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Predicting Donor Selection and Multi-Organ Transplantation within Organ
Procurement Organizations Using Machine Learning

Chelsea Tanchipl, Mohammad Noaeen?2, Kamyar Kazari®, and Zahra Shakeri®

Abstract— Organ procurement organizations (OPOs) play a
crucial role in the field of organ transplantation, serving as
key intermediaries in the process of organ donation. However,
despite their vital function, there exists a pressing issue of trans-
parency within the organ allocation process. This opacity not
only impedes the overall effectiveness of OPOs but also raises
ethical and societal concerns regarding organ distribution. This
study utilizes the recently published ORCHID dataset, contain-
ing 133,101 records of organ donor referrals, to understand
organ procurement and donor selection strategies in OPOs
using machine learning (ML). We developed seven ML clas-
sification models to predict donor selection and the likelihood
of at least four organs being suitable for transplantation, in line
with established definitions of multi-organ transplantation. The
models demonstrated variable recall values for donor selection,
ranging between 0.62 and (.80, while achieving consistently
high performance across other evaluation metrics, notably
with AUC values exceeding 0.95. Particularly in the context
of multi-organ transplant predictions, the models exhibited
remarkable effectiveness, with recall values spanning from (.88
to 0.98 and AUC metrics consistently above 0.97. Administrative
milestones and particular organ transplants were identified
as key determinants in the organ allocation process. This
study’s findings suggest significant opportunities to improve
organ allocation strategies by focusing on the optimization of
administrative practices, highlighting their substantial impact
on transplantation success rates.

I. INTRODUCTION

Organ transplantation is a vital, life-saving procedure for
individuals with end-stage diseases. Single-organ and multi-
organ transplants (transplanting multiple organs from the
same donor) have exponentially grown in demand over the
past few years [1]. Yet, a significant disparity exists between
the number of organ donors and those awaiting transplanta-
tion. In 2023, only 45% of 103,365 people on the organ
transplant waiting list have actually received transplants
in the USA [2]. This disparity is believed to stem from
inequities related to social determinants of health (SDoH)
and administrative factors, including transplant center char-
acteristics [3, 4].

The organ procurement process typically occurs within
acute-care hospitals, but the process has long been con-
strained by logistical and practical challenges. [5]. Organ
procurement organizations (OPOs) were established to im-
prove upon the challenges presented in hospitals, being
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dedicated solely to organ procurement. However, there is a
lack of transparent data available from OPOs, which makes
the decision-making process towards organ procurement and
transplantation unclear.

Machine learning (ML) has become a widely adopted
method for predicting organ allocation and donor-recipient
suitability [6-8]. ML’s ability to detect new patterns from
data lends itself well as a clinical decision-making aid. In this
study, we aim to use ML primarily to understand and predict
the clinical and administrative factors that influence donor
selection and multi-organ transplantation in an OPO setting.
This is the first study to analyze organ donor selection factors
and multi-transplant outcomes in a multi-center OPO context.
This study addresses the following research questions (RQs):

RQ1: What factors influence the selection of a referred
donor for organ transplantation?

RQ2: What factors influence the event of multiple organs
being transplanted from one donor after selection?

To address these RQs, we leverage the Organ Retrieval
and Collection of Health Information for Donation (OR-
CHID) dataset to explore the factors influencing organ donor
selection and the feasibility of multi-organ transplantation
within OPOs, using advanced machine learning techniques.
By identifying critical determinants in the donor selection
process and evaluating their impact on multi-organ transplant
outcomes, our research aims to contribute significantly to
the optimization of organ allocation and transplantation prac-
tices. Through this analysis, we seek to address the pressing
need for transparency and efficiency in the organ donation
process, offering a data-driven approach to enhancing the
effectiveness of OPO operations.

II. METHODS
A. Data Collection and Preparation

Dataset—In July 2023, the Organ Retrieval and Collec-
tion of Health Information for Donation (ORCHID) was
published [9]. The ORCHID dataset is the first multi-center
dataset to be collected from deceased donor referrals across
six different organ procurement organizations (OPOs) across
the USA for six years, between January 1, 2015 and Decem-
ber 31, 2021. The ORCHID dataset contains 133,101 records
of organ donor referrals and 34 variables related to clinical
and administrative attributes associated with their referral.
The administrative attributes include binary checkpoints for
whether the donor passed different procedural milestones
(e.g., referred to an OPO, approached) leading to selection
for transplant. The dataset also contains columns for eight
different organs (heart, liver, left and right kidney, left
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TABLE I: Mean evaluation metrics from nested 5-fold cross-validation for raw unbalanced data and balanced data with

SMOTE oversampling for donor selection prediction.

