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Abstract 31 

Chemoresistance has long been a significant but unresolved issue in the treatment 32 

of various cancers, including the most deadly gynecological cancer, the high-33 

grade serous ovary cancer (HGSOC). In this study, single nuclei transcriptome 34 

analyses were utilized to identify key cells and core networks for chemoresistance 35 

in HGSOC patients with different early responses to platinum-based 36 

chemotherapy at the single-cell level. Biomarkers for chemoresistance were also 37 

screened using bulk transcriptome data from independent cohorts with larger 38 

sample sizes. A total of 62,482 single cells from six samples were analyzed, 39 

revealing that chemoresistant cancer cells (Epithelial cells_0) pre-existed within 40 

individual patient before treatment. Two network modules formed with hub genes 41 

such as hormone-related genes (ESR1 and AR), insulin-related genes (INSR and 42 

IGF1R), and CTNNB1, were significantly overexpressed in these cells in the 43 

chemoresistant patient. BMP1 and TPM2 could be promise biomarkers in 44 

identifying chemoresistant patients before chemotherapy using bulk 45 

transcriptome data. Additionally, chemotherapy-induced fibroblasts 46 

(Fibroblasts_01_after) emerged as key stromal cells for chemoresistance. One 47 

network module containing one subnetwork formed by cholesterol biosynthesis-48 

related genes and one subnetwork formed by cancer-related genes such as STAT3 49 

and MYC, was significantly overexpressed in these cells in the chemoresistant 50 

patient. Notably, the NAMPT-INSR was the most prioritized ligand-receptor pair 51 

for cells interacting with Fibroblasts_01_after cells and Epithelial cells_0 cells to 52 

drive the up-regulation of their core genes, including IL1R1, MYC and INSR 53 

itself. Our findings deepen the understandings about mechanisms of early 54 

chemoresistance in HGSOC patients. 55 

 56 
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Introduction  60 

Chemoresistance presents a formidable obstacle in the effective treatment 61 

of various cancers, including the high-grade serous ovarian cancer (HGSOC), 62 

which is the most lethal gynecologic malignancy (1). While initial responses to 63 

chemotherapy are favorable for most patients (2), approximately one-third of 64 

patients responding poorly to chemotherapy, with limited further treatment 65 

options available (3). Furthermore, even patients initially responsive well to 66 

chemotherapy may eventually develop chemoresistance, contributing to high 67 

mortality rates in HGSOC (2). Despite decades of clinical application of 68 

chemotherapy, the mechanism behind chemoresistance remains largely unknown. 69 

Although individual chemoresistant targets have been identified using classical 70 

biological experimental methods, their efficacy is usually limited due to the 71 

inherent complexity of biological organisms. We thus need to analyze the 72 

mechanism of chemoresistance at a higher resolution and at the systemic network 73 

level.  74 

 75 

Cell populations are fundamental to the execution of biological functions 76 

in humans, and chemoresistance represents a selection process favoring cell 77 

populations with adaptive fitness phenotypes. A critical question arises: Do 78 

different responses to chemotherapy pre-exist in patients before treatment, or are 79 

they acquired during treatment? Answering these questions necessitates a single-80 

cell level analysis, including the differentiation of cancer cells with varying 81 

chemotherapy responses and the interactions among cells in the tumor 82 

microenvironments of patients with different responses. Previous studies in 83 

different cancer types, such as breast cancer,  rectal cancer, and oral squamous 84 

cell carcinomas, have revealed diverse mechanisms of chemoresistance, with 85 

either showing pre-existing genetic mutations for chemoresistance (4), or 86 

demonstrating acquired transcriptional profile reprogramming during treatment 87 

(5), or both (6) . These findings underscore the need for specific analyses tailored 88 
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to each cancer type. One recent study has provided valuable insights into the 89 

mechanisms of chemoresistance in HGSOC, but it focused on metastatic sites (7), 90 

leaving the mechanisms at the primary sites of HGSOC relatively unclear. 91 

Furthermore, the use of platinum-free intervals to characterize chemoresistance 92 

remains controversial and may not directly reflect chemoresistance (8).  93 

 94 

Therefore, in this study, we sought to investigate and compare cellular 95 

composition and corresponding transcriptional profiles at the primary sites before 96 

and after platinum-based chemotherapy in patients with varying responses at the 97 

single-cell level. Our objectives were to address the following questions: Which 98 

cell types are key cells for early chemoresistance? Are the corresponding gene 99 

co-expression networks pre-existing or acquired?  What are specific cellular 100 

interactions in the microenvironments in chemoresistant patients? Our findings 101 

will deepen our understandings about mechanisms of chemoresistance, and can 102 

be helpful for finding potential biomarkers and therapeurtic targets for early 103 

chemoresistant HGSOC patients. 104 

 105 

Materials and Methods 106 

Sampling and Library Construction 107 

This study was approved by the Ethics Committee for Clinical Research 108 

and Animal Trials of the First Affiliated Hospital of Sun Yat-sen University 109 

(ethics approval No. 2021726). Six fresh paired primary HGSOC samples before 110 

and after chemotherapy were collected from three patients who received 111 

neoadjuvant chemotherapy (NACT) between 2021 and 2022 at the First 112 

Affiliated Hospital, Sun Yat-sen University in Guangzhou, China. Clinical 113 

information can be found in the Supplementary File 1. The chemotherapy 114 

regimen consisted of three cycles of paclitaxel plus carboplatin. Paired samples 115 

were obtained during laparoscopy and interval debulking surgery before and after 116 

chemotherapy. Fresh tissues were immediately frozen in liquid nitrogen and 117 
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transported by dry ice. Single nuclei transcriptome libraries construction and 118 

sequencing were conducted by Novogene (China) following 10x Genomics 119 

instructions (https://support.10xgenomics.com). Briefly, libraries were 120 

constructed using the Chromium Next GEM Chip G Single Cell Kit, 48 rxns (PN-121 

100020), and Chromium Next GEM Single Cell 3’ GEM, Library & Gel Bead 122 

Kit v3.1, 16 rxns PN-1000121. Libraries with PE150 (paired-end reads, 150bp) 123 

were sequenced on an Illumina NovaSeq 6000. 124 

 125 

Chemotherapy Response Evaluation  126 

All patients underwent baseline 18F-FDG PET/CT before and after 127 

chemotherapy (Figure 1A). 18F-FDG PET/CT was performed after at least 6 128 

hours of fasting and with a glucose level lower than 10 mmol/L. The PET/CT 129 

scan coverage ranged from the top of the head to the mid-thigh. The ordered-130 

subset expectation maximization iterative reconstruction method was used to 131 

reconstruct the data. The total metabolic tumor volume (tMTV) and total lesion 132 

glycolysis (TLG) were measured and calculated. Based on PERCIST 1.0 (9), we 133 

differentiated patients as partial responses to chemotherapy (PR1 and PR2) and 134 

progress disease (PD) (we named these IDs for this study and they were not used 135 

to identify patients outside the research group) (Figure 1B). 136 

 137 

Data Pre-processing 138 

Raw data were analyzed with 10x Genomics Cell Ranger 6.1.1. The 139 

GRCh38 Ensembl build genome (refdata-gex-GRCh38-2020-A) was used as the 140 

reference. The filtered feature barcode matrix was used for further data analysis. 141 

