system burdens.

I. INTRODUCTION

Diabetes, a chronic metabolic disease characterized by hy-
perglycemia, is one of the largest global health emergencies
of the 21st century[1], [2]. Diabetes rates continue to rise
worldwide, as do the number of people experiencing acute
and chronic complications. High blood glucose is estimated
to be the third highest risk factor for premature mortality
globally [3]. Canada has also seen rising rates of diabetes.
As of 2022, 8.9% of the population had been diagnosed with
diabetes, and prevalence has increased by an average of 3.3%
per year[4], [5]. Diabetes is the leading cause of blindness,
non-traumatic amputation, and end-stage renal disease in
Canadian adults [3]. The cost of diabetes in Canada was
estimated at $15.36 billion in 2022 [6]. However, it is
also estimated that half of diabetes cases go undiagnosed,
meaning the true population burden is higher than reported
[7]. Early and accurate diagnosis and treatment of diabetes
are imperative to prevent further disease progression and
complications such as diabetic retinopathy, cardiovascular
events and mortality [1].
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Machine learning (ML) involves the application of com-
puter algorithms to create a model of sample data to make
predictions or decisions [8]. These models can be improved
through testing, parameter tuning and validation. Deep learn-
ing is a subcategory of ML in which a neural network uses
a hierarchical architecture to adapt to features of the dataset
and learn from the data to improve predictive abilities.
ML models have been used in the prediction, classification,
and management of diabetes [1], [8]–[17]. Models that can
predict diabetes may be useful for aiding clinician diagnosis
of diabetes, as well as highlighting which features may be
meaningful to target for early intervention. Much of the
literature on ML diabetes prediction has focused on the
US and other populations, therefore a model developed and
validated on Canadian patient data may be more informative
for the Canadian context, given differences in the health care
system [14].

This study uses cohort data from a Canada-wide multi-
disease electronic medical record surveillance system to
answer the following research questions (RQs):

RQ1: Can we predict diabetes prevalence accurately, by
comparing the performance of seven ML models: logistic
regression (LR), decision tree (DT), random forest (RF),
XGBoost (XGB), support vector machine (SVM), combined
Naive Bayes (CNB), and an artificial neural network (ANN)?

RQ2: Which clinical patient characteristics are most in-
fluential in the best-performing ML model’s prediction of
diabetes prevalence?

These research questions have significant implications for
public health planning and interventions. Our goal is to aid
physicians in accurate diagnosing of diabetes, which can
lead to earlier treatment and intervention, and ultimately
reduce disease burden and health care system costs. Addi-
tionally, a systematic review of predictive machine learning
diabetes models found a large variety in both the number
and type of features included in models, indicating a lack of
consensus [1]. Our study may clarify the utility of clinical
and biomarker data available in the health records of many
patients.

II. METHODS

A. Data collection and preparation

This study used data from the Canadian Primary Care
Sentinel Surveillance Network (CPCSSN), Canada’s first
multi-disease electronic medical record surveillance system
[18]. The CPCSSN is a network that spans eight provinces
and one territory and has over two million patients and 1500
primary care clinicians [18]. CPCSSN extracts de-identified
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electronic medical records from primary care practices in
Canada and applies cleaning, coding, and standardization
algorithms to transform the data for use in quality improve-
ment, surveillance, and research [18]. Diabetes cases are
defined as type 2 diabetes mellitus, controlled or uncon-
trolled, excluding gestational diabetes, chemically induced
diabetes, neonatal diabetes, hyperglycemia, prediabetes, or
similar states or conditions [19]. The dataset for this study
was generated by CPCSSN and shared with the research
team. This was done by pulling patients aged 18 and up
with a blood pressure reading and joining records that were
the closest in time for other measurements (e.g., ±1 year).
Patients on insulin were removed. The final data set is
a random subset of 10,000 observations from the original
CPCSSN dataset who had a blood pressure reading at their
primary care providers’ offices between 2004 and 2014.