Models Recall Precision F1 AUC
Unbalanced  Balanced | Unbalanced Balanced | Unbalanced Balanced | Unbalanced Balanced

KNN 0.80 0.79 0.75 0.75 0.77 0.77 0.89 0.89
LR 0.81 0.99 0.78 0.59 0.79 0.74 0.90 0.97
RF 0.82 0.98 0.80 0.65 0.81 0.78 0.90 0.97
SVM 0.99 0.98 0.63 0.65 0.77 0.78 0.97 0.97
NB 0.94 0.97 0.60 0.56 0.74 0.71 0.95 0.96
XGBoost 0.85 0.88 0.80 0.78 0.82 0.83 0.92 0.93
ANN 0.83 0.95 0.79 0.68 0.81 0.79 0.91 0.96

and right lung, pancreas, intestine). These columns’ values
refer to the outcome of organ transplantation: whether that
organ was ultimately transplanted, recovered for research, or
recovered for transplant but ended up being used for research.
The dataset was acquired from PhysioNet [10].

Data inclusion and exclusion— The full dataset was used
for RQ1. For RQ?2, in order to identify factors predictive of
multi-organ transplantation, only donors who were selected
for organ transplant (N = 8,972, 7% of dataset) were
included for analysis.

Missing data— For variables missing at random (MAR), for
example, age, Cause_of -Death_-OPQO), missing values were
imputed using median for numerical variables and mode
for categorical and ordinal variables. Variables missing
not at random (MNAR), for instance, timestamps for
administrative milestones were deliberately falsified and
dropped. For the organ outcome variables, the data was
considered MNAR as the outcome was none of the options
(that specific organ was not recovered or transplanted,
while at least one other organ was). The missing data for
these specific variables is labeled as: Not Recovered or
Transplanted.

Class imbalance— The full dataset is highly imbalanced,
with 93% of potential donors not being selected for
transplantation, while the remaining 7% were selected.
SMOTE over-sampling [11] was applied to the minority
class to account for the class imbalance in the training data.
For the subset created in RQ2, 5,503 (61%) individuals
had less than four organs transplanted and 3,469 (39%)
had at least four transplanted (out of eight organs total).
Oversampling was not applied to this subset as the difference
was not as stark as in RQI and the subset was considerably
smaller in size.

Feature engineering— For RQ1, the specific organ outcomes
were excluded since they are relevant to only RQ2. The
time-related variables were considered MNAR as they were
derived from a specific event (e.g., time_approached is only
filled out if the donor’s family was approached). In addition,
the dataset creators randomly shifted all timestamps for
privacy, rendering them inaccurate. For these reasons, all
time-related variables were dropped for RQI and RQ2.
However, new features were created based on the interval
between these time variables (e.g., referral and approach),
as this information was preserved by the dataset creators.
The interval was grouped into three categories: whether
less than 24 hours have passed between the variables, more

than 24 hours, or the event never occurred. In each of the
Cause of Death (OPO and UNOS), Mechanism of Death,
and Circumstances of Death variable columns, values were
grouped together based on the International Classification
of Diseases 11th Revision (ICD-11) framework, the global
standard for diagnostic health information. For RQ2, the
transplanted feature was dropped, since it is the inclusion
criterion for membership in this subset (as everyone in
this reduced set would already have transplanted as True).
Building from the eight columns indicating transplantation
outcomes for each organ type, a new binary feature was
created: multiple_transplants, which denotes whether a) less
than four organs were successfully transplanted, or b) at
least four organs were successfully transplanted. The value
of four or more organs transplanted signifying multi-organ
transplantation has been used in previous studies [12].