The Seurat v4 R package was used for data pre-processing (10). Only genes 142 

expressed in at least three cells, and cells with at least 200 unique Molecular 143 

Identifiers (UMI) were retained. Quality control metrics were plotted for 144 

individual samples and used for filtering cells with aberrantly high UMI, which 145 

could be originated from cell doublets or multiplets. The PercentageFeatureSet() 146 
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function was used to calculate the percentage of counts originating from 147 

mitochondrial DNA (mtDNA). Low-quality or dead cells with abnormal 148 

mitochondrial contamination were removed. Cell clusters with fewer than 10 149 

cells were also removed. Cell cycle effects were evaluated with 150 

CellCycleScoring() function. Doublets were assessed using the DoubletFinder 151 

v2.0 R package (11). 152 

 153 

Based on the plotting results (Supplementary File 2), quality control was 154 

performed for each sample. For PR1_before (pre-chemotherapy sample of patient 155 

1 with partial response to chemotherapy), cells with 200 < UMI < 7500, mtDNA 156 

percentage < 8, ribosome percentage < 4 were retained, and 984 doublets were 157 

removed. Similarly, for PR1_after (post-chemotherapy sample of patient 1 with 158 

partial response to chemotherapy), cells with 200 < UMI < 5000, mtDNA 159 

percentage < 2, ribosome percentage < 1 were retained, and 831 doublets were 160 

removed. For PR2_before (pre-chemotherapy sample of patient 2 with partial 161 

response to chemotherapy), cells with 200 < UMI < 7500, mtDNA counts < 6%, 162 

ribosome percentage < 2 were retained, and 1057 doublets were removed. For 163 

PR2_after (post-chemotherapy sample of patient 2 with partial response to 164 

chemotherapy), cells with 200 < UMI < 4300, mtDNA percentage < 2.5%, 165 

ribosome percentage < 2 were retained, and 1119 doublets were removed. For 166 

PD_before (pre-chemotherapy sample of the chemoresistant patient), cells with 167 

200 < UMI < 6000, mtDNA percentage < 10, ribosome percentage < 2 were 168 

retained, and 144 doublets were removed. For PD_after (post-chemotherapy 169 

sample of the chemoresistant patient), cells with 200 < UMI < 6000, mtDNA 170 

percentage < 1, ribosome percentage < 2 were retained, and 367 doublets were 171 

removed. 172 

 173 

Data Integration, Clustering, and Differential Gene Expression Analysis  174 
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The preprocessed data were used for data integration analysis using Seurat 175 

to correct batch effects among samples (10). 2000 highly variable expressed 176 

genes detected for each sample were used to find anchors for data integration. 177 

Subsequently, the integrated data was scaled, and the principal components were 178 

computed. The top 30 principal components were identified using an elbow plot. 179 

Clustering identification was performed at a proper resolution that can 180 

differentiate major cell types. The UMAP dimensionality reduction was used for 181 

visualization. Diffential expressed (DE) genes were  identified with a significance 182 

threshold of adjusted p value < 0.05 and log2FoldChange > 0.5. KEGG pathways 183 

enrichment analyses were performed using the STRING database (https://string-184 

db.org/) (12).  185 

 186 

Malignant Cells Inference  187 

Malignant cells were inferred based on genomic copy number variation 188 

(CNV) using CopyKAT v1.1.0 (13). Cells with extensive genome-wide copy 189 

number aberrations (aneuploidy) were considered as malignant tumor cells. 190 

Parameters were set as ngene.chr=10, win.size=25, KS.cut=0.1, 191 

distance="euclidean". Only cells that met the criteria were presented. For the 192 

PR2_after which contained only a small number of epithelial cells (15 cells), we 193 

assumed that all these epithelial cells were malignant cells, since they all 194 

overexpressed malignance cell markers. 195 

 196 

Gene Co-expression Network Construction 197 

hdWGCNA (14) was used to construct high dimensional gene co-198 

expression network modules for target cell clusters. Genes expressed in at least 199 

5% of cells were used for analyses. Batch effects were corrected during analyses 200 

by setting group.by and group.by.vars parameters. The number of cells to be 201 

aggregated for metacells construction was 25, and the max_shared was set as 10 202 

as default. The TestSoftPowers was used to determine a proper value of the soft 203 
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power threshold. The implemented AddModuleScore function was applied to 204 

compute hub genes signature scores for each module. Differential module 205 

eigengene analysis was performed between target cell groups. Hub genes 206 

overexpressed in the target cells in the network modules were further used to 207 

construct protein-protein network using the STRING database (12). The 208 

thickness of network edges represents the strength of data support. The minimum 209 

required interaction score was set as 0.7 (high confidence). Only genes with 210 

interaction degrees >1 were presented. 211 

 212 

Survival Analyses  213 

Survival analyses were conducted using three publicly available bulk 214 

transcriptome datasets with clinical information, including GSE102073 (n=70), 215 

PRJNA866991 (n=41), and GSE32062 (n=260). Kaplan-Meier (K-M) survival 216 

curves were constructed using the survival 3.5 R package (15). 217 

 218 

Bulk Transcriptome Analyses 219 

For the GSE102073 cohort, the normalized gene expression matrix was 220 

obtained directly from the GEO database. For the PRJNA866991 cohort, raw 221 

reads were retrieved from the NCBI database and aligned to the GRCh38 222 

Ensembl build human genome using HISAT2 v2.1.0 (16). SAMTOOLs v1.7 223 

(17,18) was utilized to convert sam files to bam files, sort and index bam files, 224 

and obtain the final counts. Featurecounts v2.0.4 (19) was used to obtain the 225 

counts at the gene level. The DESeq2 v1.38.3 (20) was employed to normalize 226 

the count files and generate the final expression matrix. For the GSE32062 cohort, 227 