Data exploration included examining the extent of missing
data in each variable, the variables’ distribution and central
tendencies, and observing continuous variables’ correlations
for potential collinearity. Missing values were addressed
through multiple imputations by chained equations (MICE)
for variables with under 10% missing (this cutoff was cho-
sen to minimize introduced bias) [20]. We performed data
standardization. In the case of two collinear variables, we
selected one based on the strength of the association with the
outcome in the literature. The final predictor variables used
in all models were age, sex, systolic blood pressure (sBP),
body mass index (BMI), low-density lipoprotein (LDL),
high-density lipoprotein (HDL), HbA1c, triglycerides (TG),
depression, hypertension, osteoarthritis, chronic obstructive
pulmonary disease (COPD), use of hypertension medications
and use of corticosteroids. For patients with multiple appoint-
ments, only data from the last visit was included. The final
dataset contained 8,602 observations.

B. Development of predictive models

We first held out a random 15% of the data for validation.
Then, we randomly split the remaining data into 70% training
and 30% testing. We used the training data to train the seven
models (LR, SVM, DT, RF, XGBoost, CNB and ANN).
Subsequently, we used the testing data to evaluate how well
the models perform on unseen data (via confusion matrices
and utility functions for accuracy, precision, recall, F1 score,
and area under the receiver operating characteristic (ROC)
curve (AUC)). A 5-fold cross-validation with grid-search
was used to tune model hyperparameters to obtain the set
of optimal hyperparameters that yielded the highest AUC.
We tested multiple ANN models with varying configurations
(number of hidden layers and type of regularization) to com-
pare performance and reported the results for the ANN with
the highest accuracy. We selected the best model based on
an overall assessment of performance metrics and validated
it on the held-out dataset to approximate external validation.
We also conducted a feature importance analysis of the best
model using SHAP (SHapley Additive exPlanations).

To ensure replicability and facilitate further research, the
source code of all the presented machine learning models is

TABLE I: Clinical patient characteristics. Data are mean [SD] or counts
(%). P-values generated from t-test.

Variable Diabetic Non-diabetic p-value
n (%) 4142 (48) 4460 (52) –
Age at exam (years) 65 [12] 61 [14] < 0.001
Gender (males) 2104 (51) 1885 (42) < 0.001
sBP (mmHg) 131.2 [16.8] 129.0 [17.0] < 0.001
Body Mass Index 31.6 [7.0] 29.1 [6.5] < 0.001
LDL (mmol/L) 2.2 [0.9] 2.9 [0.9] < 0.001
HDL (mmol/L) 1.2 [0.4] 1.4 [0.4] < 0.001
HbA1c (mg/dL) 6.8 [1.]) 5.7 [0.4] < 0.001
Triglycerides (mmol/L) 1.7 [1.1] 1.4 [0.9] < 0.001
Depression 828 (20) 981 (22) 0.007
Hypertension 2941 (71) 2368 (53) < 0.001
Osteoarthritis 1364 (33) 1264 (28) < 0.001
COPD 437 (11) 387 (28) 0.003
Hypertension Med 3422 (83) 2429 (54) < 0.001
Corticosteroids 1182 (29) 1221 (27) 0.231

Missing data: n (D:ND): sBP 4 (2:2), LDL 52 (33:19), HDL 68 (20:48),
TG 51 (17:34).

TABLE II: Classifiers and their tuned hyperparameters

Model Hyperparameters Parameters Selections
LR C [0.01, 0.1, 1, 10] 1

penalty [‘l1’, ‘l2’] ’l1’
solver [‘liblinear’, ‘saga’] ’liblinear’

DT max depth [5, 10, 15, 20] 5
min samples leaf [5, 10, 15, 20] 10

RF n estimators [10, 50, 100, 200] 200
max depth [5, 10, 15] 15
min samples leaf [15, 20, 25] 15

