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Abstract— The analysis of fundus images for the early
screening of eye diseases is of great clinical importance.
Traditional methods for such analysis are time-consuming
and expensive as they require a trained clinician. Therefore,
the need for a comprehensive and automated clinical deci-
sion support system to diagnose and grade retinal diseases
has long been recognized. In the past decade, with the
substantial developments in computer vision and deep
learning, machine learning methods have become highly
effective in this field to address this need. However, most
of these algorithms face challenges like computational fea-
sibility, reliability, and interpretability.

In this paper, our contributions are two-fold. First, we
introduce a very powerful feature extraction method for
fundus images by employing the latest topological data
analysis methods. Through our experiments, we observe
that our topological feature vectors are highly effective in
distinguishing normal and abnormal classes for the most
common retinal diseases, i.e., Diabetic Retinopathy (DR),
Glaucoma, and Age-related Macular Degeneration (AMD).
Furthermore, these topological features are interpretable,
computationally feasible, and can be seamlessly integrated
into any forthcoming ML model in the domain. Secondly, we
move forward in this direction, constructing a topological
deep learning model by integrating our topological fea-
tures with several deep learning models. Empirical analysis
shows a notable enhancement in performance aided by
the use of topological features. Remarkably, our model
surpasses all existing models, demonstrating superior per-
formance across several benchmark datasets pertaining to
two of these three retinal diseases.

Index Terms— Retinal Disease Diagnosis, Topological
Data Analysis, Deep Learning, Ophthalmology.

I. INTRODUCTION

The World Health Organization reports that as of 2019,
more than 400 million people worldwide suffer from Glau-
coma, diabetic retinopathy (DR), age-related macular degen-
eration (AMD), or other serious eye diseases [1]. As most
patients with eye diseases are not aware of the aggravation of
these conditions, early screening and treatment of eye diseases
are quite important. Currently, detecting these conditions is a
time-consuming and manual process that requires a trained
clinician to examine and evaluate digital color fundus images
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Fig. 1: Our topological feature vectors effectively differentiate
between various diseases. Above, we present median curves and 40%
confidence bands for the Betti-1 vectors on the HRF dataset.

of the retina, which can result in delayed treatment. Therefore,
the need for clinical decision-support methods has long been
recognized.

With this motivation, machine learning (ML) methods have
been widely employed in retinal image analysis in the past
decade [2], [3]. These efforts have made substantial progress
in the field by using image classification and pattern recogni-
tion [4]. Especially after the success of convolutional neural
networks (CNN) in image classification, ML tools proved to
be quite effective in retinal image analysis [5]. However, these
methods are not either computationally efficient to work in
large datasets or interpretable to provide insights to ophthal-
mologists for disease diagnosis.

In this paper, we bring a novel approach towards retinal
disease diagnosis, introducing topological data analysis (TDA)
methods to fundus imaging. Over recent years, TDA tools have
garnered success in medical image analysis across various
domains, adeptly capturing concealed shape patterns within
images and generating powerful feature vectors from these
patterns (Sec. II). Despite its application in numerous biomed-
ical domains [6], this potent approach has not been previously
utilized within the retinal image analysis domain. In our work,
we identify that retinal images exhibit distinct topological
patterns with varying color values, such as numerous small
loops and large loops of differing sizes Figure 1. Employing
the key method in TDA, persistent homology, we transform
these patterns into topological feature vectors suitable for
utilization with any ML method. In this research, we developed
two ML models, Topo-ML and Topo-Net, using these feature
vectors. The first model, Topo-ML, shows high computational
feasibility, managing very large datasets in mere hours, while
the second, Topo-Net, represents a great integration of current
deep learning models with these topological features. Utilizing
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these models, we investigated the diagnosis of the three
most common retinal diseases: Diabetic Retinopathy (DR),
Glaucoma, and Age-related Macular Degeneration (AMD).
While our computationally feasible Topo-ML stands shoulder
to shoulder with state-of-the-art deep learning models on
benchmark datasets, our Topo-Net model outperforms them in
DR and AMD diagnosis by a substantial margin (Sec. V-C).

Our contributions.
• We bring a new perspective to retinal image analysis by

introducing TDA methods to the field.
• We extract topological features of fundus images for most

common retinal diseases (DR, Glaucoma, and AMD) and
observe easily detectable and interpretable topological
pattern differences (See Figure 1 and Section VI).

• Utilizing our topological feature vectors with conven-
tional ML techniques, we first create a computationally
efficient Topo-ML model, yielding highly competitive
results across all diseases. Next, by integrating our topo-
logical features with the latest deep learning models, our
Topo-Net model surpasses all state-of-the-art models in
the DR and AMD benchmark datasets.

• Our topological features provide a valuable contribution
to the field of retinal image analysis, offering seamless
integration with any future ML model to boost their
performance.

II. RELATED WORK

Machine Learning in Retinal Image Analysis: In the past
decade, ML tools have been widely employed in medical
image analysis [7], [8]. Particularly, in the scope of retinal
image analysis, ML methodologies have demonstrated notable
effectiveness [5]. There are two mainstream applications of
ML tools for retinal image analysis. The first is the diagnosis
and grading of diseases which can be considered a classifi-
cation problem for image data [9]. The second mainstream
application is lesion detection/segmentation [2]. In this paper,
we focus only on the diagnosis and grading of retinal diseases
by using TDA methods.

Following the triumph of convolutional neural networks
(CNN) in image classification tasks, deep learning methods
proved to be quite effective in retinal image analysis [3],
[10]. There is extensive literature for deep learning methods in
ophthalmology, where excellent reviews can be found in the
following recent surveys [2], [4], [11], [12].

Topological Data Analysis in Image Processing: TDA stands
as a novel methodology for investigating complex data by
analysing both local and global patterns across various scales,
thus addressing challenges tied to data dimensionality, vari-
ance in data collection methods, and changing scales [13],
[14].

Over the past decade, TDA has been successfully applied
across various domains such as image analysis, neurology, car-
diology, hepatology, gene-level and single-cell transcriptomics,
drug discovery, evolution, and protein structural analysis [15].
By tapping into the inherent topological features present in
images, TDA brings a new perspective to image analysis. Its
ability to uncover hidden image patterns forges new pathways

for undertakings like image segmentation, object recognition,
image registration, and image reconstruction [16].