CEL files were first downloaded from the GEO database. The affy v1.74 R 228 

package (21) was used to process the CEL files, and rma was applied for 229 

normalization. The hgu133plus.db was used to extract the gene expression matrix 230 

at the gene level. 231 

 232 
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Cell-Cell Interaction Analyses  233 

Nichenetr (22) was used to identify prioritized ligand-receptor-target genes 234 

involved in the interactions from senders to receivers under different conditions. 235 

All genes expressed in at least 10% of receiving cells were used as the 236 

background geneset.  237 

 238 

RNA Velocity Analyses  239 

RNA velocity (the change in mRNA abundance calculated by relating the 240 

abundance of unspliced and spliced mRNA) was estimated using Scvelo (23) 241 

following the instructions (https://scvelo.readthedocs.io/en/stable/). The 242 

stochastic model was chosen to account for stochasticity in gene expression, and 243 

the combination of velocities across genes was used to estimate the future state 244 

of individual cells. 245 

 246 

Data Availability  247 

All data produced in the present study are available upon reasonable 248 

request to the authors. 249 

 250 

Results 251 

Cell atlas before and after chemotherapy in patients with different responses  252 

We collected six samples at primary ovary sites from three HGSOC 253 

patients paired before and after chemotherapy. The responses to chemotherapy 254 

were evaluated using PET/CT (Figure 1A and Figure 1B). The results of tMTV 255 

and TLG of each patient before and after chemotherapy were given in Figure 1B. 256 

Based on PERCIST 1.0 (9), we differentiated patients as partial responses to 257 

chemotherapy (PR1 and PR2) and progress disease (PD). After quality control, a 258 

total of 62482 single cells were grouped into nine major clusters, including 12668 259 

epithelial cells (KRT19+), 41522 fibroblasts (DCN+), 1825 T cells (CD96+), 4850 260 

Macrophages (CD163+), 1120 Endothelial cells (VWF+), 75 Lymphatic 261 
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endothelial cells (FLT4+), 213 B cells (MZB1+), 43 Schwann cells (LGI4+), and 262 

166 Ciliated-secretory intermediate cells (CFAP54+FOXJ1+PAX8+) (24,25) 263 

(Figure 1C). Malignant cells inference revealed that malignant cells were mainly 264 

epithelial cells (Figure 1D), which is consistent with the pathological 265 

characteristics of HGSOC as an epithelial cancer. A small portion of ciliated-266 

secretory intermediate cells were also identified as malignant cells, which can be 267 

explained since they were assumed to be the main origin of HGSOC (24,25). 268 

Expression profiles of corresponding markers in each cell type were provided in 269 

Figure 1E. The cell numbers and ratios in each major cell cluster from individual 270 

patients were also presented in Figure 1F. The distribution of major cell clusters 271 

in each sample among patients before and after chemotherapy were illustrated in 272 

Figure 1G.  273 

 274 

 275 

 276 
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Figure 1 Schematic of sampling and analysis results. (A) Schematic of sampling. Fresh paired primary samples 279 
before and after chemotherapy were collected from three patients who received neoadjuvant chemotherapy 280 
(NACT). The chemotherapy regimen consisted of three cycles of paclitaxel plus carboplatin. PET/CT was used 281 
to evaluate chemotherapy responses before and after chemotherapy for each patient. Paired samples were collected 282 
during laparoscopy and interval debulking surgery before and after chemotherapy. Single nuclei transcriptome 283 
libraries constructions were conducted following 10 x Genomics instructions. (B) Chemotherapy responses 284 
evaluation. tMTV (total metabolic tumor volume) and TLG (total lesion glycolysis) were used to evaluate 285 
chemotherapy responses. PR1 represents patient 1 with a partial response to chemotherapy, PR2 represents patient 286 
2 with a partial response to chemotherapy, and PD represents progressive disease (chemoresistant patient). (C) 287 
The UMAPT plot of cell atlas of integrated samples showing major cell clusters. (D) Malignant cells inference. 288 
Aneuploid cells (malignant cells) and diploid cells (non-malignant cells) were identified. (E) The dot plot of 289 
marker genes expression for each major cell cluster. (F) Cell numbers and cell ratios of each major cell cluster in 290 
each individual sample. (G) The UMAP plot of cell atlas showing major cell clusters in each individual sample 291 
among patients before and after chemotherapy. PD_after represents the post-chemotherapy sample of the 292 
chemoresistant patient, PD_before represents the pre-chemotherapy sample of the chemoresistant patient, 293 
PR1_after represents the post-chemotherapy sample of patient 1 with partial response to chemotherapy, 294 
PR1_before represents the pre-chemotherapy sample of patient 1 with partial response to chemotherapy, 295 
PR2_after represents the post-chemotherapy sample of patient 2 with partial response to chemotherapy, and 296 
PR2_before represents the pre-chemotherapy sample of patient 2 with partial response to chemotherapy. 297 

 298 

Chemoresistant cancer cells were pre-existing in the PD patient 299 

 300 

Five subclusters of epithelial cells were identified in total (Figure 2A and 301 

2B). No genes were specifically overexpressed in Epithelial cells_0, indicating 302 

that this subcluster represented a common cancer cell type. Epithelial cells_1 303 

specifically overexpressed MKI67 and enriched cell proliferation-related 304 

pathways, such as homologous recombination, DNA replication, and the cell 305 

cycle. Epithelial cells_2 specifically overexpressed the hypoxia-related gene 306 

PFKFB. Epithelial cells_3 specifically overexpressed DOCK8 and PTPRC, and 307 

enriched immune response-related pathways, such as the B cell receptor and T 308 

cell receptor pathways. Epithelial cells_4, which only appeared in the partial 309 

response after chemotherapy, specifically overexpressed DACH2 and OVGP1, 310 

and enriched cancer-related pathways (Figure 2C, 2D). 311 

 312 
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Cell proportion analysis showed that Epithelial cells_0 cells were highly 313 

enriched in the PD_after, indicating its chemoresistant character (Figure 2E and 314 

2F). DE genes retrieved from comparisons among samples after chemotherapy 315 

for each subcluster also revealed that Epithelial cells_0 cells enriched many 316 

cancer-related pathways in the PD_after, such as the Wnt signaling pathway, the 317 