B. Model Development and Evaluation

Several models well-known for binary classification were
developed: K-Nearest Neighbors (KNN), Logistic Regression
(LR), Random Forest (RF), Support Vector Machine (SVM),
Categorical Naive Bayes (NB), XGBoost, and Artificial Neu-
ral Network (ANN). The outcome variable was the binary
transplanted variable in RQI, and multiple transplants in
RQ2. All other features that remained after pre-processing
served as input variables. For each model, a nested stratified
5-fold cross-validation (CV) with grid search was imple-
mented, which can find the optimal hyperparameters without
producing an overly-optimistic CV score, as it involved
conducting CV using the best hyperparameters determined
through grid search. In each CV fold, the data was subject to
imputation, standardization, and oversampling. Categorical
variables were coded into dummy variables using one-hot
encoding. Ordinal variables (e.g., day of the week referred)
were encoded with label encoding to preserve their order. A
held-out test set with 30% of the data was kept imbalanced
(no oversampling applied) to maintain the real-world nature
of the data. Missing data in the test set was imputed using the
training set’s median of numerical variables and mode of cat-
egorical and ordinal variables. This method ensures that the
test set remains an unbiased evaluation of the model’s real-
world performance. The model was evaluated using the mean
recall, precision, Fl-score, and AUC score for each cross-
validation fold (for the validation set) and the held-out test
set (using the best hyperparameter combinations identified in
CV). Classification results from the CV stage were compared
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TABLE II: Comparison of performance metrics on the held-out test set
for donor selection prediction.

Models Recall Precision F1
KNN 0.74 0.81 0.77
LR 0.58 0.99 0.73
RF 0.80 0.83 0.82
SVM 0.62 0.99 0.76
NB 0.61 0.94 0.74
XGBoost 0.80 0.86 0.83
ANN 0.77 0.88 0.83

between oversampled and the raw unbalanced data. Lastly,
SHapley Additive exPlanations (SHAP) analysis [13] was
implemented with the best-performing model per research
question to quantify each feature’s impact on the model
output. To ensure replicability and facilitate further research,
the source code of all the presented machine learning models
is available on GitHub'.

III. RESULTS AND DISCUSSION

A. RQI: What factors influence the selection of a referred
donor for organ transplantation?

The input feature set was reduced to 16 features (8
clinical/demographic, 8 administrative) after pre-processing
and feature engineering. Most notably, eye and tis-
sue referral features were combined, while brain_death,
authorized, time_approached_to_authorized, procured, and
time_authorized_to_procured were dropped due to multi-
collinearity with other features.

Table I shows cross-validation results and Table II shows
the performance on the held-out test set, which revealed
significantly different results for some models. Recall was
significantly lower for LR, SVM, and NB (dropping from
0.81-0.99 in the CV stage to 0.58-0.80 in testing). In contrast,
the precision values were moderately high in the CV stage
(0.63-0.80) but improved considerably in testing (LR and
SVM yielded 0.99). The AUC values in the testing set were
similar to or even higher than the CV results for all models.
Altogether, the disparity between some of the CV and held-
out test results suggests overfitting in the LR, SVM, and NB
models. Overfitting might have occurred because of the small
amount of features after pre-processing, resulting in a simpler
model. We attempted to avoid overfitting by removing multi-
collinear features and applying regularization, which are
valid techniques for models like LR and SVM. However,
these techniques likely could not remedy the amount of
information that might have been lost with feature reduction,
given that the number of features in this dataset was already
small to begin with. Nevertheless, XGBoost yielded the
highest recall (0.80) and F1-score (0.83). The SHAP analysis
of the XGBoost model revealed that the approached and
time_asystole_to_referral (specifically if the referral milestone
was not reached from after asystole) variables had the most
impact.

Overall, all ML models were moderately effective in
predicting donor selection within OPOs. Precision values

"https://github.com/chelseatanchip/
ORCHID-data-analysis.git

TABLE III: Mean evaluation metrics from nested 5-fold cross-validation
for multi-organ transplant prediction.

Models Recall Precision F1 AUC
KNN 0.88 0.89 0.89 0.91
LR 0.98 0.98 0.98 0.99
RF 0.98 0.98 0.98 0.98
SVM 0.88 0.93 0.90 0.92
NB 0.91 0.86 0.88 0.91
XGBoost 0.97 0.98 0.98 0.97
ANN 0.98 0.98 0.98 0.98

TABLE IV: Comparison of performance metrics on the held-out test set
for multi-organ transplant prediction.