XGBoost n estimators [50, 100, 200] 100
learning rate [0.01, 0.1, 0.2] 0.1
max depth [3, 5, 7] 3
gamma [0, 0.1, 0.2] 0.2
reg lambda [0, 1, 5] 5
reg alpha [0, 1, 5] 1

SVM kernel [‘rbf’] ‘rbf’
C [0.01, 0.1, 1, 10] 1
gamma [0.01, 1, 10] 0.01
class weight [None, ‘balanced’] ’balanced’

CNB GNB: smoothing np.logspace(0, -9, 10) 0.001
BNB: alpha np.logspace(0, -9, 10) 1

ANN layers [1, 2] 2
hidden units [64, 128, 256] 128
lambda [0.001, 0.01, 0.1] 0.01
epochs [500, 1000] 500
learning rate [0.0001,0.001,0.01,0.1] 0.001
LR scheduling [0.9] 0.9
batch size [32, 64, 128] 64
regularization [’dropout’, ‘l2’] ’l2’

available on GitHub1.

III. RESULTS

A total of 4,412 (48%) diabetic and 4,460 (52%) non-
diabetic patients were included in this dataset for a total
of n = 8,872 unique adult patients. The patients in the
diabetic dataset were 51% male, with a mean age of 65
years (standard deviation [SD] 12 years), and those in the
non-diabetic dataset were 49% with a mean age of 61 (SD
14) (see Table I for participant demographics). The majority
of diabetic individuals (83%) were prescribed hypertension
medication, compared to nearly half (54%) in non-diabetic
individuals. Patients with diabetes presented a higher average
concentration of HbA1c (mg/dL) levels.

1https://github.com/andysontran/2024_IEEE_EMBC_
Diabetes-I
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Fig. 1: ROC curves for tuned classifiers and neural network models on
the test dataset.

The optimal set of hyperparameters for each model is
summarized in Table II. From the seven predictive models
tested, we deemed the tuned XGBoost classifier as the best-
performing model based on its high AUC (92%) (Figure 1;
Table III). The XGBoost model was then tested on the held-
out validation set. This yielded the following performance
metrics in non-diabetic and diabetic patients: 80% precision
(ND), 87% recall (ND), F1 score of 83% (ND), 87% preci-
sion (D), 79% recall (D), F1 score 83% (D), 83% accuracy,
AUC 90%, and a macro-average of 83%. SHAP analysis
of the XGBoost model revealed the five most influential
features were HbA1c, LDL, hypertension medication, HDL,
and BMI (mean SHAP values 2.10, 0.34, 0.22, 0.16, and
0.14, respectively) (Figure 2).

IV. DISCUSSION

The main goal of this study was to determine the best
model to predict diabetes prevalence by comparing the
performance of seven ML models and identifying the most
influential clinical patient characteristics in the model’s pre-
dictions. The use of seven ML model architectures allowed
for a comprehensive comparison of methods to evaluate pre-
dictive accuracy and recall, while limiting overfitting through
the use of cross-validation. We observed consistent predictive
performance of the tuned XGBoost classifier across the
training, testing, and validation datasets. Furthermore, visual
inspection of the ROC curves suggests that the XGBoost
classifier has a smoother shape. This indicates less instability
in its predictions and thus less overfitting. We identified
XGBoost as the best-performing model based on these
characteristics. The high AUC indicated the model performs
well at distinguishing positive and negative diabetes classes,
and the validation results mean the model can generalize
well to real-world clinical settings compared to the other
classifiers. These findings align with existing literature on
diabetes prediction using ML. One study compared SVM, K-
Nearest Neighbours (KNN), NB, DT, LR, and XGBoost al-
gorithms for diabetes prediction using physical examination
data and found XGBoost had the highest accuracy (81%),
similar to our model’s accuracy of 83% [21]. In another
study by Li et al. (2020), the authors also used CPCSSN
data to compare the performance of LR, Gradient Boosting

Fig. 2: SHAP summary plot and mean values for predicting diabetes using
the tuned XGBoost model.