MAPK signaling pathway, the insulin signaling pathway, the cellular senescence 318 

pathway, and the longevity regulating pathway (Figure 2G). In contrast, although 319 

other subclusters also remained after chemotherapy in the PD_after, their 320 

proportions were largely reduced, and no cancer-related pathways were enriched, 321 

indicating their fragility to chemotherapy. Thus, we proposed that Epithelial 322 

cells_0 cells were the key cancer cells for early chemotherapy responses. It is 323 

worth noting that clustering analysis using cell average transcriptional profiles 324 

clustered Epithelial cells_0 cells based on individual patient ID rather than 325 

treatment condition (before or after chemotherapy) (Figure 2H), indicating that 326 

transcriptional profiles for chemotherapy responses were largely pre-existing in 327 

Epithelial cells_0 cells in individual patients before chemotherapy. 328 
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 329 
Figure 2 (A) The UMAP plot of cell atlas for five epithelial cells subclusters. (B) The UMAP plot of cell atlas 330 
showing five epithelial cells subclusters in each individual sample among patients before and after chemotherapy. 331 
PD_after represents the post-chemotherapy sample of the chemoresistant patient, PD_before represents the pre-332 
chemotherapy sample of the chemoresistant patient, PR1_after represents the post-chemotherapy sample of 333 
patient 1 with a partial response to chemotherapy, PR1_before represents the pre-chemotherapy sample of patient 334 
1 with a partial response to chemotherapy, PR2_after represents the post-chemotherapy sample of patient 2 with 335 
a partial response to chemotherapy, PR2_before represents the pre-chemotherapy sample of patient 2 with a partial 336 
response to chemotherapy. (C) The dot plot of marker genes expression for epithelial cells subclusters. (D) KEGG 337 
pathway enrichment for epithelial cells subclusters. (E) Cell numbers and cell ratios of cell subclusters in each 338 
individual sample. (F) Cell ratio comparisons of the Epithelial cells_0 subcluster between samples before and 339 
after chemotherapy in each patient. (G) KEGG pathway enrichment for the Epithelial cells_0 subcluster among 340 
samples after chemotherapy. (H) Sample clustering using cell average transcriptional profiles clustered Epithelial 341 
cells_0 cells based on individual patient ID rather than treatment condition (before or after chemotherapy).  342 
 343 

Gene co-expression networks construction further supported the above 344 

results. We identified six co-expression modules for Epithelial cells_0 cells in 345 

total. Module eigengene (ME) represents the first principal component of the 346 

gene expression matrix comprising each module, and was thus used to summarize 347 
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the gene expression profile of the entire module. Figure 3A presented the 348 

summarization of the expression of each module obtained by calculating gene 349 

signature scores from MEs for the top 25 hub genes for each module. To correct 350 

batch effects, harmony batch correction was applied to produce harmonized MEs 351 

(hMEs) (Figure 3B).  We can see that, again, pre- and post- chemotherapy 352 

samples from the same patient expressed similar modules (Figure 3B). For 353 

example, the PD patient overexpressed M3 and M4 modules both before and after 354 

chemotherapy. Differential module eigengene analysis revealed that no module 355 

was significantlly overexpressed in the post-chemotherapy sample when 356 

compared to the pre-chemotherapy sample from the same patient. For example, 357 

although the adjust p value of M3 in the PD_after was significant when compared 358 

to PD_before, its foldchange was small (Figure 3C left). Although the adjust p 359 

values of M3 and M4 modules were significant in the PR1_after when compared 360 

to the ones in the PR1_before, they actually expressed little in theses samples 361 

(Figure 3C middle). This can be also applied to M4 and M6 modules in the PR2 362 

patient (Figure 3C right). These results confirmed again that the transcriptional 363 

profiles for different chemotherapy responses were pre-existing in cancer cells 364 

before chemotherapy. 365 

 366 

Notably, when comparing Epithelial cells_0 cells among samples after 367 

chemotherapy, M3 and M4 modules were significantly overexpressed in 368 

Epithelial cells_0 cells in the PD_after when compared to the ones in either 369 

PR1_after or PR2_after (Figure 3D), indicating the chemoresistant characters of 370 

these two modules. Further protein-protein co-expression networks using these 371 

module genes overexpressed in the PD_after showed that insulin-related 372 

receptors (INSR and IGF1R), hormone receptor (AR), NCOR2, and SMAD2 373 

formed a tight connective network in module M3, and a tight network with 374 

CTNNB1and ESR1 as the core hubs in module M4 (Figure 3E).  375 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.03.24302058doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.03.24302058
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

 376 
Figure 3 Gene co-expression networks construction and comparisons for Epithelial cells_0. (A) The UMAP plots 377 
of the hub gene signature score for each module constructed for Epithelial cells_0. (B) Violin plots of the 378 
harmonized module eigengenes (hMEs) in each sample for each module. (C) Differential module eigengene 379 
comparisons between post- and pre-samples within each individual patient. (D) Differential module eigengene 380 
comparisons between the PD_after and the PR1_after or the PR2_after, respectively. (E) Co-expression networks 381 
visualization of Module 3 and Module 4. PD_after: post-chemotherapy sample of the chemoresistant patient. 382 
PD_before: pre-chemotherapy sample of the chemoresistant patient. PR1_after: post-chemotherapy sample of the 383 
patient 1 with partial response to chemotherapy. PR1_before: pre-chemotherapy of the patient 1 with partial 384 
response to chemotherapy. PR2_after: post-chemotherapy sample of the patient 2 with partial response to 385 
chemotherapy. PR2_before: pre-chemotherapy of the patient 2 with partial response to chemotherapy. 386 
 387 

The presence of pre-existing chemoresistance transcriptional profiles in 388 

cancer cells before chemotherapy lays the foundation for the search for relevant 389 

pre-treatment biomarkers. Survival analyses were thus conducted using publicly 390 

available bulk transcriptome data with progression-free survival (PFS) 391 

information, representing the time to first recurrence after chemotherapy. These 392 

analyses were performed using datasets from three independent cohorts: 393 

PRJNA866991 (n=41), GSE32062 (n=260), and GSE102073 (n=70). It is 394 
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important to note that these cohorts utilized bulk transcriptome data, where gene 395 

expression represents the expression level of the entire sample rather than a 396 

specific cell group. Additionally, these data were only retrieved from pre-397 

chemotherapy conditions. We thus first identified DE genes that were 398 

significantly overexpressed in the whole sample of PD_before when compared to 399 