A frequently utilized tool from TDA in image analysis is
Persistent Homology (PH), which has manifested remarkable
outcomes in pattern recognition for image and shape analysis
over the span of two decades [17]. In the realm of medical im-
age analysis, PH has displayed its effectiveness in the analysis
of images related to hepatic lesions [18], histopathology [19],
[20], fibrin images [21], tumor classification [22], Chest X-ray
image screening [23], neuronal morphology [24], brain artery
trees [25], fMRI data [26], [27], and genomics data [28]. A
thorough review of TDA methodologies within biomedicine is
encapsulated in the exemplary survey [6].

III. METHODOLOGY

In this paper, we use persistent homology (PH) as a powerful
feature extraction tool for retinal images. PH is one of the
key approaches in topological data analysis (TDA), allowing
us to systematically assess the evolution of various hidden
patterns in the data as we vary a scale parameter [13], [29].
The extracted patterns, or homological features, along with
information on how long such features persist throughout the
considered filtration of a scale parameter, convey a critical in-
sight into salient data characteristics and data organization. In
this section, we give a basic introduction to PH in image data
settings, which is called cubical persistence. For a thorough
background and PH process for other data types (e.g., point
clouds, networks), see [30], [31].

A. PH for Image Data: Cubical Persistence
PH can be summarized as a 3-step process. The first step is

the filtration step, where one induces a sequence of simplicial
complexes from the data. This is the key step, where one can
integrate the domain information into the process. The second
step is the persistence diagrams, where the machinery records
the evolution of topological features (birth/death times) in this
sequence of the simplicial complexes. The final step is the
vectorization where one can convert these records to a function
or vector to be used in suitable ML models. For more details
on how to apply PH in image analysis, check out the references
given in Section II.

1) Constructing Filtrations: As PH is basically the machinery
to keep track of the evolution of topological features in a
sequence of simplicial complexes, the most important step
is the construction of this sequence. In the case of image
analysis, the most common method is to create a nested
sequence of binary images (aka cubical complexes). For a
given image X (say r×s resolution), to create such sequence,
one can use grayscale (or other color channels) values γij
of each pixel ∆ij ⊂ X . In particular, for a sequence of
grayscale values (t1 < t2 < · · · < tN ), one obtains nested
sequence of binary images X1 ⊂ X2 ⊂ · · · ⊂ XN such that
Xn = {∆ij ⊂ X | γij ≤ tn} (See Figure 2 and 3). In other
words, we start with empty r × s image and start activating
(coloring black) pixels when their grayscale value reaches the
given threshold. This is called sublevel filtration for X with
respect to a given function (grayscale in this case). One can
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Fig. 2: Sublevel filtration. Binary images X70,X90,X110 obtained
from a fundus image for threshold values 70, 90, 110.

also go in decreasing order to activate the pixels, which is
called superlevel filtration.

The choice of thresholds is also very crucial in this con-
struction as it indicates how fine we want our PH machinery
to detect the topological patterns. One can choose N = 255
which makes the filtration too fine, and most outputs would be
trivial in the fingerprinting process. If we choose N very small,
then one can miss many topological features. While in most
cases, the thresholds are chosen evenly distributed, depending
on the image dataset, using quantiles of the grayscale values
is also common, e.g., when grayscale values in the dataset
are concentrated around specific numbers. In our experiments,
we use N = 100 as we obtain very good results with this
choice, and increasing N did not improve the performance
significantly.

Note that sublevel and superlevel filtration produces com-
pletely different information for most data types. However,
in the image data setting (cubical complexes), in the comple-
mentary dimensions, sublevel and superlevel filtration produce
very similar information thanks to a celebrated result in
algebraic topology, Alexander Duality [32]. In other words,
the choice of sublevel and superlevel filtration is not important
in image data as long as one uses all possible dimensions (in
this setting, k = 0, 1).

2) Persistence Diagrams: The second step in PH process is
to obtain persistence diagrams (PD) for the filtration X1 ⊂
X2 ⊂ · · · ⊂ XN , i.e., the sequence of cubical complexes
(binary images). PDs are formal summaries of the evolution
of topological features in the filtration sequence. PDs are
collection of 2-tuples, {(bσ, dσ)}, marking the birth and death
times of the topological features appearing in the filtration.
In other words, if a topological feature σ appears for the
first time at Xi0 , we mark the birth time bσ = i0. Then,
if the topological feature σ disappears at Xj0 , we mark the
death time dσ = j0. i.e., PDk(X ) = {(bσ, dσ) | σ ∈
Hk(X̂i) for bσ ≤ i < dσ}. Here, Hk(X̂i) represent kth

homology group of X̂i, representing k-dimensional topological
features in cubical complex X̂i [32]. By construction, for
2D image analysis, only meaningful dimensions to use are

1 3 4 2 5 1 3 4 2 5 1 3 4 2 5 1 3 4 2 5 1 3 4 2 5 1 3 4 2 5

4 5 5 3 2 4 5 5 3 2 4 5 5 3 2 4 5 5 3 2 4 5 5 3 2 4 5 5 3 2

1 2 1 4 3 1 2 1 4 3 1 2 1 4 3 1 2 1 4 3 1 2 1 4 3 1 2 1 4 3

3 5 2 5 1 3 5 2 5 1 3 5 2 5 1 3 5 2 5 1 3 5 2 5 1 3 5 2 5 1

1 3 2 3 4 1 3 2 3 4 1 3 2 3 4 1 3 2 3 4 1 3 2 3 4 1 3 2 3 4

X X 1 X 2 X 3 X 4 X 5

Fig. 3: Toy sublevel filtration. The leftmost figure represents an
image of 5 × 5 size with the given pixel values. Then, the sublevel
filtration is the sequence of binary images X1 ⊂ X2 ⊂ · · · ⊂ X5.

k = 0, 1, i.e., PD0(X ) and PD1(X ).
In layman’s terms, 0-dimensional features are connected

components and 1-dimensional features are the holes (loops).
In our case, if a loop τ first appears at the binary image
X3 and it gets filled in the binary image X7, we add 2-
tuple (3, 7) in the persistence diagram PD1(X ). Similarly,
if a new connected component appears in the binary image
X5 and it merges to the other components in the binary
image X8, we add (5, 8) to PD0(X ). In Figure 3, we have
PD0(X ) = {(1,∞), (1, 2), (1, 3), (1, 3), (1, 4), (2, 3)} and
PD1(X ) = {(3, 5), (3, 5), (4, 5)} This step is pretty standard
and there are various software libraries for this task. For image
data with cubical complexes, see [33]. For other types of data
and filtrations, see [34].

