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ABSTRACT 

Objective 

The 12-lead electrocardiogram (ECG) is routine in clinical use and deep learning approaches 

have been shown to have the identify features not immediately apparent to human interpreters 

including age and sex. Several models have been published but no direct comparisons exist.  

Approach 

We implemented three previously published models and one unpublished model to predict age 

and sex from a 12-lead ECG and then compared their performance on an open-access data set. 

Main results 

All models converged and were evaluated on the holdout set. The best preforming age 

prediction model had a hold-out set mean absolute error of 8.06 years. The best preforming sex 

prediction model had a hold-out set area under the receiver operating curve of 0.92.  

Significance 

We compared performance of four models on an open-access dataset.  

 

INTRODUCTION 

The electrocardiogram (ECG) entered clinical use in the early 1900’s and earned Willem 

Einthoven a Nobel prize in 1924(Pahlm and Uvelius 2019). For much of the last 100 years, the 

ECG has been acquired by a machine, printed in a canonical paper form, and interpreted by 

physicians. Many conditions manifest as alterations of the ECG. In the 1980’s automated 

interpretation was developed and added to many machines(Willems et al 1987).  

Deep learning has diffused throughout the scientific community(Bianchini et al 2020). In 

cardiology, deep learning has been used automated arrythmia classification and has achieved 

cardiologist level performance(Chen et al 2020, Ribeiro et al 2020, Nejedly et al 2022, Zhao et al 

2022). The 2020 Physionet/Computing in Cardiology Challenge yielded 212 entries and the most 
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common technique was deep learning and convolutional neural networks(Perez Alday et al 

2020).  

 

Beyond features immediately identifiable to human interpreters, deep neural networks have 

been shown to accurately identify hyperkalemia(Galloway et al 2019), reduced left ventricular 

ejection fraction(Attia et al 2019b), risk of incident atrial fibrillation(Raghunath et al 2021), and 

age(Attia et al 2019a, Lima et al 2021, Baek et al 2023). Furthermore, an ECG predicted age that 

exceeds chronological age has been associated with mortality(Lima et al 2021, Baek et al 2023, 

Lorenz et al 2023, Ladejobi et al 2021).  However, most models are trained and reported on 

local data preventing between model comparisons. We sought to compare the performance of 

models on a new, publicly available data set. 

 

METHODS 

Data Source, Ethical Declarations, and Reporting Standards  

Our data comes from the MIMIC-IV-ECG module(Gow et al n.d.) a collection of 800,000 

diagnostic electrocardiograms collected at a single hospital and linked to the Medical 

Information Mart for Intensive Care (MIMIC-IV)(Johnson et al n.d., 2023, Baek et al 2023) a 

detailed, deidentified medical record summary of hospitalizations, emergency department 

visits, and intensive care unit stays. All data is available at PhysioNet(Goldberger et al 2000) and 

was determined to be not human subjects research. This work adheres to the Transparent 

Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) 
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recommendations(Collins et al 2015) and the supplementary recommendations from the 

editors of Respiratory, Sleep, and Critical Care journals(Leisman et al 2020). 

 

Patient Inclusion 

MIMIC uses time shifting for patient privacy where the first encounter for each patient is 

randomly shifted into the future and all dates for that patient are shifted by the same amount. 

Additionally, patient who are older than 89 at any time during their observation period are 

further shifted so that no age can be identified, and only relative differences are available. We 

included all ECGs for all patients with an identifiable (i.e. who were younger than 90 at all their 

time points) and who were older than 18 at the time of their ECG collection. 

 

Data Allocation 

We allocated the available data by patient with 20% of the patients reserved for final model 

testing. Of the remaining 80%, we allocated 80% (64% of the total cohort) for model training 

and 20% (16% of the total cohort) for validation. All ECGs from a subject were included in a 

single data set. The training set was used for model fitting while the validation set was used for 

model selection and parameter tuning. The test set was only used for final model evaluation.  

 

Preprocessing 

Individual records were preprocessed by applying a wandering baseline filter (0.2hz wide 

elliptical infinite impulse response[IIR] high-pass filter centered at 0.8hz with 40db of 

attenuation), a powerline filter(2nd order digital IIR notch filter centered at 60hz), a 40hz low-
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pass filter (5th order Butterworth IIR filter), down sampled to 240hz, truncated (or zero padded 

if required) to 2048 samples, and then standardized (to mean zero and variance 1). Records with 

missing values were dropped. The signal processing was implemented using the SciPy 

package(Virtanen et al 2020). The 40hz low-pass filter was chosen based on the empiric 

observation that down sampling produced similar or improved results with a substantial 

improvement in training times. A comparison of results is shown in eFigure 3.  