PR1_before and PR2_before. Subsequent survival analyses of these genes 400 

revealed that only two genes, BMP1 and TPM2, were significantly associated 401 

with low PFS across all three cohorts (Figure 4A). Both genes were also 402 

significantly overexpressed in Epithelial cells_0 cells in the PD patient when 403 

compared to samples of PR patients (Figure 4B).  404 

 405 
Figure 4 (A) Kaplan-Meier survival curves on progression-free survival (PFS) for genes BMP1 and TPM2 from 406 
three independent cohorts. (B) Violin plots showing gene expression patterns among samples at the sample level 407 
before chemotherapy and at the Epithelial cells_0 level after chemotherapy. (C) Sample clustering revealing that 408 
the expression profiles of Ciliated-secretory intermediate cells were clustered based on individual patients rather 409 
than treatment condition. 410 
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We also investigated chemoresistant genes in ciliated-secretory 412 

intermediate cells since they were also remained in the PD_after, and are assumed 413 

to be the main origin of the high-grade serous ovarian carcinoma (HGSOC) 414 

(24,25). Similar to Epithelial cells_0 cells, sample clustering also revealed that 415 

the expression profiles of ciliated-secretory intermediate cells were clustered 416 

based on individual patients rather than treatment condition (Figure 4C). There 417 

were only 17 genes overexpressed in Epithelial cells_0 cells when compared to 418 

ciliated-secretory intermediate cells in the PD_after with no pathways enriched, 419 

indicating their similar transcriptional profiles. This indicated that ciliated-420 

secretory intermediate cells in the PD_after could also be chemoresistant, and the 421 

corresponding transcriptional profiles were also pre-existing in individual 422 

patients before treatment.  423 

 424 

The induced fibroblasts after chemothrerapy are key cells for 425 

chemoresistance 426 

 427 

We initially identified four fibroblasts subclusters (Figure 5A). 428 

Fibroblasts_0 occupied a large proportion in the tumor microenvironment after 429 

chemotherapy, indicating its association with chemotherapy. Notably, 430 

Fibroblasts_0 was difficult to be clearly separated from Fibroblasts_1 in the 431 

UMAP plot with different resolutions, indicating that Fibroblasts_0 cells were 432 

induced from Fibroblasts_1 during the treatment. Transcriptional dynamics 433 

analysis also revealed that the transcriptional dynamics direction of Fibroblasts_1 434 

before chemotherapy changed to the same direction of Fibroblasts_0 after 435 

chemotherapy, except for a small portion of cells whose direction was more 436 

inclined towards the pre-treatment direction. However, no DE gene was 437 

specifically found to be overexpressed in this part. Additionally, when we 438 

conducted sampling clustering using cellular average transcriptional profiles, we 439 

found that unlike other subclusters, Fibroblasts_0 was always clustered together 440 
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with Fibroblasts_1 in each sample (Figure 5B and 5C). We thus treated 441 

Fibroblasts_0 and Fibroblasts_1 as one cluster named Fibroblasts_01, and 442 

differentiated pre-chemotherapy and post-chemotherapy clusters into 443 

Fibroblasts_01_before and Fibroblasts_01_after (Figure 5D, Figure 5E and 5F). 444 

 445 

All identified fibroblasts were epithelial-mesenchymal transition (EMT) 446 

fibroblasts, as evidenced by their high expression of corresponding markers VIM, 447 

ZEB1, and ZEB2 (Figure 5G). Although no genes were specifically 448 

overexpressed in Fibroblasts_01_before, several genes were specifically 449 

overexpressed in Fibroblasts_01_after after chemotherapy. The top five 450 

overexpressed DE genes for Fibroblasts_01_after in the PD_after were SGCZ, 451 

ACSM3, STAR, ESYT2, and INSR. Three pathways were enriched for this 452 

subcluster, including ovarian steroidogenesis, longevity regulating pathway-453 

multiple species, and FoxO signaling pathway. The corresponding genes were 454 

IGF1R, INSR, STAR, FOXO1, and SGK1. Additionally, Fibroblasts_2 (FAP+ 455 

COL8A1+ RUNX2+) specifically overexpressed FAP, COL8A1, and RUNX2, 456 

and enrichment in pathways related to ovarian steroidogenesis, regulation of actin 457 

cytoskeleton, AGE-RAGE signaling pathway in diabetic complications, and 458 

amoebiasis. Fibroblasts_3 (MCAM+) specifically overexpressed MCAM and 459 

enriched pathways such as pathways in cancer, cortisol synthesis and secretion, 460 

vascular smooth muscle contraction, and cGMP-PKG signaling pathway (Figure 461 

5H and 5I). 462 

 463 

The sample clustering tree using average transcriptional profiles showed 464 

that all subclusters were clustered by treatment condition rather than patient IDs 465 

(Figure 5D), signifying that treatment condition played a critical role in 466 

fibroblasts among patients. When examining the enrichment of overexpressed 467 

genes in the PD_after compared to PR1_after and PR2_after for each subcluster, 468 

only overexpressed genes in the Fibroblasts_01_after enriched many cancer-469 
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related signaling pathways, indicating that Fibroblasts_01_after in the PD_after 470 

exhibited a high degree of malignancy (Figure 5J). Combined with the abundance 471 

after treatment for Fibroblasts_01_after (Figure 5A), we thus proposed that 472 

Fibroblasts_01_after cells were the key cells for chemotherapy responses.  473 

  474 

 475 
Figure 5 (A) The UMAP plot of cell atlas for fibroblasts subclusters with different resolutions. Left: the UMAP 476 
plot of cell atlas for fibroblasts subclusters in integrated samples. Middle: the UMAP plot of cell atlas for 477 
fibroblasts subclusters in each sample among patients before and after chemotherapy. Right: transcriptional 478 
dynamic depicted by RNA velocity for each subcluster. (B) Sampling clustering using cellular average 479 
transcriptional profiles for fibroblasts subclusters under resolution 0.12. (C) Sampling clustering using cellular 480 
average transcriptional profiles for fibroblasts subclusters under resolution 0.05. (D) Sampling clustering using 481 
cellular average transcriptional profiles for fibroblasts subclusters after treating Fibroblasts_0 and Fibroblasts_1 482 
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as one subcluster, and differentiated pre-chemotherapy and post-chemotherapy clusters into 483 
Fibroblasts_01_before and Fibroblasts_01_after. (E) UMAP plot of fibroblast subclusters in integrated samples. 484 
(F) UMAP plot of fibroblast subclusters in each sample from patients before and after chemotherapy. (G) Violin 485 
plots depicting the expression of epithelial-mesenchymal transition (EMT) markers in each subcluster. (H) Dot 486 
plot showing marker gene expression in fibroblast subclusters. (I) KEGG pathway enrichment analysis for 487 
fibroblast subclusters. (J) KEGG pathway enrichment for overexpressed genes in the PD_after for each subcluster. 488 
PD_after: Post-chemotherapy sample of the chemoresistant patient. PD_before: Pre-chemotherapy sample of the 489 
chemoresistant patient. PR1_after: Post-chemotherapy sample of patient 1 with partial response to chemotherapy. 490 
PR1_before: Pre-chemotherapy sample of patient 1 with partial response to chemotherapy. PR2_after: Post-491 
chemotherapy sample of patient 2 with partial response to chemotherapy. PR2_before: Pre-chemotherapy sample 492 
of patient 2 with partial response to chemotherapy. 493 
 494 

