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Abstract 50 

 51 

BACKGROUND: Accurate classification of ischemic stroke subtype is important for effective 52 

secondary prevention of stroke. We used diffusion-weighted imaging (DWI) and atrial 53 

fibrillation (AF) data to train a deep learning algorithm to classify stroke subtype. 54 

METHODS: Model training, validation, and internal testing were done in 2,988 patients with 55 

acute ischemic stroke from three stroke centers by using U-net for infarct segmentation and 56 

EfficientNetV2 for stroke subtype classification. Experienced vascular neurologists (n=5) 57 

determined stroke subtypes for external test datasets, while establishing a consensus for 58 

clinical trial datasets using the TOAST classification. Infarcts on DW images were 59 

automatically segmented using an artificial intelligence solution that we recently developed, 60 

and their masks were fed as inputs to a deep learning algorithm (DWI-only algorithm). 61 

Subsequently, another model was trained, with the presence or absence of AF included in 62 

the training as a categorical variable (DWI+AF algorithm). These models were tested: a) 63 

internally against the opinion of the labeling experts, b) against fresh external DWI data, and 64 

also c) against clinical trial DWI data acquired at a later date. 65 

RESULTS: In the training-and-validation datasets, the mean age was 68.0±12.5 (61.1% male). 66 

In internal testing, compared with the experts, the DWI-only algorithm and the DWI+AF 67 

algorithm respectively achieved moderate (65.3%) and near-strong (79.1%) agreement. In 68 

external testing, both algorithms again showed good agreements (59.3-60.7% and 73.7-69 

74.0%, respectively). In the clinical trial dataset, compared with the expert consensus, 70 

percentage agreements and Cohen’s kappa were respectively 58.1% and 0.34 for the DWI-71 

only algorithm vs. 72.9% and 0.57 for the DWI+AF algorithm. The corresponding values 72 

between experts were comparable (76.0% and 0.61) to the DWI+AF algorithm. 73 

CONCLUSIONS: Our deep learning algorithm trained on a large dataset of DWI (both with or 74 

without AF information) was able to classify ischemic stroke subtypes as accurately as a 75 

consensus of stroke experts.  76 
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Non-standard Abbreviations and Acronyms 77 

DWI diffusion-weighted MRI 78 

LAA large artery atherosclerosis 79 

CE cardioembolism 80 

SVO small vessel occlusion  81 

TOAST The Trial of Org10172 in Acute Stroke 82 

ECG electrocardiography 83 

AF atrial fibrillation 84 

AI artificial intelligence 85 

NIHSS National Institute of Health Stroke Scale 86 

ESUS  Embolic Stroke with Undetermined Source 87 

RCT randomized clinical trial  88 
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Introduction 89 

 90 

Studies have shown that the volume1 and pattern2 of ischemic lesions on diffusion-weighted 91 

MRI (DWI) are associated with stroke subtype and predictive of post-stroke functional 92 

outcomes and future cerebrovascular events. Approximately a quarter of patients with 93 

ischemic stroke experience recurrence.3,4 In a previous study of 7,101 patients with acute 94 

ischemic stroke, we observed that large artery atherosclerosis (LAA) and cardio-embolic (CE) 95 

strokes were associated with a ~5-times higher risk of recurrence at 1-year, compared with 96 

small vessel occlusion (SVO) stroke.5 The etiology of stroke is critical to the correct 97 

implementation of future preventative strategies. 98 

The Trial of Org10172 in Acute Stroke (TOAST) classification has been the most 99 

frequently method employed for etiologic stroke subtyping in clinical practice and research.6 100 

The original TOAST classification required clinical features and data from tests including 101 

brain imaging (CT/MRI), cardiac evaluation (electrocardiography, echocardiography, and 102 

etc.), duplex imaging of extracranial arteries, arteriography, and laboratory assessments for 103 

a pro-thrombotic state.6 Additional tests, such as Holter monitoring, implantable loop 104 

recorder, and high-resolution vessel wall MRI, have enabled more precise stroke subtyping.7 105 