3) Vectorization: PDs being a collection of 2-tuples are not
very practical to be used with ML tools. Instead, a common
way is to convert PD information into a vector or a function,
which is called vectorization [35]. A common function for
this purpose is the Betti function, which basically keeps track
of the number of ”alive” topological features at the given
threshold. In particular, the Betti function is a step function
with β0(tn) the count of connected components in the binary
image Xn, and β1(tn) the number of holes (loops) in Xn. In
ML applications, Betti functions are usually taken as a vector
β⃗k of size N with entries βk(tn) for 1 ≤ n ≤ N .

−→
βk(X ) = [βk(t1) βk(t2) βk(t3) . . . βk(tN )]

For example, for the image X in Figure 3, we have
−→
β0(X ) =

[5 4 2 1 1] and
−→
β1(X ) = [0 0 2 3 0], e.g., β0(1) = 5

is the count of components in X1 and β1(4) = 3 is the
count of holes (loops) in X4. There are other vectorization
methods like Persistence Images, Persistence Landscapes, or
Silhouettes [30], but to keep our model interpretable, we use
Betti functions in this study.

B. Color Channels for Retinal Images.
Retinal image quality assessment is essential for controlling

the quality of retinal imaging and guaranteeing the reliability
of diagnoses by ophthalmologists or automated analysis sys-
tems. The three main families of conventional color spaces
are primary spaces, luminance-chrominance spaces, and per-
ceptual spaces. Appropriate color spaces can help simplify
some color computations that occur during the generation of
images. In 1978, Joblov et al. [36] described the significance
of different color spaces in computer graphics and the feature
extraction process. In our persistent homology approach, the
way we construct the filtration out of the given fundus image
is the key step (Section III), and the different color channels
induce completely different filtrations and produce different
topological patterns.

C. Extracting Topological Features
In this part, we first describe our topological fingerprinting

machine learning model, Topo-ML. Then, we elaborate on the
explainability and interpretability of our model.

In the flowchart (Figure 4), we summarized our Topo-ML
model. For a given fundus image X (say at r× s resolution),
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Fig. 4: Flowchart of Topo-ML model: We start with fundus images, extract RGB and Gray color spaces, and then create persistence diagrams from color
values. Topological feature vectors (Betti functions) are derived from these diagrams and fed into machine learning models like RF, XGBoost, and kNN,
resulting in highly accurate classifications.

we first get its RGB and Grayscale images (Figure 4-Step
2). In other words, we produce 4 color functions g(i, j)
(grayscale=average(RGB)), R(i, j) (red), G(i, j) (green), and
B(i, j) (blue) where f(i, j) assigns every pixel ∆ij ⊂ X to
its assigned color value for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Note
that all colors have a range [0, 255] . Then, we extract all
topological features for color channel values by constructing
a sublevel filtration with respect to the corresponding color
function. While grayscale values vary from 0 (black) to 255
(white), we chose the number of thresholds as N = 100 in
our filtration step, as further increasing the threshold steps did
not increase the performance of our model. In other words,
we renormalized [0, 255] grayscale interval to [0, 100]. After
defining the filtration X1 ⊂ X2 ⊂ · · · ⊂ X100, we obtain
the persistent diagrams PDk(X ) of each fundus image X
for dimensions k = 0, 1 (Section III). In layman’s terms, the
filtration produces a sequence of binary (black-white) images
where the dark points represent the pixels value less than the
given threshold (Figure 2). Then, PD0(X ) records connected
components in these binary images, and PD1(X ) records
holes in the binary images.

After getting persistent diagrams, we convert them into
feature vectors as explained in Section III. In this vectorization
step, one can use several choices like Betti functions, Silhou-
ettes, or Persistence Images. Since most of the topological
features have short life spans, Betti and Silhouette (with p ≤ 1)
functions were the natural choice as they give the count of
topological features at a given threshold. Our experiments
verified this intuition and we obtained almost all the best
results with Betti functions. Hence, to keep our model simple,
we only use Betti functions as vectorizations (Fig. 4-Step 4).

IV. ML MODELS

We created two models to utilize these topological features
extracted from fundus images. In the first one, to keep the
model feasible, and show the strength of our features, we
use a simple ML classifier, and get our Topo-ML Model. In
the second one, we integrate these topological features with
deep learning models to boost their performance. We call these
topology enhance deep learning models Topo-Net Model.

A. Topo-ML Model
After obtaining our topological feature vectors, the final step

is to apply an ML classifier to these vectors. To keep our model

computationally feasible, we applied tree-based methods like
Random Forest and XGBoost to our extracted topological
features. Note that our topological feature vectors can easily
be integrated with various deep learning models, too. We give
the details of our ML steps in the experiments section. Note
that topological features are invariant under rotation, flipping,
and translation. This makes our model highly robust against
noisy data. Furthermore, our model does not need any data
augmentation and data pre-processing which makes our model
computationally very feasible. Our experiments show that our
model is highly successful in small datasets as well as large
ones.

B. Topo-Net Model

To combine our topological features, we used several back-
bones for our deep learning model.