Gene co-expression networks construction revealed five network modules 495 

for Fibroblasts_01_after cells in total (Figure 6A and 6B).  The M2 module was 496 

significantly overexpressed in the PD_after when compared to either PR1_after 497 

or PR2_after, indicating its chemoresistance characters (Figure 6C). Protein-498 

protein network using hub genes of this module that overexpressed in the 499 

PD_after revealed two subnetworks. One was formed by many cholesterol 500 

biosynthesis-related genes, such as HMGCR, SREBF2, MSMO1, MVD, ACAT2 501 

and INSIG1. The other subnetwork was formed by well-known cancer promoting 502 

genes such as MYC and STAT3 (Figure 6D), and enriched in many cancer-related 503 

pathways such as HIF-1 signaling pathway, insulin resistance, JAK-STAT 504 

signalling pathway, and type II diabetes mellitus.  505 
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 506 
Figure 6 Gene co-expression networks construction and comparisons for Fibroblasts_01_after. (A) The UMAP 507 
plots of the hub gene signature score of five modules constructed for Epithelial cells_0. (B) Violin plots of the 508 
harmonized module eigengenes (hMEs) in each post-treatment sample for each module. (D) Differential module 509 
eigengene comparisons between PD_after and PR1_after or PR2_after, respectively. (E) Co-expression network 510 
visualization using hub genes of Module 2. PD_after: post-chemotherapy sample of the chemoresistant patient. 511 
PR1_after: post-chemotherapy sample of the patient 1 with partial response to chemotherapy. PR2_after: post-512 
chemotherapy sample of the patient 2 with partial response to chemotherapy.  513 
 514 

Other stromal cells and immune cells in the microenvironment were 515 

generally tumour-promoting among patients after chemotherapy 516 

 517 

We identified four macrophage subclusters (Figure 7), including CD163+ 518 

M2 macrophages (Macrophages_0), hypoxic macrophages (Macrophages_1) 519 

which overexpressed hypoxia-related genes (HK2+) (26), RRM2+ M2 520 

macrophages (Macrophages_2), and fibrosis-like macrophages (Macrophages_3) 521 

that overexpressed fibroblast-related genes (PDGFRA+ and CALD1+), consistent 522 

with previous reports of macrophages being capable of transdifferentiating into 523 

PD_after vs PR2_afterPD_after vs PR1_after

M2 module
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myofibroblasts (27). Following chemotherapy, a large proportion of 524 

Macrophages_0 cells and a few Macrophages_1 cells remained in the PD_after. 525 

Only 31 genes were found to be overexpressed in the PD_after compared to 526 

PR1_after and PR2_after for Macrophages_0, and no genes were overexpressed 527 

in the PD_after for Macrophages_1.  528 

 529 

Furthermore, we identified five T cell subclusters (Figure 7), including 530 

CD8+THEMIS+ T cells [21,22] (T cells_0), natural killer (NK) cells 531 

(NCAM1+CD3-) (28) (T cells_1), CD4+ regulatory T cells (Tregs) 532 

(CD4+CTLA4+FOXP3+IL2RA+) (29) (T cells_2), TOP2A+ T cells  (30) (T 533 

cells_3), and MEG3+ T cells (31–33) (T cells_4). The CD8+ THEMIS+ T cells 534 

represented a large proportion after treatment. Only 14 genes were found to be 535 

overexpressed in the PD_after compared to PR1_after and PR2_after, and no 536 

specific pathway enrichment was observed. A small proportion of NKT-like cells 537 

remained in the PR1_after and the PD_after, with no DE genes identified between 538 

them. These results indicated a generally similar immunosuppressive 539 

microenvironment after chemotherapy among patients. 540 

 541 

Regarding Lymphatic endothelial cells (Figure 1), only four genes were 542 

overexpressed in the PD_after, including RMST, STAT3, NAMPT, and YBX3. 543 

For Schwann cells (Figure 1), no DE genes were identified among patients after 544 

treatment. Similarly, for Endothelial cells (Figure 1), only 47 DE genes were 545 

found to be overexpressed in the PD_after compared to PR1_after and PR2_after, 546 

such as NAMPT, SEMA3A, RMST, and ATP1B3, and no significantly enriched 547 

pathways were observed. These results indicated that these stromal cells 548 

exhibited generally similar characteristics after chemotherapy among patients.549 
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550 
Figure 7 (A) Left: UMAP plot of macrophage subclusters for integrated samples. Middle: UMAP plot of 551 
macrophage subclusters for each sample among patients before and after chemotherapy. Right: Dot plot of marker 552 
gene expression in each macrophage subcluster. (B) Left: UMAP plot of T cell subclusters for integrated samples. 553 
Middle: UMAP plot of T cell subclusters for each sample among patients before and after chemotherapy. Right: 554 
Dot plot of marker gene expression in each T cell subcluster. PD_after: Post-chemotherapy sample of the 555 
chemoresistant patient. PD_before: Pre-chemotherapy sample of the chemoresistant patient. PR1_after: Post-556 
chemotherapy sample of patient 1 with partial response to chemotherapy. PR1_before: Pre-chemotherapy sample 557 
of patient 1 with partial response to chemotherapy. PR2_after: Post-chemotherapy sample of patient 2 with partial 558 
response to chemotherapy. PR2_before: Pre-chemotherapy sample of patient 2 with partial response to 559 
chemotherapy. 560 