However, these tests increase the cost and the length of hospital stay. Moreover, many 106 

countries lack enough access to these advanced techniques. A diagnosis support system 107 

using initial or simple exams, such as DWI and electrocardiography (ECG), to detect acute 108 

infarcts and atrial fibrillation (AF) could reduce costs8,9 and assist clinicians who do not have 109 

access to other resources to determine stroke etiology. 110 

To date, a few previous studies have developed automated systems for classifying 111 

stroke subtypes using deep learning algorithms and DWI.10,11 However, no study has 112 

externally validated these algorithms, which is critically important given the low inter-rater 113 

reliability in the classification of stroke subtypes.12 In the present multi-center study, we 114 

enrolled about 6,500 patients with acute ischemic stroke. Using 2,489 patients’ DWI data 115 

with and without information on the presence of AF, we developed a deep learning 116 

algorithm to classify stroke subtypes. We then externally validated the deep learning 117 

algorithm on a new set of 3,384 patients, using three temporally and regionally different 118 

datasets. In addition, we compared stroke subtype classifications by the deep learning 119 
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algorithm vs. neurovascular experts. Finally, we outlined practical applications of the deep 120 

learning-based stroke subtype classification for cardioembolism risk stratification based 121 

solely on initial DWI assessments, for use when AF information is not available or becomes 122 

available after continuous ECG monitoring (for days ~ years). 13,14 123 

 124 

 125 

Methods 126 

Participants  127 

Datasets for training, validation, and internal testing 128 

From May 2011 to March 2014, we consecutively enrolled 4,514 patients with acute 129 

ischemic stroke, who were admitted to three university hospitals (Dongguk University 130 

Hospital, Seoul National University Bundang Hospital, and Dong-A University Hospital) 131 

within 7 days of symptom onset. A total of 1,516 patients were excluded for the following 132 

reasons: (1) unavailable or poor-quality DWI (n = 342), (2) other causes of strokes such as 133 

arterial dissection, moyamoya disease, cancer-related stroke, etc. (n = 241), and (3) 134 

undetermined cause of stroke (n = 933). The remaining 2,998 patients’ data were used for 135 

training, validation, and internal test, using random sub-setting in ratio of 7:2:1 (Figure S1). 136 

The institutional review board of Dongguk University Hospital approved the study protocol 137 

(IRB No. 2017-09-017), and patients or their legal proxies provided a written informed 138 

consent. 139 

 140 

Datasets for external testing  141 

A total of 3,384 fresh stroke imaging datasets were used for external testing, comprised of 142 

the following components: 143 

External test dataset 1 From May 2011 to March 2014, 2,787 patients with acute ischemic 144 

stroke who were admitted within 7 days of symptom onset were consecutively enrolled 145 

from Chonnam National University Hospital. After excluding 868 patients, 1,919 were finally 146 

included.   147 

External test dataset 2 From October 2021 to August 2022, 1,315 patients with acute 148 

ischemic stroke who were admitted within 7 days of symptom onset were enrolled from the 149 
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Chonnam National University Hospital. After excluding 491 patients, 824 were finally 150 

included.   151 

External test dataset 3 From March 2021 to April 2022, 931 patients with acute ischemic 152 

stroke who were admitted within 7 days of symptom onset were enrolled from Korea 153 

University Guro Hospital. After excluding 290 patients, 641 were finally included.  154 

 155 

Clinical trial datasets 156 

A pivotal clinical trial was conducted to assess the efficacy of deep learning algorithms in 157 

comparison to a standard reference established through expert consensus, and to measure 158 

the level of agreement between the deep learning algorithm and the consensus as well as 159 

among the experts themselves. From March 2016 to May 2017, 1,701 patients who met the 160 

following inclusion criteria were enrolled from the two stroke centers (Dongguk University 161 