  

Outcomes 

Our primary outcomes were age in years at the time ECG acquisition and the patient’s sex 

recorded in the EHR. In the MIMIC-ECG dataset each subject has a baseline age and an a achor 

age (The date shifted year in which the baseline age was observed). Each exam has a date 

shifted timestamp. We calculated the at the age at time of the exam as �Baseline Age� 

��Exam Timestamp Year� - �Anchor Year��.  

 

Metrics 

For the models predicting age our primary metric was mean absolute error (MAE) with 

additional metrics of mean squared error (MSE) and coefficient of determination (R2). For the 

models predicting sex we used the maximal Youden’s J-index(Youden 1950) on the validation set 

to identify the optimal cutoff for classification metrics. The primary evaluation metrics were 

area under the receiver operating characteristic (AUROC) and accuracy (ACC). Additional metrics 

were the Brier score(Kruppa et al 2014), F1(Buckland and Gey 1994), Sensitivity (Sens)(Altman 

and Bland 1994), and specificity (Spec)(Altman and Bland 1994).  Implementations of all metrics 

came from the Yardstick package(Kuhn et al 2024). 
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Models 

A schematic representation of all four models is shown in Figure 1. Parameter details, including 

filter sizes, strides, and max pooling factors, are available in the supplement.  

Attia (CNN) 

Attia and colleagues developed and tested a convolutional neural network (CNN) for the 

prediction of age and sex(Attia et al 2019a) using 774,783 standard ECGs collected at the Mayo 

Clinic between January 1994 and February 2017. Their model used eight temporal layers, 

followed by one spatial layer, and then either a classification or regression head. The temporal 

and spatial layers consisted of 1 dimensional convolutions (either along the time or space axis), 

batch normalization, ReLU activation, and max pooling. The classification or regression heads 

consisted of two repeated blocks of fully connected, batch normalization, ReLU activation, and 

dropout followed by a single output for age or two softmax outputs for sex. The details of kernel 

sizes, filter counts, strides, and max pooling factors are reported in their original paper(Attia et 

al 2019a) but none of the source code, training data, or model weights are publicly available.  

 

Lima (ResNet) 

Lima and colleagues developed and tested a CNN with residual connections (i.e. ResNet(He et al 

2016) style) for the prediction of age and associated mortality(Lima et al 2021). Their model 

uses an initial 1-D convolutional block, followed by four ResNet-styled blocks, and finally a 

dense classification or regression head. The ResNet-styled blocks combine a 1-D convolutional 

block with a “skip pathway” where input data is added to the convolutional output and then 
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passed forward. The source code, model weights, and most of the training data is publicly 

available.  

 

Nejedly (MHA) 

Nejedly et. al. submitted the winning entry(Nejedly et al 2021) to the 2021 Computing in 

Cardiology Challenge(Reyna et al 2021). They used a CNN with ResNet styled blocks and multi-

head attention to deliver the best performance on rhythm classification. We have adapted this 

model for age and sex prediction. The original source code is publicly available, and we have 

provided our source code, model weights, and input pipeline for the MIMIC-ECG data.  

 

Our Model (ResNet+MHA) 

Finally, we adapted the Lima model by adding a multi-head attention block after the ResNet 

styled blocks. We have provided our source code, model weights, and input pipeline for the 

MIMIC-ECG data. 

 

Training 

All models were trained for 50 epochs with the Adam optimizer and a learning rate of 1e-4 

except for the ResNet+MHA model which was trained at 3e-5. The rates were chosen by manual 

tuning and the observation that the ResNet+MHA model had loss explosion at higher rates. 

Each model was trained twice: once for sex prediction (the output predicting the log-odds of 

male sex) and once for age prediction (with the output predicting age in years). We used binary 

cross entropy (BCE) as the loss function for sex prediction and mean squared error (MSE) for age 
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prediction. The model with the best validation set results was saved and used for the final 

evaluation. 

 

Software and Source Code Availability 

We used Python 3.10.12, PyTorch(Paszke et al 2019) 2.1.1, and Ignite 0.4.13(Fomin et al 2020) 

on the University of Virginia Rivanna high performance computing cluster to develop and 

evaluate all models. The source code to support this analysis is available at.  

 

RESULTS 

The final datasets included 510,316 records in the training set, 127,044 records in the validation 

set, and 162,675 records in the testing set. In the training set 49.1% of the records came from 

women while 47.8% of the records in the testing set and 49.6% of the records in the validation 

set came from women. The median age in each of the dataset was 66 and a histogram of 

observed ages is included in eFigure 1.  