 561 

The NAMPT-INSR was the most prioritized ligand-receptor pair enriched 562 

in the chemoresistance patient  563 

  564 

Cell-cell interactions play crucial roles in executing cellular functions. 565 

Since Epithelia cells_0 cells and Fibroblasts_01_after cells were key cells for 566 

chemoresistance, we thus would like to see which cells interacted with them and 567 

Macrophages

T cells
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affected their core genes expression. The genes that were significantly 568 

overexpressed in Epithelial cells_0 cells in the PD_after in M3 and M4 modules 569 

we identified above were used as the target geneset when Epithelial cells_0 cells 570 

were as the receivers. Similarly, the genes that were significantly overexpressed 571 

in Fibroblasts_01_after cells in the PD_after in M2 module we identified above 572 

were used as the target genesets when Fibroblasts_01_after cells were as the 573 

receivers.  574 

 575 

Interestingly, results consistently showed that the NAMPT-INSR was the 576 

most prioritized ligand-receptor pair for cells interacting with Epithelial cells_0 577 

cells (receiver cells) in the PD_after when compared to PR1_after and PR2_after. 578 

For example, INSR was the most potentially interacted receptor for NAMPT for 579 

Fibroblasts_01_after cells (sender) interacting with Epithelial cells_0 cells 580 

(receiver) in the PD_after compared to PR1_after (Figure 8A left) and PR2_after 581 

(Figure 8B left). NAMPT was the only ligand with high ranking for ligand 582 

activity, and also with high expression level in Fibroblasts_01_after in the 583 

PD_after compared to PR1_after (Figure 8A right) and PR2_after (Figure8B 584 

right). The corresponding downstream target genes were IL1R and INSR in the 585 

PD_after compared to PR1 (Figure 8A right) and PR2 (Figure 8B right). These 586 

results were also applied to other cells interacting with Epithelial cells_0 cells in 587 

the PD_after to drive the overexpression of IL1R and INSR as the downstream 588 

genes, such as Endothelial cells, Fibroblasts_2, Fibroblasts_3, Lymphatic 589 

endothelial cells, and T cells_0, which were given in the Supplementary File 3.  590 

 591 

The NAMPT-INSR was also the most prioritized ligand-receptor pair for 592 

cells interacting with Fibroblasts_01_after cells (receiver) in the PD_after when 593 

compared to PR1_after and PR2_after, with MYC and INSR itself as the 594 

downstream target genes, such as Fibroblasts_3 and Lymphatic endothelial cells 595 

(Figure 8C and 8D, Supplementary File 3).   596 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.03.24302058doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.03.24302058
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 26	

 597 

 598 
Figure 8 Cell-cell interactions analyses. (A) Ligand-receptor inference (left) and target genes inference (right) 599 
when Fibroblasts_01_after cells acted as senders and interacted with Epithelial_cells_0 cells as receivers in the 600 
PD_after compared to PR1_after. The NAMPT-INSR was the most prioritized ligand receptor pair, with IL1R 601 
and INSR itself as the downstream target genes. (B) Ligand-receptor inference (left) and target genes inference 602 
(right) when Fibroblasts_01_after cells acted as senders and interacted with Epithelial_cells_0 cells as receivers 603 
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in the PD_after compared to PR2_after. The NAMPT-INSR was the most prioritized ligand receptor pair, with 604 
IL1R and INSR itself as the downstream target genes. (C) Ligand-receptor inference (left) and target genes 605 
inference (right) when Fibroblasts_3 cells acted as senders and interacted with Fibroblasts_01_after cells as 606 
receivers in the PD_after compared to PR1_after. The NAMPT-INSR was the most prioritized ligand receptor 607 
pair, with MYC and INSR itself as the downstream target genes. (D) Ligand-receptor inference (left) and target 608 
genes inference (right) when Fibroblasts_3 cells acted as senders and interacted with Fibroblasts_01_after cells 609 
as receivers in the PD_after compared to PR2_after. The NAMPT-INSR was the most prioritized ligand receptor 610 
pair, with MYC and INSR itself as the downstream target genes. PD_after: Post-chemotherapy sample of the 611 
chemoresistant patient. PR1_after: Post-chemotherapy sample of patient 1 with partial response to chemotherapy. 612 
PR2_after: Post-chemotherapy sample of patient 2 with partial response to chemotherapy. 613 

 614 

Discussion 615 

In this study, we revealed that chemoresistant cancer cells were pre-616 

existing in individual patients prior to treatment. This observation aligns with 617 

existing research that cancer cells are often clustered by patient IDs, highlighting 618 

the strong individual differences among cancer cells (34,35), which can 619 

contribute to the heterogeneity of tumors in individual patients. These results 620 

provide a foundation for developing biomarkers to diagnose chemoresistance 621 

before initiating treatment. We identified BMP1 and TPM2 as promising 622 

universal candidate biomarkers for identifying chemoresistant patients before 623 

treatment when using bulk transcriptome data. Both genes can facilitate 624 

chemoresistance (36,37), supporting the rationality of our analyses.  625 

 626 

We found two co-expression network modules were signficantly 627 

overexpressed in Epithelial cells_0 cells in the chemoresistant sample. One 628 

network was formed with hub genes such as ESR1 and CTNNB1. The other 629 

module network was formed by tight connections among genes of IGF1R and 630 

INSR, AR, NCOR2 and SMAD2. CTNNB1 has been suggested as a potential 631 

biomarker for chemoresistance in breast cancer (38), which can be a good 632 

candidate therapeutic target for chemoresistance in HGSOC. Notably, two 633 

hormone-related genes, ESR1and AR, were involved in these core networks. 634 

Hormone imbalance can contribute to the development of ovarian cancer, and 635 
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both androgen and estrogen have been reported to regulate proliferation and 636 

progression in ovarian cancer (39,40). Our findings here thus highlight the critical 637 

roles of these hormones in chemoresistance in HGSOC which deserve 638 

consideration. Additionally, two hub genes are insulin receptors (IGF1R and 639 

INSR). The enrichment of insulin resistance pathway in Epithelial cells_0 cells 640 

in the chemoresistant sample further supports the potential link between insulin 641 

and early chemoresistance. Insulin is well-known for cellular metabolism and 642 

growth (41). It is known that chemotherapy-induced insulin resistance can impair 643 

anti-cancer efficacy (42). Elevated circulating insulin due to insulin resistance, 644 

coupled with overexpressed insulin receptors in cancer cells can confer a 645 

selective advantage to promote proliferation and migration (43,44), and thus 646 

contributing to chemoresistance in HGSOC. Our findings thus underscore the 647 

importance of insulin-related genes in early chemoresistance in HGSOC. 648 

 649 

In addition to cancer cells, other cells in the tumor microenvironment can 650 

also play crucial roles in chemotherapy responses. Unlike the pre-existing cancer 651 

cells, our findings indicated that the induced fibroblasts (Fibroblasts_01_after) 652 

following chemotherapy were key cells associated with chemoresistance. A 653 

subnetwork formed by cholesterol biosynthesis-related genes was found in the 654 

module that was significantly overexpressed in Fibroblasts_01_after cells in the 655 

chemoresistant sample. Cholesterol biosynthesis can support cancer progression 656 

and also induce drug resistance (45). For example, gene SREBF2 has been 657 

reported to facilitate chemoresistance in ovarian cancer (46). Our results thus 658 

implies the importance of cholesterol metabolism in chemoresistance in HGSOC. 659 