Models Recall Precision F1
KNN 0.91 0.90 0.90
LR 0.98 0.99 0.98
RF 0.98 0.98 0.98
SVM 0.93 0.90 0.91
NB 0.88 0.91 0.90
XGBoost 0.98 0.95 0.97
ANN 0.97 0.99 0.97

were generally higher than recall, which was concerning
since having many false negatives may hinder much-needed
access to appropriate organ donors. The decrease in recall
values between model development and testing suggested
overfitting, which despite our efforts was unavoidable due
to the limited size of the feature set. XGBoost showed con-
sistently high results. The SHAP analysis (Fig. 1a) revealed
that administrative milestones (approached (approaching the
donor’s family) and referred (donor referral) not occurring
after asystole are the most predictive of donor selection,
which highlights the importance of administration and ex-
ternal communication in the organ procurement process.
Obtaining family consent for organ donors is a known barrier
to organ transplants [14], which in this study held more
weight than the donor’s individual characteristics.

B. RQ2: What factors influence the event of multiple organs
being transplanted from one donor after selection?

The input feature set included 25 features after pre-
processing and feature engineering. Multi-collinearity was
found between left and right kidneys, as well as left and right
lungs, resulting in combining outcomes into outcome_kidney
and outcome_lung respectively. Overall, classification results
were excellent (Table III). LR, RF, XGBoost, and ANN
in particular yielded consistently high (> 0.97) results for
recall, precision, and AUC.

Table IV shows that model performance on the held-out
test set was similar to the results in the CV procedure,
particularly LR, RF, XGBoost, and ANN, which produced
metrics of at least 0.95. These models yielded consistently
high precision and recall values in predicting multi-organ
transplantation. LR, RF, ANN, and XGBoost yielded the
highest AUC. SHAP was applied to the LR model as it
yielded the highest metrics in all the categories (precision,
recall, and AUC). The analysis (Fig. 1b) revealed that
individual organ outcomes -those of particularly heart and
lung transplants- were the most predictive of multi-organ
transplantation.
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Fig. 1: Top 15 SHAP feature importances for (a) XGBoost model predicting donor selection and (b) LR model for multi-organ transplantation. Feature
labels in (a): X3 = race, X7 = circumstances of death, x12 = time between asystole-referral, x13 = time between brain death-referral, x14 = time between
referral-approach. Feature labels in (b): x12 = heart transplant outcome, x13 = liver transplant outcome, x15 = lung transplant outcome, x16 = kidney

transplant outcome, x17 = pancreas transplant outcome

Overall, the seven ML models were very effective in pre-
dicting multi-organ transplants from OPO-sourced donors.
The models generally performed well and did not overfit.
Successful transplantation of the heart and lungs was most
likely to lead to more organs being transplanted from the
same donor. These findings appear to support real-world
organ allocation policies. For instance, the Organ Procure-
ment and Transplantation Network (OPTN) policies state that
when a candidate is eligible to receive a heart, lung, or liver,
the second required organ would be allocated to the recipient
from the same donor if the donor is located in the same local
organ distribution unit where the recipient is registered [15].
The results of the present study may encourage the continued
implementation of this policy in an effort to enhance organ
allocation and equity.

IV. CONCLUSION

There is a considerable lack of transparency in the
decision-making process underlying donor transplant selec-
tion and organ outcomes within OPOs. The development of
the ORCHID dataset was an effort to address this issue,
by pooling data from multiple OPOs. To the best of our
knowledge, this is the first study to use ML to analyze organ
donor selection factors and multi-transplant in a multi-center
OPO setting. The findings highlight the importance of ad-
ministrative milestones (particularly approaching the donor’s
family) and specific organs (heart, lungs) to predicting donor
selection and multi-organ transplantation. Overall, given its
consistently high recall, precision, and AUC in both research
questions, XGBoost (and LR to a smaller extent) has the
potential to be adapted into a tool to facilitate equitable and
transparent organ allocation in OPOs. However, this study
had a few limitations. In its current state, the ORCHID
dataset itself was limited; it did not contain comprehensive
information about the donors or the administrative processes.
In addition, large proportions of MNAR data and multi-
collinearity between features prevented the use of the full
original ORCHID feature set, which limits the models’ gen-
eralizability. This study provides a first step into increasing

transparency in OPO procedures, which future studies can
expand with more data about the donors and administrative
decisions.
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