Hospital and Seoul National University Bundang Hospital): 1) age between 20 and 95 years, 162 

2) patients with acute ischemic stroke who visited the hospitals within 7 days after symptom 163 

onset, and 3) patients who underwent DWI. According to the prespecified exclusion criteria, 164 

we excluded 612 patients according to the following reasons: (1) inadequate or poor-quality 165 

DWI (n = 148), other causes of strokes (n = 114), and undetermined causes of strokes (n = 166 

350), leaving 900 patients’ data for clinical testing. 167 

 168 

Clinical data collection  169 

Using a standardized protocol,15 we prospectively collected demographic data, prior 170 

medication history, and the presence of vascular risk factors including hypertension, 171 

diabetes mellitus, hyperlipidemia, coronary artery disease, AF, and smoking history. 172 

 173 

Imaging acquisition and infarct segmentation  174 

For the training data, brain MRIs were performed on 1.5 Tesla (n = 2,471) or 3.0 Tesla (n = 175 

527) MRI systems. The DWI protocol was as follows: b-values of 0 and 1000 s/mm2, TE 176 

(echo time) 50-99 ms, TR (repetition time) 2400-9000 ms, voxel size 1×1×3~5 mm3, interslice 177 

gap of 0–2 mm, and slice thickness of 3–7mm. Using a validated 3D U-net algorithm, we 178 

automatically segmented infarct lesions on DW images.16,17 179 

 180 
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Ischemic stroke subtype classification 181 

For the datasets for training and validation, internal testing, and external test datasets 1-3, 182 

stroke subtypes were determined by experienced vascular neurologists at each hospital, 183 

using a validated MRI-based classification system built on the TOAST criteria (details 184 

provided in supplementary materials).7 Briefly, the modified TOAST classification is 185 

composed of the following five steps: 1) consideration of other determined etiologies of 186 

stroke; 2) screening for SVO on DWI; 3) consideration of relevant artery stenosis or 187 

occlusion; 4) consideration of recanalization status after thrombolytic therapy; and 5) 188 

consideration of follow-up recanalization status without thrombolytic therapy. For the 189 

clinical trial dataset, stroke subtypes were determined through consensus among three 190 

experienced vascular neurologists (J-.W.Chung, C.K.Kim, and D-.E.Kim). 191 

 192 

Development of a deep learning algorithm for ischemic stroke subtype classification  193 

Brain DWIs were preprocessed by (1) skull stripping using the Gaussian blur and Otsu's 194 

threshold,18 (2) applying N4 bias field correction using the SimpleITK library, and (3) 195 

performing image signal normalization. After the preprocessing, infarct areas on DWI were 196 

automatically segmented using the validated 3D U-net algorithm.16,17 The segmented infarct 197 

masks from raw DW images were stacked and condensed into three 2D X, Y, Z-axis images 198 

to ensure consistent data input regardless of the number of slices (Figure S2). These 199 

condensed 2D X, Y, Z-axis images were resized to 256 x 256 pixels using bilinear 200 

interpolation. Thus, the training data for the algorithm was comprised of: three 2D images 201 

representing X, Y, Z-axis projections of segmented infarct area, and a label (LAA, SVO, and 202 

CE). 203 

 204 

For the training, we utilized the EfficientNet v2,19 a new family of convolutional networks 205 

that have faster training speed and better parameter efficiency, while adding a 206 

global_average_pooling2d layer to minimize overfitting by reducing the total number of 207 

parameters. In addition, we incorporated a sequence of one inner dense layer with dropout 208 

layers. In total, a 30% dropout rate was randomly chosen to avoid overfitting. Finally, one 209 

output dense layer contained 3 output units for multi-class (LAA, SVO, and CE) classification, 210 

which were designated as the DWI-only based subtype classification. The details of the 211 
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layers, their order in the proposed model, and the output shape of each layer are presented 212 

in Figure S2. The total number of parameters was 52,862,199.  213 

To develop a deep learning algorithm that takes account for AF, we concatenated a 214 

binary value (0 vs. 1: the absence vs. presence of AF) to previous outputs, and then applied 215 

a fully connected layer. The output was then designated as DWI+AF based subtype 216 

classification. 217 

For all the procedures, including preprocessing and model development, we used 218 