Pre-trained CNN Models for Retinal Images: The proposed
Convolutional Neural Network (CNN) architecture leverages
the power of transfer learning, building upon the founda-
tion of the renowned pre-trained CNN models like ResNet-
50, DenseNet201, MobileNetV2, EfficientNetB3, Xception,
VGG19, InceptionV3, EfficientNetB0, and EfficientNetB2.
Initially, the pre-trained model is loaded with weights and set
to input the shape of images of dimensions (256, 256, 3) while
excluding its top layers. To preserve the valuable knowledge
encoded in the pre-trained weights, they are effectively frozen,
ensuring that they remain unchanged during training. Follow-
ing this, a convolutional layer with 64 filters, each employing
a (3, 3) kernel and the rectified linear unit (ReLU) activation
function, is introduced. Subsequently, a MaxPooling layer
reduces spatial dimensions, enhancing the network’s ability
to capture salient features. The flattened layer transitions the
data into a one-dimensional form, paving the way for a dense
layer with 64 units, further enriched by the ReLU activation
function. To mitigate overfitting, a dropout layer with a 0.4 rate
is added. Finally, the architecture culminates in an output layer,
which is adaptable for binary or multi-class classification tasks.
For binary classification, a single sigmoid-activated unit is
employed, while for multi-class problems, a softmax activation
function is used with multiple units. This CNN architecture
embodies the fusion of established pre-trained knowledge and
task-specific adaptability, forming a potent tool for retinal
image classification.
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Fig. 5: Architechture of Topo-Net model: Our model takes two inputs (a) fundus image and (f) topological feature vector of the fundus
image. In the top row, we run our CNN layers: (b) Pre-trained model weights (c) convolution layer (d) Max pooling layer, and (e) Flatten.
In the bottom row, we run (g) feed-forward network on topological features to effectively adapt them into our model. We then concatenate
(+) the produced vectors (e) and (h) and obtain (i). We run another feed-forward network to get our predictions.

We illustrate our architecture for Topo-Net Model in Fig-
ure 5. We give the details in five steps as follows:

Step 1: CNN Feature Extraction.: We employ a pre-trained
model with weights initialized from ImageNet to capture im-
age features. The input shape for this CNN is (256, 256, 3). To
avoid updating the pre-trained weights, we set include top
to False. We follow this with a 2D convolutional layer
consisting of 64 filters with a kernel size of (3, 3) and
ReLU activation. Subsequently, a max-pooling layer with a
(2, 2) pooling window is applied. The feature maps are then
flattened. Finally, a dense layer with 64 units and a ReLU
activation function is added to further refine the CNN features.

1) Step 2: TDA Feature Extraction: The input layer for TDA
features is flattened. An activation layer with ReLU activation
is applied. Two dense layers follow, with 256 and 128 units,
both utilizing ReLU activation functions.

2) Step 3: Concatenation of Features: The extracted CNN
and TDA features are concatenated to create a fused feature
representation.

3) Step 4: Further Feature Processing: Two additional dense
layers are introduced with 256 and 128 units, both using ReLU
activation functions. A dropout layer with a rate of 0.2 is
inserted to prevent overfitting.

4) Step 5: Output Layer: The final output layer is chosen
based on the nature of the classification task.For binary clas-
sification, a sigmoid activation function is applied. For multi-
class classification, a softmax activation function is used.

This concatenated architecture seamlessly combines the
strengths of both CNN and TDA features, enabling the model
to capture complex patterns in the data for improved classifi-
cation performance.

V. EXPERIMENTS

A. Datasets

To see the performance of our Topo-ML model for Glau-
coma, DR, and AMD screening, we did several experiments
on well-known benchmark datasets. We give the basic details
of these datasets in Table I. Further details (resolution, camera,
etc.) for all the datasets can be found in [2].

IChallenge-AMD dataset is designed for the Automatic
Detection challenge on Age-related Macular degeneration
(ADAM Challenge) which was held as a satellite event of
the ISBI 2020 conference [37], [38]. There are two different
resolutions of images, i.e., 2124 × 2056 pixels (824 images)
and 1444 × 1444 (376 images). While the dataset has 1200
images, only 400 of them are available with labels. Like
most other references, we used these 400 images in our
experiments Table II.

ORIGA dataset contains 650 high resolution (3072 × 2048)
retinal images for Glaucoma annotated by trained profession-
als from Singapore Eye Research Institute [39].

APTOS 2019 dataset was used for a Kaggle competition
on DR diagnosis [40]. The images have varying resolutions,
ranging from 474 × 358 to 3388 × 2588. APTOS stands for
Asia Pacific Tele-Ophthalmology Society, and the dataset was

TABLE I: Benchmark datasets for fundus images.

Dataset Disease Total Normal Abnormal

APTOS 2019 DR 3662 1805 1857
ORIGA Gl 650 482 168
IChallenge-AMD AMD 400 311 89
HRF DR, Gl 45 15 30
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provided by Aravind Eye Hospital in India. In this dataset,
fundus images are graded manually on a scale of 0 to 4 (0: no
DR; 1: mild; 2: moderate; 3: severe; and 4: proliferative DR)
to indicate different severity levels. The number of images in
these classes are respectively 1805, 370, 999, 193, and 295. In
the binary setting, class 0 is defined as the normal group, and
the remaining classes (1-4) are defines as DR group which
gives a split 1805:1857. The total number of training and
test samples in the dataset were 3662 and 1928 respectively.
However, the labels for the test samples were not released after
the competition, so like other references, we used the available
3662 fundus images with labels.

B. Experimental Setup

Training - Test Split: Unfortunately, none of the datasets have
a predefined train:test split, and therefore, many models used
their own split. In our experiments, we used an 80:20 split in
all datasets for Topo-ML model. For Topo-Net model, we used
80:20 split for IChallenge-AMD and ORIGA dataset, while for
the APTOS dataset, we used 85:15 for binary and multi-class
classifications which aligns more closely with the standard
settings of previous research. Because of the discrepancy
between the experimental setups of different methods, we give
the train:test splits of all models in our accuracy tables to
facilitate a fair comparison (Tables II to V).
Data Augmentation: Note that as our datasets are quite small
and imbalanced compared to other image classification tasks
for deep learning models, hence all CNN and other deep learn-
ing methods need to use serious data augmentation (sometimes
50-100 times) to train their model and avoid overfitting [41].
Our Topo-ML model are using topological feature vectors,
and our feature extraction method is invariant under rotation,
flipping and other common data augmentation techniques.
Hence, we do not use any type of data augmentation or pre-
processing to increase the size of training data for Topo-ML
model. This makes our model computationally very efficient,
and highly robust against small alterations and the noise in the
image. Similarly, for Topo-Net model, we used the original
datasets and did not use any kind of data augmentation as we
used pre-trained models as backbone.
Topo-ML Model Hyperparameters: To increase the perfor-
mance of our model in terms of accuracy and computational
efficiency, we performed parametric tuning and feature se-
lection methods. We extracted 800 features (Gray and RGB
color spaces) from the datasets by using Betti 0 and Betti 1.
To improve the performance and avoid collinearity, we used
dimension reduction by choosing the most important features.
For feature selection, we used SelectFromModel from scikit-
learn. We first assign importance to each feature and sorted
them in descending order according to threshold parameter.
The features are considered unimportant and removed if the
corresponding importance of the feature values is below the
provided threshold parameter. Random Forest and XGBoost
models are trained on all of the datasets. We used default
parameters as parametric tuning for XGBoost. After feature
selection and fine-tuning, XGBoost gave the best results for