Another subnetwork was formed by cancer-related genes such as STAT3 and 660 

MYC. The overexpression of both genes have well been linked to 661 

chemoresistance in ovarian cancer (47,48). Genes within these subnetworks 662 

could have critical roles in chemoresistance and are good candidate targets.  663 

 664 
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Cellular interactions in the tumor microenvironment are vital for 665 

chemoresistance. Our analysis revealed that the NAMPT-INSR was the most 666 

prioritized ligand-receptor pair enriched in the chemoresistant sample when cells 667 

interacting with the two key cell types, i.e. Epithelial cells_0 and 668 

Fibroblasts_01_after. NAMPT as a rate-limiting enzyme for NAD synthesis, is 669 

required for cellular metabolism and DNA repair, for example, as the substrate 670 

of PARPs (a DNA repair enzyme whose inhibitors are widely used in second-line 671 

therapy for HGSOC) (49). Recent studies have highlighted the potential function 672 

of NAMPT as an alternative ligand for INSR (50), which can enhance insulin 673 

resistance (51), which can impair anti-cancer efficacy as we mentioned above. 674 

Besides, similar to insulin, NAMPT can stimulate glucose uptake and 675 

proliferation through INSR to confer a selective advantage to promote 676 

proliferation and migration of cancer cells as we mentioned above. Moreover, 677 

NAMPT treatment can induce fibrosis by overproducing profibrotic molecules 678 

through the INSR transduction pathway (51). This can contribute to 679 

chemoresistance by creating a physical barrier to protect from chemotherapeutic 680 

drugs (52). All these findings gave strong supports for the involvement of 681 

NAMPT-INSR in chemoresistance in HGSOC patients. We further identified that 682 

IL1R1, MYC and INSR were the downstream target genes of NAMPT-INSR. 683 

MYC and INSR can induced chemoresistance as we mentioned above. The 684 

chemoresistant functions of these target genes gave further support that NAMPT-685 

INSR can have critical roles in chemoresistance in HGSOC patients, although the 686 

specific mechnism involved in HGSOC needs further investigation. 687 

 688 

Notably, NAMPT was overexpressed in Fibroblasts_01_after cells only 689 

after chemotherapy. This aligns with previous findings about the overexpression 690 

of NAMPT at the onset of drug resistance (53). NAMPT can be induced by 691 

hypoxia via a STAT3-dependent mechanism (54). Additionally, MYC can 692 

interact with the NAMPT promoter and stimulate its expression to promote 693 
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cancer (55,56). The overexpression of both STAT3 and MYC in the PD_after in 694 

Fibroblasts_01_after cells in our study can help explain the overexpression of 695 

NAMPT in these cells after chemotherapy. Our cellular interactions analyses 696 

showed that MYC was also the downstream target gene of NAMPT in 697 

Fibroblasts_01_after in the PD_after. Indeed, MYC and NAMPT are involved in 698 

a positive feedback loop to drive tumorigenesis (56). The consistent results 699 

supported the reliability of our analyses. 700 

 701 

The immune microenvironment in patients with varying chemotherapy 702 

responses exhibited a general trend of being inhibited and proinflammatory after 703 

chemotherapy. The proportions of T cells, both before and after chemotherapy, 704 

were observed to be small, which aligns with the characteristic of ovarian cancer 705 

being a “cold” tumor (57). Notably, Ciliated-secretory intermediate cells 706 

displayed a close transcriptional profile with Epithelial cells_0 cells in the 707 

PD_after, consistent with the hypothesis that they are the primary origin of 708 

HGSOC, originating from the fallopian tube and fall off to the ovary (24,25). 709 

Although other stromal cells showed minimal differences in gene expression 710 

among samples after chemotherapy, the majority of them exhibited 711 

overexpression of NAMPT in the chemoresistant patient. This is in line with the 712 

findings that the NAMPT-INSR pair was highly enriched when these stromal 713 

cells interacted with Fibroblasts_01_after cells and Epithelial cells_0 cells in the 714 

chemoresistant patient (Supplementary File 3). 715 

 716 

Conclusions 717 

In conclusion, we found that pre-existing cancer cells and induced 718 

fibroblasts as key contributors for early chemoresistance in HGSOC patients. 719 

Metabolism reprogramming, involving hormone-related genes (ESR1 and AR), 720 

insulin-related genes (IGF1R and INSR) and cholesterol biosynthesis-related 721 

genes, could play critical roles in early chemoresistant HGSOC. CTNNB1, 722 
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STAT3 and MYC as core hub genes are also good candidate chemoresistant 723 

targets. The NAMPT-INSR ligand-receptor pair enriched for cells interacted with 724 

Fibroblasts_01_after cells and Epithelial cells_0 cells, can be important for early 725 

chemoresistance in HGSOC.  726 

 727 

We thus propose that the combination of chemotherapy with INSR 728 

inhibitors and NAMPT inhibitors could represent a promising treatment strategy 729 

for early chemoresistant HGSOC patients. The inhibitors of NAMPT and INSR 730 

have undergone extensive development and clinical testing (58,59). Previous 731 

research has demonstrated that the combination of a NAMPT inhibitor and 732 

chemotherapy resulted in a better prognosis than chemotherapy alone in mice 733 

with HGSOC (60), holds promise for further improving the therapeutic window. 734 

Despite the limitations in sample size, our study has yielded valuable clinic 735 

findings, enrich the heterogeneous library of HGSOC and could offer important 736 

insights into potential clinical biomarkers and therapeutic targets for HGSOC 737 

chemoresistance. The findings from our study may also contribute to 738 

advancements in understanding and addressing chemoresistance in various 739 

cancer types in a broad sense.  740 
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