Python 3.7.9 and 3.8.13, PyTorch 1.12.0, Torchvision 0.13.0, pandas 1.2.4, NumPy 219 

1.19.5/1.22.3, SciPy 1.4.1/1.6.3, scikit-image 0.15.0/0.18.1, SimpleITK 2.1.1, and Pydicom 220 

2.1.2. Each model was trained for ~9 hours using a hardware system comprising Intel Xeon 221 

Silver 4314 @2.40GHz, 640GB RAM, and NVIDIA Quadro RTX A6000 with 48GB GDDR6. 222 

 223 

Expert consensus for the classification of stroke subtype in the clinical trial dataset  224 

For the clinical trial dataset, we first assessed the inter-observer agreement of stroke 225 

subtype classification between two experts (J-W Chung and J-S Lim, board-certified 226 

neurologists with more than 5-year experience in both stroke practice and research), who 227 

had served as stroke neurologists at least five years and independently reviewed the brain 228 

MRI and patients’ data. Information provided to the reviewers included age, sex, the 229 

presence of AF, DW images, and MR or CT angiography. Based on the aforementioned 230 

ischemic stroke subtype-classification system,7 they independently determined etiologies 231 

(i.e., LAA, SVO, or CE). In cases of disagreement between the two reviewers, a third reviewer 232 

(D-E Kim) served as the tie-breaker. When the final consensus on stroke subtype was 233 

undetermined or other determined stroke, the case was excluded from the analysis. The 234 

experts’ consensus classifications were compared with the deep learning algorithm’s 235 

classifications.  236 

 237 

Statistical analysis  238 

The baseline characteristics between datasets were compared using the ANOVA or Kruskal-239 

Wallis test for continuous variables and Chi-square test for categorical variables, as 240 

appropriate. To compare the subtype classifications made by experts and those made by 241 

deep learning algorithms, we used percentage agreement and Cohen’s kappa. In addition, 242 
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we calculated the sensitivity, specificity, positive predictive value, and negative predictive 243 

value for each subtype (LAA, SVO, and CE). To examine the clinical implications of artificial 244 

intelligence (AI) prediction of cardioembolism using DWI, participants in each dataset were 245 

stratified into ten groups based on the probability of having cardioembolism estimated by 246 

deep learning algorithm. The trend of the observed frequency of cardioembolic stroke, as 247 

determined by experts, was examined using a Wilcoxon-type test for trend.20 All the 248 

statistical analyses described above were performed using STATA 16.0 (STATA Corp., Texas, 249 

USA), and a p-value < 0.05 was considered statistically significant. 250 

 251 

 252 

Results 253 

Baseline characteristics 254 

In the training and validation datasets, the mean age was 68.0±12.5 and 61.1% were men 255 

(Table 1). Mean ages were similar in all datasets. Other demographic characteristics, such as 256 

sex, admission National Institute of Health Stroke Scale (NIHSS) scores, and risk factors for 257 

stroke, varied significantly among the datasets. The distribution of stroke subtypes also 258 

differed among the datasets, indicating their heterogeneity. 259 

 260 

Deep learning prediction of stroke subtype using DWI data only vs. DWI plus AF data 261 

In the internal test dataset (Figure 1), the percentage agreement between the DWI-only 262 

algorithm and stroke experts was 65.3% (95% CI: 60.0–70.6%). After incorporating the 263 

information regarding the presence of AF (DWI+AF algorithm), the percentage agreement 264 

was increased to 79.1% (95% CI: 74.6–83.6%).  265 

In the external test datasets (Figure 1), both algorithms again showed good 266 

agreements. The DWI-only algorithm achieved 58.1 ~ 60.7% levels of agreements (Table 2, 267 