APTOS (159 features), ORIGA (84 features), and IC-AMD
(58 features) datasets . As our ablation study (Table VI)
indicates, feature selection improved both performance and
computational time.
Topo-Net Model Hyperparameters: We trained the Topo-
Net model for 50 epochs using a batch size of 32 for all
datasets. We used the Adam optimizer and kept the remaining
parameters as default.
Computational Complexity & Implementation: While for
high dimensional data PH calculation is computationally ex-
pensive [34], for image data, it is highly efficient. For 2D
images, PH has time complexity of O(|P|r) where r ∼ 2.37
and |P| is the total number of pixels [42]. In other words, PH
computation increases almost quadratic with the resolution.
The remaining processes (vectorization, RF) are negligible
compared to PH step. We used Giotto-TDA [43] to obtain
persistence diagrams, and Betti functions. We used Jupyter
notebook as an IDE for writing the code in Python 3. Our
code is available at the following link 1.
Runtime: We conducted all our experiments utilizing a per-
sonal laptop equipped with an Intel(R) Core(TM) i7-8565U
processor running at 1.80GHz and boasting 16 GB of RAM.
In both of our models, the most time-intensive phase is the
extraction of topological features. In contrast, the subsequent
tasks of machine learning classification and executing deep
learning models are relatively insignificant. This is mainly
because we did not employ any data augmentation and utilized
pre-trained CNN models. For the most extensive dataset in our
study, APTOS (consisting of 3662 high-resolution images),
the entire process, including topological feature extraction,
model training, and obtaining accuracy results, consumed a
total of 43.7 hours. The runtime for smaller datasets with
lower resolutions, used for topological feature extraction, is
considerably shorter. It’s also worth considering that when
using a server, as opposed to a personal laptop, the runtime
for such datasets would be considerably shorter.

C. Results
Here, we present the performance of our Topo-ML and

Topo-Net models along with SOTA models on benchmark
datasets. We give the accuracy results of our Topo-ML model
for Glaucoma, AMD, and DR diseases. In Tables II to V, we
give Normal:Abnormal split, Train:Test split, and # Classes
to describe the experimental setting used for each baseline.

In these tables, we report all available performance metrics
(AUC, Accuracy, Precision, Recall) provided with the base-
lines. For details of these performance metrics, see [44]. Our
models are trained on the training data, and we report their
performance on the test (unseen) data. Scikit-Learn [45] library
is used for performance metric calculations. For multiclass
classification (APTOS 2019), we used a weighted average of
AUC values with a One-vs-Rest configuration. This method
computes the AUC values of each class against the rest [46].
In all tables, the best result for each column is given in bold,
and the second-best result is underlined. For missing data in
the table from reference papers, we used ”-”.

1https://github.com/FaisalAhmed77/Topo-Net
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TABLE II: Accuracy results for AMD diagnosis.

IChallenge-AMD Dataset
Method Nor:Abn Train:Test Class Prec Recall Acc AUC

Mem-Bank [48] 311:89 5 fold CV 2 74.6 66.5 82.0 66.5
Invariant [49] 311:89 5 fold CV 2 83.2 74.5 86.6 71.6
Decouple [50] 311:89 5 fold CV 2 79.7 69.2 83.8 69.2
Contrastive [51] 311:89 5 fold CV 2 73.5 68.1 82.5 68.1
Rotation S [47] 311:89 5 fold CV 2 84.5 77.2 87.6 77.2
CycleGAN [52] 933:267 5 fold CV 2 77.1 80.6 87.3 86.2
DCNN [53] 311:89 10 fold CV 2 84.9 76.0 91.7 88.0

Topo-ML 311:89 80:20 2 88.9 57.1 91.3 90.6
Topo-Net 311:89 85:15 2 92.4 91.3 93.8 93.6

TABLE III: Accuracy results for binary DR diagnosis.

APTOS 2019 Dataset Binary (DR)
Method Nor:Abn Train:Test Class Prec Recall Acc AUC

D-Net121 [54] 1805:1857 85:15 2 86.0 87.0 94.4 -
ConvNet [55] 1805:1857 80:20 2 - - 96.1 -
DRISTI [56] 1805:1857 85:15 2 - - 97.1 -
C-DNN [57] 1805:1857 85:15 2 98.0 98.0 97.8 -
LBCNN [58] 1805:1857 80:20 2 - - 96.6 98.7
SCL [59] 1805:1857 85:15 2 98.4 98.4 98.4 98.9

Topo-ML 1805:1857 80:20 2 95.5 94.0 94.5 97.9
Topo-Net 1805:1857 85:15 2 98.7 98.7 98.7 98.9

AMD Detection Results: Our results for diagnosing AMD
on the IChallenge-AMD (IC-AMD) dataset are presented in
Table II. The accuracy values listed for methods in rows
1-4 have been sourced from [47, Table 1]. While these
papers did not directly employ the IC-AMD dataset, [47]
adapted these methods to the IC-AMD dataset using the same
experimental setup and subsequently reported these results.
Although baseline results range from an AUC of 0.665 to
0.880, both of our models consistently outperform all existing
models. The outstanding performance of our Topo-ML model,
which solely relies on our topological vectors and XGBoost,
underscores the effectiveness of our features in diagnosing
AMD.

DR Detection Results: We give our results for DR diagnosis
on APTOS 2019 dataset in binary setting in Table III and
in multiclass setting in Table V. We gave the details for
these settings in Section V-A. In binary setting, our basic
model Topo-ML stands shoulder to shoulder with SOTA deep
learning models. On the other hand, our Topo-Net model
outperforms all existing models in all performance metrics.
We note that because of the mixed resolution of the images,
this is a very challenging dataset from ML perspective. In spite
of this fact, both our models proved to be very robust and can
tackle mixed-resolution problems.