 

All models converged. There was evidence of overfitting in all the sex prediction models with a 

significant gap between training and validation set performance (Figure 2). In contrast, the gap 

between training and validation performance was much smaller in the age prediction models.  

 

For the task of age prediction, the ResNet model had the best test set MAE and validation set 

MAE, MSE, and R2 while the CNN model had the lowest test set MSE and R2(Fgure 3). A plot 

with observed versus predicted age for a random subset of the data is shown in Figure 4. 
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Overall, both models had very similar results. The observed test set performance for the ResNet 

model was similar to the original published performance (MAE 8.06 years versus 8.38 years) but 

the CNN performance was worse that published (MAE 8.25 years versus 6.9 years, R2 0.6 versus 

0.7). There was visual evidence of heteroskedasticity in the prediction residuals with a 

decreasing variance for increasing age. 

 

For the task of sex prediction, the ResNet+MHA model had the best accuracy, AUROC, Brier 

score, F1 score, and specificity on both the testing and validation set (Figure 4). Only the CNN 

model attempted sex prediction in the prior work. The AUROC for the CNN model was lower 

than previously published (0.902 versus 0.968) as was the accuracy (0.821 vs 0.904).  

 

DISCUSSION 

We trained and compared four models on a contemporary, freely available dataset. Although 

age and sex prediction are not directly clinically applicable this framework allows for 

comparison of architectures across tasks on a single dataset. We acknowledge that only the 

CNN model was initially designed for sex prediction and that the MHA model was designed for 

neither sex prediction nor age prediction. However, given that Attia uses the same architecture 

for both tasks we thought it was reasonable to compare all models on all tasks. An ideal 

architecture would be foundational and allow for task specific fine-tuning. We found that the 

best architecture for a sex prediction was not the best for age prediction (and vice versa).  
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One weakness of our analysis is that we re-implemented parts of all the reference models. The 

source code for the CNN model was not available and we needed to make some assumptions to 

develop our implementation. We were able to directly use most of the ResNet implementation 

but did need to make minor changes due to changes in library versions and data formats. While 

our implementations are not identical to the original authors, they are a good faith attempt to 

implement and evaluate the models on a common reference.  

 

A strength of our work includes use of a common open-access dataset and metrics that would 

allow for direct comparisons of future models against these baselines. This approach is seen in 

other machine learning domains such as ImageNet(Deng et al 2009), SQuAD(Rajpurkar et al 

2016),  and MS-COCO(Lin et al 2015) and is partially responsible for the continued progress seen 

in deep learning.   

 

A significant limitation of both tasks is the lack of direct clinical applicability. Indeed, age 

prediction in a vacuum is a parlor trick but coupled with real outcomes has potential 

applications.  The observed errors have two parts: the reducible error due to the model and 

irreducible error due to natural variation.  The total amount of reducible error is unknowable 

and thus we cannot identify when a model is preforming well -- only better than another model. 

Long term changes in predicted age have been associated with significant outcomes but, to our 

knowledge, no work has examined if these predictions change over short time scales (say during 

a hospitalization) and what outcomes these changes might predict. We propose that open, 
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comparable models can facilitate work that examines downstream applications of prediction 

tasks. 

 

CONCLUSIONS 

Age can be predicted from a standard 12-lead ECG with a performance that varies by network 

architecture and with significant error. Future models should consider using a publicly available 

dataset so that between model comparisons can be made.   
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FIGURES 

Figure 1 

 

 

This figure shows the architectures for the a) CNN b) ResNet c) ResNet + MHA and d) MHA 

models. The ResNet inspired block (ResBlk) is shared by networks B, C, and D. 
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Figure 2 

 

 

This figure shows the losses by epoch for the age prediction task (top row) and sex prediction 

task (bottom row). Note the gap between training and validation set performance on the sex 

prediction task with essentially similar validation set performance across all four models. In 

contrast, the gap on the age prediction task is generally less than the between model gap.  

 

Figure 3 
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Model performance across the three age prediction metrics. Note that for mean absolute error 

and mean squared error lower is better while higher is better for R2. The test set is the hold-out 

set while validation was used for model tuning. Neither set was used for model fitting.  

 

Figure 4 
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Observed versus predicted ages for a random sample of 10,000 patients across the validation 

and testing sets. The blue line is the linear regression line of best fit.  

 

Figure 5 
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Model performance across the sex prediction metrics: accuracy (ACC), area under the receiver 

operating curve (AUROC), Brier score, F1, Sensitivity (Sens), and Specificity (Spec). Threshold 

metrics (ACC, F1, Sens, and Spec) were evaluated at the optimal point selected by Youden’s J-

index. The test set is the hold-out set while validation was used for model tuning. Neither set 

was used for model fitting.  
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