Figure S3). The DWI+AF algorithm again showed higher agreements, ranging from 73.7% to 268 

74.0%, with Cohen's Kappa ranging from 0.57 to 0.59. In addition, the accuracy of stroke 269 

subtype classification reached 0.83. 270 

In the clinical trial dataset (Figure 1), the percentage agreements and Cohen’s 271 

kappa were respectively 58.1% (95% CI: 54.9–61.3%) and 0.34 (0.29–0.39) for the DWI-only 272 
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algorithm, and the values were 72.9% (95% CI: 69.1–76.7%) and 0.57 (0.51–0.62) for the 273 

DWI+AF algorithm, respectively. 274 

Alluvial plots for the five datasets (Figure 2) showed that additional information 275 

regarding the presence of AF on ECG changed the categorization of stroke subtype by the 276 

DWI-only algorithm from CE to LAA more often (22.1~38.2%) than from LAA to CE 277 

(13.7~16.2%) or from SVO to CE (4.2~7.2%). There was no reclassification from CE to SVO. 278 

 279 

DWI-based prediction of cardioembolism 280 

When we divided subjects into deciles of the expected CE probability (estimated by the 281 

DWI-only algorithm; Table S1), the observed frequency of the CE subtype determined by 282 

experts increased with a nearly linear fashion (Figure 3), showing good agreement. A similar 283 

trend was observed in all external test datasets. In the 8th, 9th, and 10th decile groups, 284 

approximately 40-70% of subjects were shown to have CE strokes. Furthermore, in the 285 

clinical trial dataset, there was a strong correlation between the expected probability and 286 

observed frequency. 287 

 288 

 289 

Discussion 290 

In the present study, we developed a fully automated deep learning algorithm to classify 291 

ischemic stroke subtype using DWI and AF data from 2,998 ischemic stroke patients from 292 

three stroke centers. The deep learning algorithm was externally validated with three 293 

external datasets. The algorithm demonstrated good agreement with stroke experts, 294 

achieving Cohen’s kappa coefficients of 0.57~0.59 for three external datasets, which were 295 

lower than the value (0.68) for the internal dataset. Furthermore, the clinical trial also 296 

demonstrated that the AI classification of stroke subtypes was comparable to the expert 297 

consensus. 298 

To date, few studies have developed deep learning algorithms to classify stroke 299 

subtypes. According to a study that exclusively utilized electronic medical records, deep 300 

learning algorithms demonstrated moderate agreement (kappa = 0.57) when compared 301 

with expert decisions.21 Another study reported that a deep learning algorithm to classify 302 

stroke subtypes using DWI showed an average accuracy of 81.9%.22 However, these 303 
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investigations did not conduct an external validation. As described, the present study 304 

validated our deep learning algorithm in three different external datasets and in a clinical 305 

trial involving two hospitals. This represents the largest dataset, and best external validation, 306 

currently available in the literature, to our knowledge. In all datasets, the deep learning 307 

algorithm achieved a similarly high mean accuracy (between 0.82 and 0.83), supporting its 308 

robustness. It is notable that there was a comparable level of agreement between the 309 

consensus of experts and deep learning predictions as there was between the experts 310 

themselves. 311 

Studies have demonstrated that stroke subtypes are closely associated with the 312 

pattern and extent of ischemic lesions.2,23,24 Cardioembolic strokes were associated with 313 

corticosubcortical single lesions, multiple lesions in anterior and posterior circulations, and 314 

multiple lesions in multiple cerebral circulations (P = 0.008).2 LAA stroke lesions were 315 

located more frequently in the same vascular territory than CE strokes.23, 24 SVO stroke 316 

could be distinguished from other stroke subtypes based on distinctive morphological 317 

properties.23 Thus, our deep learning algorithm trained on extensive DWI data may infer 318 