In the multiclass setting, again our basic model is handling
this challenging 5-class classification problem with simple
ML classifier. On the other hand, our Topo-Net model again
outperforms all existing baselines in multiclass DR diagnosis.

Glaucoma Detection Results: We give our results for Glau-
coma diagnosis on ORIGA dataset in Table IV. Among
these three retinal diseases, we get our worst performance in
Glaucoma detection. Our Topo-ML model falls short of the
performances of the SOTA deep learning models. Similarly,

TABLE IV: Accuracy results for Glaucoma diagnosis.

ORIGA Dataset (Glaucoma)
Method Nor:Abn Train:Test Class Sen Spec Acc AUC

EAMNet [60] 482:168 2 fold CV 2 - - - 88.0
SVM-SMOTE [61] 482:168 10-fold CV 2 87.6 77.9 82.8 88.9
18-CNN [62] 482:168 70:30 2 58.1 92.4 78.3 -
NasNet [63] 482:168 70:30 2 78.7 91.1 87.9 -
CNN-SVM [64] 660:453 70:30 2 89.5 100 95.6 -
ODGNet [65] 482:168 pretrained 2 94.8 94.9 95.8 97.9

Topo-ML 482:168 80:20 2 50.0 92.7 81.5 77.3
Topo-Net 482:168 85:15 2 84.6 95.8 82.3 83.0

TABLE V: Accuracy results for multiclass DR diagnosis.

APTOS 2019 Dataset - 5-class (DR)
Method Nor:Abn Train:Test Class Prec Rec Acc AUC

DRISTI [56] 1805:1857 85:15 5 59.4 54.6 75.5 -
C-DNN [57] 1805:1857 85:15 5 - - 80.9 -
SCL [59] 1805:1857 85:15 5 73.8 70.50 84.6 93.8

Topo-ML 1805:1857 80:20 5 73.5 75.6 75.6 88.3
Topo-Net 1805:1857 85:15 5 82.2 78.2 80.0 95.5

Topo-Net model does not reach its performance in the other
two retinal diseases. We would like to add that the baselines in
these datasets are specifically focused on Glaucoma detection,
and they train their deep-learning models with serious data
augmentation and other methods. Our Topo-Net model uses
pre-trained deep-learning models.

D. Ablation Study.
In Table VI, we present the results of our ablation study for

the Topo-ML model. We generated 800 topological features
for each fundus image by employing different dimensions
(k = 0, 1) and considering four different color channels
(Gray, RGB). For ML classifiers we utilized XGBoost for
the APTOS, ORIGA, and IChallenge datasets. To enhance
our Topo-ML model’s performance by mitigating collinearity,
we implemented a feature selection algorithm. In the case of
APTOS 2019, we selected the top 159 features out of 800,
while for IC-AMD, we selected the best 58 features out of
800. For ORIGA dataset, we used the top 84 features out of
800.

In Table VII, we present an ablation study for our Topo-Net
model. We integrated 10 different pre-trained models as the
backbone for our topological deep learning model. Addition-
ally, we provide comprehensive performance metrics for each
of these models in Table X (Glaucoma), Table IX (AMD),
and Table VIII (DR). Notably, our topological deep learning

TABLE VI: Ablation Study. Accuracy results of our Topo-ML model with
different subsets of feature vectors for the default setting for each dataset as
described in Sec.V-C.

APTOS IC-AMD ORIGA

Feature Vector Features Acc AUC Acc AUC Acc AUC

Gray (Betti-1) 100 91.95 97.01 86.25 81.17 70.00 67.87
Gray (Betti-0,1) 200 91.95 97.42 86.25 82.14 78.46 74.39
RGB (Betti-0,1) 600 94.00 98.03 87.50 84.63 72.31 68.69
RGB+Gray (Betti-0,1) 800 93.86 98.10 88.75 92.53 73.08 75.12
Feature Selection * 94.54 97.94 91.25 90.58 81.54 77.33
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TABLE VII: Comparison of AUC results of CNN results with Topo-Net results for different backbones.

APTOS-Binary IChallenge-AMD ORIGA APTOS-5 labels

Models CNN T-CNN CNN T-CNN CNN T-CNN CNN T-CNN

Resnet50 98.28 98.82 95.48 92.25 78.50 80.54 90.54 95.51
DenseNet201 97.81 98.27 90.28 84.19 75.90 76.11 90.81 92.53
InceptionV3 95.87 95.10 87.30 84.45 82.88 83.03 89.09 91.13
Inc-ResNetV2 52.91 95.27 82.50 76.09 73.85 75.81 75.47 89.88
MobileNetV2 96.72 96.85 90.56 85.42 74.71 73.27 88.80 92.31
Xception 97.47 96.50 94.71 82.75 75.90 78.49 91.00 92.14
VGG19 97.80 97.67 91.84 91.30 76.41 82.08 95.65 95.48
EfficientNetB0 98.62 98.69 94.30 88.61 77.95 80.66 92.34 95.25
EfficientNetB2 98.28 98.94 94.68 92.30 67.74 81.62 94.25 93.46
EfficientNetB3 98.68 98.51 94.47 93.55 82.46 79.66 92.85 94.62

model demonstrates substantial performance improvements,
especially in the cases of Glaucoma and DR multiclass classi-
fication. We wish to emphasize that using a pre-trained model
and training a deep learning model specifically for certain tasks
are distinct approaches, with the latter offering significantly
higher performance but requiring weeks of training.

E. Discussion

The results presented in Tables II to V illustrate the
performance of our models in three of the most prevalent
retinal diseases. Notably, our scalable Topo-ML model offers
outstanding computational efficiency, capable of processing
thousands of images in mere hours. It accomplishes this with-
out the need for pre-training or data augmentation, features
commonly employed by other existing baselines in this field.
Given these characteristics, our Topo-ML model stands as a
highly successful approach for tasks related to AMD and DR
diagnosis, delivering results that are exceptionally competitive
when compared to state-of-the-art deep learning models.

On the other hand, our Topo-Net model distinguishes itself
by not using any training; it solely utilizes pre-trained models.
It is worth noting that customizing and training the model
specifically for individual retinal diseases, as done with other
deep learning models featured in our accuracy tables, could
potentially yield even more impressive results. In this research,
our primary objective was to emphasize the value of our
topological feature vectors and demonstrate their effective
applicability in various machine learning models with ease.