Method (GBM), DT, and RF models in predicting diabetes,
using parameters age, BMI, TG, FBS, sBP, HDL, and LDL
[14]. They found GBM and LR outperformed RF and DT,
with 85% and 84% AUC and 72% and 73% sensitivity,
respectively [14]. Our XGBoost model has higher AUC and
sensitivity (recall) scores than the other study’s GBM model,
as XGBoost is a more regularized form of GBM which
contributes to improved model generalization capabilities
[22]. Our models also included additional clinical features,
which could contribute to improved performance.

The SHAP analysis the most important features for pre-
diction. For example, a mean SHAP value of 2.10 for HbA1c
implies that this feature contributes positively to the model’s
prediction across multiple instances (Figure 2). This may
have useful clinical applications as these features could
be prioritized for clinical monitoring of patients at risk of
developing diabetes. When validating the model on unseen
data, the AUC (91%) and accuracy (83%) remained high.
This suggests the model generalizes fairly well, indicating
that it has learned patterns that are applicable beyond the
training data.

Our XGBoost model could potentially serve as a valuable
tool for physicians in diagnosing or identifying the risk of
diabetes in Canadian patients. The current standard proce-
dures for identifying prediabetes typically rely on an FBS
range of 6.1-6.9 [23]. However, HbA1c might offer a more
comprehensive assessment. Unlike FBS, HbA1c reflects an
average of blood sugar levels over the past 2-3 months,
providing a more holistic view of glycemic control [24]. By
incorporating HbA1c along with other traditionally signifi-
cant features in diabetes onset, our model aims to enhance
diagnostic accuracy. This refinement could potentially lead
to more precise identification and management of individuals
at risk of developing diabetes. Additionally, the results of our
study are likely to be generalizable given the large, nationally
representative sample.

Several limitations of this work should be considered.
Firstly, this study was conducted retrospectively, therefore
causation cannot be inferred based on the associations found
by our predictive models. Secondly, data for this analysis was
only captured until 2014, therefore it may not be reflective
of current diabetes prevalence or risk factors. Thirdly, our
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TABLE III: Comparison of performance metrics between LR, DT, RF, XGB, SVM, CNB and ANN algorithms in predicting diabetes prevalence in the
test dataset.

Models Non-Diabetic Diabetic Overall Model Performance
Precision Recall F1 Precision Recall F1 Accuracy Macro Avg. AUC

Logistic Regression 84% 86% 85% 84% 81% 82% 84% 84% 91%
Decision Tree 81% 89% 84% 86% 76% 81% 83% 83% 91%
Random Forest 82% 87% 85% 85% 79% 82% 84% 83% 92%
XGBoost 83% 87% 85% 84% 80% 82% 83% 83% 92%
Support Vector Machine 83% 87% 85% 85% 80% 83% 84% 84% 91%
Combined Naive Bayes 81% 83% 82% 81% 77% 79% 81% 81% 89%
Neural Network 83% 88% 86% 86% 80% 83% 84% 84% 84%
Note: Bold refers to highest metric(s) in column

dataset did not contain a race or ethnicity variable, which
limited our ability to explore the impact of race or ethnicity
on diabetes prevalence. Future work should use a timely
database and investigate differential risks for various sex,
ethnicity, and socioeconomic groups, as marginalized popu-
lations have been demonstrated to experience disproportion-
ately higher diabetes risk [25].

V. CONCLUSION

This study used Canada-wide surveillance data to evaluate
and compare seven machine learning models to predict dia-
betes prevalence and identify specific clinical characteristics
most important in this prediction. Our analysis identified the
XGBoost model as the top-performing model and HbA1c,
LDL, hypertension medication, HDL, and BMI as the top five
most influential features. This may be disseminated into clin-
ical settings to assist with diagnosis and risk identification,
which can inform patient care and resource allocation. For
example, interventions for preventing diabetes may consider
targeting risk factors through diet, exercise or medication.
Earlier diagnosis of diabetes can reduce disease burden and
overall health system costs.
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