morphological and geometrical patterns associated with stroke etiologies.  319 

Guidelines for secondary prevention of stroke underscore a tailored therapeutic 320 

approach based on stroke subtypes,25,26 recommending strict blood pressure management 321 

for SVO strokes,27 intensive antiplatelet and lipid-lowering therapy for LAA strokes,28-31 and 322 

anticoagulant therapy for CE strokes.32 However, a quarter of strokes are classified as 323 

embolic stroke with undetermined source (ESUS).33 Repeated failures of randomized clinical 324 

trials (RCTs) to compare the effectiveness of antiplatelets and direct oral anticoagulants in 325 

preventing stroke in patients with ESUS34-36 have highlighted the need for new biomarkers 326 

or tools to identify people at high risk of CE stroke. A few machine learning algorithms using 327 

clinical and echocardiography data have demonstrated promising results in identifying 328 

individuals with an increased risk of AF within ESUS subjects.33,37 However, these algorithms 329 

relied on extensive data input such as patients' demographics, vascular risk factors, 330 

comorbidities, vital signs, laboratory results, and echocardiographic findings. The 331 

comprehensive data requirement poses a challenge in real-world scenarios, where data 332 

acquisition varies and resources are often limited. Our deep learning algorithm identified CE 333 
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strokes based solely on DWI, suggesting its potential clinical utility in predicting an occult 334 

cardioembolic source in ESUS without additional clinical and laboratory data.  335 

In the CRYSTAL-AF (Cryptogenic Stroke [CS] and Underlying AF) trial, stroke was 336 

classified as cryptogenic when the cause remained uncertain after extensive diagnostic 337 

evaluation, including 12-lead ECG, 24 hours or more of ECG monitoring, transesophageal 338 

echocardiography, angiographic or ultrasonographic evaluation of intracranial and 339 

extracranial vessels, and screening for thrombophilic states (in patients <55 years of age). 14 340 

In this study, ECG monitoring with an insertable cardiac monitor detected AF in 12.4% of 341 

patients by one year.14 We hypothesize that AI algorithms can increase the yield of testing, 342 

by helping to select patients who are more likely to test positive for AF during long-term 343 

ECG monitoring. To test the hypothesis, further research should investigate prospectively 344 

whether an occult cardioembolic source is more often found during post-ESUS or post-CS 345 

follow-up in patients with higher CE probabilities predicted by our DWI-only algorithm.  346 

Including AF information changed the DWI-only algorithm-based original 347 

categorization of stroke subtype in about 20% of cases, which highlights the importance of 348 

detecting AF. In the NAVIGATE ESUS (New Approach Rivaroxaban Inhibition of Factor Xa in a 349 

Global Trial Versus ASA to Prevent Embolism in Embolic Stroke of Undetermined Source) 350 

trial, rivaroxaban failed to show superiority over aspirin in preventing recurrent ischemic 351 

stroke (4.7% per year in both groups).35 It was suggested that the eligibility assessment may 352 

not have effectively identified strokes due to embolism and that AF was not a major cause 353 

of recurrent stroke.35,38 Indeed, AF was identified in only 3% of the patients at a median 354 

follow-up of 5 months, although systematic screening for arrhythmia was not performed 355 

during the trial.35 However, the role of AF in patients with ESUS, whether it is the underlying 356 

cause of the index stroke or not, and its effect on stroke recurrence remain unclear,39 357 

requiring further investigations. In the NAVIGATE ESUS trial, about two-thirds of carotid 358 

plaques were present in the carotid artery ipsilateral to the index stroke, showing a strong 359 

trend of a higher risk of recurrent ischemic stroke.35 Thus, future ESUS trials for direct oral 360 

anticoagulants may have to exclude strokes due to carotid atherosclerosis.40 Our deep 361 

learning algorithms, which effectively classify stroke subtypes using DW images with or 362 

without AF data, would facilitate these research, such as by improving eligibility 363 

assessments. 364 
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Our study has limitations. First, stroke experts typically determine ischemic stroke 365 

etiology by using clinical, angiographic, and laboratory data in a comprehensive manner. 366 