VI. INTERPRETATION OF TOPOLOGICAL FEATURES

As mentioned in the introduction, one of the main ad-
vantages of our model is the interpretability of topological
features. In Figures 6 to 8, we illustrate the topological patterns
created by normal and abnormal classes for DR, Glaucoma,
and AMD diseases, respectively. In these figures, we give
median curves and 40% confidence bands of each class for
the corresponding dataset. The details of these non-parametric
confidence bands and median curves can be found at [66].

To elucidate our model using these figures, the distinct
patterns observed in Figures 6 to 8 underscore the discrim-
inative power of our topological feature vectors. From a
machine-learning perspective, these visualizations highlight

the robustness of our feature vectors. For each image, by using
equally distributed 100 thresholds spanning [0, 255] interval,
we obtain 100-dimensional Betti-0 and 100-dimensional Betti-
1 vectors. Consequently, every image is mapped to a point in
the latent space R100 through these Betti functions. In this
latent space, each image, denoted as X, is represented as a
point β(X) ∈ R100, and the median curves can be interpreted
as the centroids of clusters corresponding to each class. The
separation between these clusters can be thought of as the
distance between these points.

In our visualizations, we provide a highly condensed sum-
mary of this latent space. While the curves may appear close to
each other, it’s important to note that each entry βk(ti) in the
vector βk(X) = [βk(1) βk(2) . . . βk(100)] represents the ith

coordinate in R100 for an image. Consequently, even a slight
separation between the Betti curves results in a substantial
distance between the corresponding points in the latent space.
This separation between the clusters is readily identified by
the machine learning model (e.g., XGBoost) during training,
ultimately leading to the development of a highly robust model
with exceptional accuracy results.

In order to interpret our features, it’s essential to provide
some background on topological feature vectors. While var-
ious methods of vectorizing persistence diagrams can yield
powerful feature vectors, Betti curves stand out in terms of
interpretability. This is one of the key reasons behind our
choice to use Betti curves as the vectorization method in our
model.

Betti curves keep track of the count of components and
loops as we progress through increasing color values from
0 to 255 where the color value 0 represents black, and the
color value 255 represents white. In simpler terms, for any
color value t0 ∈ [0, 255], β0(t0) represents the total number
of components in the binary image Xt0 , while β1(t0) indicates
the total number of loops or holes in the binary image Xt0 (as
illustrated in Figure 3). It’s important to note that the counts
on the y-axis of the figures represent the actual counts of
components and loops, and they are not normalized values.
Keeping this fundamental property in mind, we interpret our
topological fingerprints for each disease as follows:

In Figure 6b, we see Betti-1 curves of the two classes (DR
vs. normal) in the APTOS 2019 dataset. Our curves indicate
that when the grayscale value is between 100 and 150, the
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(a) APTOS 2019 (Betti-0) (b) APTOS 2019 (Betti-1)

Fig. 6: Median curves and 40% confidence bands of our topological feature
vectors for DR. x-axis represents color values and β0(t) and β1(t) represent
the count of components and count of loops in Xt, respectively.

(a) ORIGA (Betti-0) (b) ORIGA (Betti-1)

Fig. 7: Median curves and 40% confidence bands of our topological feature
vectors for Glaucoma. x-axis represents color values and β0(t) and β1(t)
represent the count of components and count of loops in Xt, respectively.

count of loops in the DR class is almost double the ones in
the normal class. In other words, if X is a normal fundus image
and V is a DR fundus image in the APTOS dataset, the binary
image X125 has around 1000 loops (holes), while the binary
image V125 has around 2200 loops. One way to interpret this
is that in a normal class, there are about 1000 light spots in
normal classes, while there are about 2200 light spots spread
out DR classes as holes in X125 and V125 are white regions
(color value > 125) in these binary images. Therefore, our
results show that in DR fundus images, lighter spots are much
more abundant and spread out than in normal fundus images.

Similarly, in Figure 7a, we have Betti-0 curves of the two
classes (Glaucoma vs. normal) in the ORIGA dataset. In this
case, our curves indicate that when the grayscale value is
between 80 and 130, the count of components in the Glaucoma
class is almost half of the count of components in the normal
class. In other words, if X is a normal fundus image and V is
a Glaucoma fundus image in the ORIGA dataset, the binary
image X90 has around 4000 components, while the binary
image V90 has around 2000 component. One can interpret
this as follows: In a normal classes, there are about 4000
dark spots in normal classes, while there are about 2000
dark spots spread out in Glaucoma classes. Less number of
components means that Glaucoma images get darker faster
than the normal classes. i.e., dark regions get more connected
in earlier thresholds.

Finally, in Figure 8b, we see Betti-1 curves of the two
classes (AMD vs. normal) in the IChallenge-AMD dataset.
Our curves indicate that when the grayscale value is between
50 and 100, the count of loops in the AMD class is almost
double the ones in the normal class. In other words, if X is a
normal fundus image and V is an AMD fundus image in the
IChallenge-AMD dataset, the binary image X75 has around
2500 loops (holes), while the binary image V75 has around
5000 loops. Like DR case, this interpreted density of light

(a) IChallenge-AMD (Betti-0) (b) IChallenge-AMD (Betti-1)

Fig. 8: Median curves and 40% confidence bands of our topological
feature vectors for AMD. x-axis represents color values and β0(t) and β1(t)
represent the count of components and count of loops in Xt, respectively.

spots in the images of the AMD class is much higher than the
images in the normal class. Here, grayscale value 50 represents
a very dark color and grayscale value 0 represents black.

VII. CONCLUSION

In this paper, we introduce a novel approach to retinal image
analysis by incorporating topological data analysis techniques.
Through the application of persistent homology, we generate
highly effective topological feature vectors from fundus im-
ages, specifically targeting prevalent retinal diseases like DR
(Diabetic Retinopathy), Glaucoma, and AMD (Age-Related
Macular Degeneration). These topological features, when com-
bined with simple machine learning classifiers, effectively
distinguish between normal and abnormal images for these
diseases, yielding competitive accuracy results when compared
to existing deep learning models. Furthermore, when we
combine these topological features with deep learning models
in our Topo-Net framework, we surpass state-of-the-art models
in benchmark datasets for DR and AMD.