The validity of relying solely on DWI and AF information could be questioned. An earlier 367 

study demonstrated that TOAST diagnoses without DWI matched final diagnoses in 48%, 368 

improving to 83% after DWI alone and to 94% after DWI plus MRA,41 indicating that DWI 369 

features has a major impact on classification accuracy enhancement. Second, although we 370 

validated the algorithm using multiple external datasets of Korean stroke populations, 371 

further investigation is required for multi-ethnic populations.  372 

In conclusion, our deep learning algorithm trained on a large dataset of DWI and AF 373 

information was able to classify ischemic stroke subtypes as accurate as stroke experts. The 374 

AI algorithm, which performed well with the minimal data input in three different external 375 

test datasets and a multi-center clinical trial dataset, could be useful for stroke management 376 

by less experienced physicians or general practitioners. 377 

 378 
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Table 1. Baseline characteristics  504 

 

Training and 

validation (n = 

2,687) 

Internal test 

(n = 311) 

External test 

dataset 1 (n = 

1,919) 

External test 

dataset 2 (n = 824) 

External test 

dataset 3 (n = 641) 

Clinical trial 

dataset (n = 900) 
p value 

Age 68.0 ± 12.5 68.2 ± 12.9 68.7 ± 12.0 70.2 ± 12.4 67.5 ± 12.0 68.6 ± 12.4 0.23 

Sex, men 1,642 (61.1%) 174 (56.0%) 1,090 (56.8%) 504 (61.2%) 426 (66.5%) 551 (61.3%) < 0.001 

Admission NIHSS scorea 4 (2 – 9) 4 (2 – 9) 4 (2 – 10) 2 (1 – 5) 3 (1 – 5) 4 (2 – 7) < 0.001b 

Prestroke mRS score 0~2a 2,346 (87.3%) 274 (88.1%) 1,667 (87.9%) 791 (96.0%) 126 (74.6%) 832 (92.5%) < 0.001 

Stroke subtype       < 0.001 

  LAA 1,224 (45.6%) 142 (45.7%) 1,044 (54.4%) 434 (52.7%) 300 (46.8%) 574 (63.8%)  

  SVO 667 (24.8%) 75 (24.1%) 221 (11.5%) 154 (18.7%) 222 (34.6%) 155 (17.2%)  

  CE 796 (29.6%) 94 (30.2%) 654 (34.1%) 236 (28.6%) 119 (18.6%) 171 (19.0%)  

Prior stroke history 570 (21.2%) 68 (21.9%) 301 (15.7%) 161 (19.5%) 101 (15.8%) 168 (18.7%) < 0.001 

Coronary artery disease 257 (9.6%) 29 (9.3%) 60 (3.1%) 67 (8.1%) 56 (8.7%) 82 (9.1%) < 0.001 

Hypertension 1,884 (70.1%) 222 (71.4%) 1,203 (62.7%) 484 (58.7%) 426 (66.5%) 660 (73.4%) < 0.001 

Diabetes 966 (36.0%) 126 (40.5%) 577 (30.1%) 247 (30.0%) 205 (32.0%) 341 (37.9%) < 0.001 

Hyperlipidemia 1,246 (46.4%) 148 (47.6%) 299 (15.6%) 154 (18.7%) 68 (10.6%) 385 (42.8%) < 0.001 

Smoking 1,122 (41.8%) 121 (38.9%) 717 (37.4%) 219 (26.6%) 215 (33.5%) 394 (43.8%) < 0.001 

Atrial fibrillation 645 (24.0%) 74 (24.0%) 539 (28.1%) 230 (27.9%) 98 (15.3%) 172 (19.1%) < 0.001 

Recanalization therapy 458 (17.1%) 53 (17.0%) 448 (23.4%) 119 (14.4%) 72 (11.2%) 135 (15.0%) < 0.001 

aData were missing in 472 and 1 patients of the  external test dataset-3 and clinical trial dataset, respectively. bKruskal-Wallis test was used. NIHSS=National 505 

Institute of Health Stroke Scale; mRS=modified Rankin Scale ; LAA=large artery atherosclerosis; SVO=small vessel occlusion; CE=cardioembolism.  506 
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Table 2. Agreements of stroke subtype classification between deep learning algorithm and stroke neurologists (experts) 507 

 Internal test 

(n = 311) 

External test dataset 1 

(n = 1,919) 

External test dataset 2 

(n = 824) 

External test dataset 3 

(n = 641) 

Clinical trial dataset (n 

= 900) 

Deep learning 

algorithm vs. experts 

Deep learning 

algorithm vs. experts 

Deep learning 

algorithm vs. experts 

Deep learning 

algorithm vs. experts 

Deep learning 

algorithm vs. experts’ 

consensus 

DWI-only algorithm      

    Percentage agreement (95% 

CI) 

65.3% (60.0 – 70.6%) 60.7% (58.5 – 62.9%) 59.8% (56.5 – 63.2%) 59.3% (55.5 – 63.1%) 58.1% (54.9 – 61.3%) 

    Cohen’s kappa (95% CI) 0.47 (0.39 – 0.56) 0.38 (0.34 – 0.41) 0.37 (0.32 – 0.42) 0.37 (0.31 – 0.43) 0.34 (0.29 – 0.39) 

DWI+AF algorithm      

    Percentage agreement (95% 

CI) 

79.1% (74.6 – 83.6%) 73.7% (71.8 – 75.7%) 74.0% (71.0 – 77.0%) 74.0% (70.5 – 77.4%) 72.9% (69.1 – 76.7%) 

    Cohen’s kappa (95% CI) 0.68 (0.61 – 0.75) 0.57 (0.54 – 0.60) 0.59 (0.54 – 0.64) 0.59 (0.54 – 0.64) 0.57 (0.51 – 0.62) 

Between experts      

    Percentage agreement (95% 

CI) 

    76.0% (74.0 – 79.0%) 

    Cohen’s kappa (95% CI)     0.61 (0.57 – 0.65) 

DWI=diffusion-weighted image; CI=confidence interval; AF=atrial fibrillation.508 
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Figure Legends 509 

Figure 1. Confusion matrix for deep learning algorithm vs. expert classification of 510 

stroke subtype using diffusion-weighted images and atrial fibrillation information  511 

For each stroke subtype, sensitivity, specificity, positive predictive value (PPV), 512 

negative predictive value (NPV), and accuracy were evaluated. The average value of 513 

each statistic was shown in the last column. LAA=large artery atherosclerosis; 514 

SVO=small vessel occlusion; CE=cardioembolism; Avg=average. 515 

 516 

 517 

Figure 2. Alluvial plot depicting changes of stroke subtype classification after using 518 

atrial fibrillation (AF) data in addition to diffusion-weighted images (DWIs) 519 

Numbers indicates the number of patients in each stroke subtype. LAA=large artery 520 

atherosclerosis; SVO=small vessel occlusion; CE=cardioembolism. 521 

 522 

 523 

Figure 3. Proportions of stroke subtypes determined by experts in each decile of 524 

increasing cardioembolic (CE) probability that was estimated by the DWI-only based 525 

deep learning algorithm 526 

Using diffusion-weighted images only, a deep learning algorithm estimated 527 

probabilities of CE stroke. Then, the probabilities of every case were categorized into 528 

deciles in each dataset. Bars indicate observed frequency of each stroke subtype 529 

determined by experts. Note that the proportion of CE stroke diagnosed rises 530 

proportionally with the estimated CE probability, suggesting that both human experts 531 

and the AI, are examining the same underlying entity. LAA=large artery atherosclerosis; 532 

SVO=small vessel occlusion. 533 
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