An additional advantage of our approach is the high in-
terpretability of the topological features, which can provide
valuable insights to expert ophthalmologists, aiding in their
understanding of the subtleties of these diseases. Moreover,
these topological feature vectors, being versatile feature rep-
resentations, can seamlessly integrate with various machine
learning and deep learning models. Given the pressing need for
automated clinical decision support systems to assist health-
care professionals, our unique topological feature vectors
have the potential to significantly enhance the performance
and robustness of future machine learning and deep learning
models in this domain.

VIII. APPENDIX

Below, we provide additional performance metrics for our
Topo-Net model, utilizing various pre-trained CNN models as
backbones.
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TABLE VIII: Accuracy results for Topo-Net on APTOS
dataset.

APTOS 2019 Dataset (DR) - Binary
Method Acc Prec Rec AUC

Resnet50 96.73 96.73 96.73 98.28
Topo-Resnet50 97.95 97.95 97.95 98.82
DenseNet201 96.55 96.72 96.55 97.81
Topo-DenseNet201 96.36 96.19 96.36 98.27
InceptionResNetV2 52.91 52.91 52.91 52.91
Topo-InceptionResNetV2 90.36 90.09 90.91 95.27
MobileNetV2 94.73 94.73 94.73 96.72
Topo-MobileNetV2 94.73 94.72 94.55 96.85
EfficientNetB3 96.91 97.09 96.91 98.68
Topo-EfficientNetB3 98.36 98.36 98.36 98.51
Xception 94.73 94.74 94.91 97.47
Topo-Xception 93.64 93.62 93.45 96.50
VGG19 96.91 96.91 96.91 97.80
Topo-VGG19 96.91 96.21 96.91 97.67
InceptionV3 91.64 91.64 91.64 95.87
Topo-InceptionV3 92.55 91.50 92.00 95.10
EfficientNetB0 97.64 97.64 97.64 98.62
Topo-EfficientNetB0 97.82 97.82 97.82 98.69
EfficientNetB2 96.91 96.90 96.73 98.28
Topo-EfficientNetB2 98.73 98.73 98.73 98.94

TABLE IX: Accuracy results for our Topo-Net models on
IChallenge dataset with different backbones.

IChallenge Dataset (AMD)
Method Acc Prec Rec AUC

Resnet50 87.34 87.34 87.34 86.54
TDA + Resnet50 86.08 86.08 86.08 85.99
DenseNet201 78.48 79.49 78.48 88.05
TDA + DenseNet201 81.01 81.01 81.01 80.53
InceptionResNetV2 21.52 2152 21.52 50.00
TDA + InceptionResNetV2 77.22 77.50 78.48 77.57
MobileNetV2 86.08 85.90 84.81 91.67
TDA + MobileNetV2 75.95 75.00 75.95 75.95
EfficientNetB3 88.61 88.75 89.87 95.95
TDA + EfficientNetB3 92.41 92.31 91.14 93.78
Xception 84.81 84.81 84.81 88.24
TDA + Xception 78.48 76.92 75.95 77.14
VGG19 86.08 86.08 86.08 92.31
TDA + VGG19 88.61 88.00 83.54 86.64
InceptionV3 72.15 72.15 72.15 82.73
TDA + InceptionV3 79.75 79.75 79.75 80.98
EfficientNetB0 86.08 85.00 86.08 90.12
TDA + EfficientNetB0 88.61 88.61 88.61 90.91
EfficientNetB2 87.34 87.34 87.34 90.24
TDA + EfficientNetB2 87.34 84.52 89.87 92.60

TABLE X: Accuracy results for our Topo-Net models on
ORIGA dataset with different backbones.

ORIGA Dataset (Glaucoma)
Method Acc Prec Rec AUC

Resnet50 73.08 73.08 73.08 78.50
Topo-Resnet50 79.23 74.10 79.23 80.54
DenseNet201 68.46 67.72 66.15 75.90
Topo-DenseNet201 76.15 76.32 66.92 76.11
InceptionResNetV2 73.85 73.85 73.85 73.85
Topo-InceptionResNetV2 75.38 67.81 76.15 75.81
MobileNetV2 71.54 71.54 71.54 74.71
Topo-MobileNetV2 75.38 73.53 57.69 73.27
EfficientNetB3 73.85 74.05 74.62 82.46
Topo-EfficientNetB3 80.77 75.00 76.15 79.66
Xception 65.38 65.12 64.62 75.90
Topo-Xception 76.15 77.48 66.15 78.49
VGG19 69.23 68.94 70.00 76.41
Topo-VGG19 78.46 78.29 77.69 82.08
InceptionV3 75.38 75.59 73.85 82.88
Topo-InceptionV3 82.31 76.39 84.62 83.03
EfficientNetB0 70.00 70.00 70.00 77.95
Topo-EfficientNetB0 78.46 74.29 80.00 80.66
EfficientNetB2 64.62 65.89 65.38 67.74
Topo-EfficientNetB2 80.77 79.49 71.54 81.62

TABLE XI: Accuracy results for our Topo-Net models on
APTOS dataset (5-labels) with different backbones.

APTOS 2019 Dataset (DR) for 5-class
Method Acc Prec Rec AUC

Resnet50 76.73 77.67 75.27 90.54
Topo-Resnet50 80.00 82.22 78.18 95.51
DenseNet201 74.36 75.83 70.18 90.81
Topo-DenseNet201 73.64 78.98 70.36 92.53
MobileNetV2 71.27 73.00 69.82 88.80
Topo-MobileNetV2 75.27 78.21 69.82 92.31
EfficientNetB3 76.00 76.74 74.36 92.85
Topo-EfficientNetB3 79.64 81.94 76.73 94.62
Xception 71.09 77.63 64.36 91.00
Topo-Xception 74.55 77.64 70.73 92.14
VGG19 78.55 86.73 71.27 95.65
Topo-VGG19 78.73 83.79 72.36 95.48
InceptionV3 69.45 69.91 68.00 89.09
Topo-InceptionV3 72.55 79.04 63.09 91.13
EfficientNetB0 78.55 78.83 78.55 92.34
Topo-EfficientNetB0 78.18 81.91 74.91 95.25
EfficientNetB2 78.55 79.81 76.91 94.25
Topo-EfficientNetB2 80.91 81.73 80.55 93.46
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