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Abstract 

Machine learning (ML) models hold promise in precision medicine by enabling personalized predictions based 
on high-dimensional biomedical data. Yet, transitioning models from prototyping to clinical applications poses 
challenges, with confounders being a significant hurdle by undermining the reliability, generalizability, and 
interpretability of ML models. Using hand grip strength (HGS) prediction from neuroimaging data from the 
UK Biobank as a case study, we demonstrate that confounder adjustment can have a greater impact on model 
performance than changes in features or algorithms. An ubiquitous and necessary approach to confounding is 
by statistical means. However, a pure statistical viewpoint overlooks the biomedical relevance of candidate 
confounders, i.e. their biological link and conceptual similarity to actual variables of interest. Problematically, 
this can lead to biomedically not-meaningful confounder-adjustment, which limits the usefulness of resulting 
models, both in terms of biological insights and clinical applicability. To address this, we propose a two-
dimensional framework, the Confound Continuum, that combines both statistical association and biomedical 
relevance, i.e. conceptual similarity, of a candidate confounder. The evaluation of conceptual similarity 
assesses on a continuum how much two variables overlap in their biological meaning, ranging from negligible 
links to expressing the same underlying biology. It thereby acknowledges the gradual nature of the biological 
link between candidate confounders and a predictive task. Our framework aims to create awareness for the 
imperative need to complement statistical confounder considerations with biomedical, conceptual domain 
knowledge (without going into causal considerations) and thereby offers a means to arrive at meaningful and 
informed confounder decisions. The position of a candidate confoudner in the two-dimensional grid of the 
Confound Continuum can support informed and context-specific confounder decisions and thereby not only 
enhance biomedical validity of predictions but also support translation of predictive models into clinical 
practice.  
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1. The critical role of confounder control in biomedical research and machine learning 

1.1 Limitations of conventional confounder adjustment in scientific research 

Confounding effects present significant challenges in scientific research, as they can obscure the true 
relationships between independent (predictor) and dependent (outcome) variables, leading to biased results 
and erroneous conclusions. Confounders are broadly defined as variables that correlate with both the predictor 
and the outcome, yet are not of primary interest1,2, potentially creating spurious associations or masking real 
effects (see e.g.2–8 for in-depth technical elaborations). Many disciplines adopt a conventional approach to 
adjust for a standard set of confounders. For instance, in imaging genetics, researchers commonly control for 
confounders such as age, sex (including squared or interaction terms), genetic ancestry/population 
stratification, SNP-derived confounders, scanner sequences, and further imaging-related variables9–13. A 
similar practice exists in fields like psychology, where adjustments are often made for age, sex, socioeconomic 
status, and education. Classical examples of confounders in neuroimaging research include measurement 
artifacts7,14–16, site effects17, demographics18–20, or lifestyle factors21. Such typically considered default 
confounders are frequently included without thorough investigation or justification22–26. While these 
standardized adjustments aim to mitigate confounding, relying solely on convention can be problematic for 
several reasons. Inadequate removal of confounders can inflate effect sizes, as results may be driven by 
confounding signals rather than the true variable of interest12. Conversely, over-adjusting for too many 
variables can eliminate relevant signals and lead to unstable results17,27,28. Adjusting for variables that are 
actually a consequence of the predictor(s) (i.e. not real confounders) may even induce false associations that 
can mislead subsequent interpretation of results (Berkson’s paradox)12,29–31. Overall, relying on generic or 
context-agnostic confounder adjustments can result in suboptimal analyses2,32. A more refined approach to 
confounder selection and deconfounding, tailored to the specific goals of the research, is therefore 
essential2,12,32. 

1.2 Confounding in machine learning 

Machine Learning (ML) workflows are increasingly employed in both, biomedical research and applications 
and hold promise for personalized medicine. Based on large, high-dimensional and oftentimes multimodal data 
ML predictive models can aid the identification of biomarkers of health and disease and can support diagnosis, 
prognosis and treatment choice, targeted to individuals33–35. Successful examples are deep learning-based 
cancer diagnosis, subtyping and staging36, inflammatory disease risk prediction37 or neuroimaging based 
predictive models outperforming DSM/ICD-based diagnoses38. However, translation of promising models to 
real-world clinical applications still remains challenging, sometimes referred to as AI chasm39–42. The AI 
chasm stems from unreliable predictions22,43–45, challenges with reproducibility and replicability, non-
interpretability40, and limited generalizability46 of models (for further challenges see e.g.22,35,39,47,48). 

Confounding effects contribute significantly to these concerns through misleading predictions and 
interpretations12,32,49. Confounders can influence predictions in many ways. For example, in a neuroimaging 
context, a model predicting hand grip strength (HGS) from neuroimaging derived features could be primarily 
driven by sex, i.e. men on average being stronger than women. Established tools to control for confounders at 
the level of study design, such as randomized control trials, restriction or matching3, may not be feasible in 
observational data as often used in ML workflows due to their advantageous sample size2,38,49,50. Consequently, 
post-hoc statistical approaches, such as (linear) confounder regression are commonly applied4,7,12,32,51–53. 
Alternatively, the contribution of confounders is often quantified by including them as predictors7,12,54. 

In this paper, we highlight the pivotal role of confounder decisions in predictive modelling, showing that 
they can have a greater impact on model performance than feature selection or algorithm choice. While 
confounding is often treated as a purely statistical issue, we emphasize the need to align confounder decisions 
with the specific objectives of a study. This requires leveraging domain knowledge to assess the biological 
relevance and role of potential confounders. We propose a two-dimensional framework that combines 
statistical associations with biomedical conceptual relevance for evaluating candidate confounders. Although 
a comprehensive understanding of confounding effects ultimately requires a causal approach55–57, our goal here 
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is to raise awareness of how integrating statistical and domain-specific insights can significantly improve the 
generalizability and scientific validity of neurobiomedical predictive models. 

2. Confounder decisions can have a higher impact on model performance than feature or algorithm 
choice 

To illustrate the importance of confounder decisions in predictive workflows, we conducted an 
exemplary supervised prediction of hand grip strength (HGS) from parcellated cortical, subcortical and 
cerebellar grey matter volume (GMV) features in the UK Biobank58 (see supplements for methods). HGS is 
an ideal target variable for this demonstration. It is reliable59,60 and eliminates further complexities associated 
with latent target measures such as intelligence or executive functioning scores. Additionally, HGS is an 
essential and ubiquitously employed assessment in clinical settings61. 

First, we trained a vanilla model, using the GMV features, a linear ridge regression and no confounder 
adjustment in a 5-fold cross validation scheme (Ntrain=22 276). Predictions on a previously completely hold 
out sample (OOS, Ntest=5 570) with this vanilla model yielded a Pearson correlation between true and predicted 
HGS of r=.64 (Figure 1 - “Vanilla”). Changing the neuroimaging derived features from GMV to functional 
connectivity (FC) but keeping the rest of the setup constant led to a slight drop in performance to r=.58 between 
true and OOS predicted HGS (Figure 1 – Feature impact, Ntrain=3 337, Ntest=835). Starting off from the vanilla 
setup but this time changing the learning algorithm from a linear ridge regression to a non-linear support vector 
regression (SVR) with a hyper parameter optimized RBF kernel (see methods in supplementary materials) 
resulted in the same performance drop as for the feature change, i.e. r=.58 (Figure 1 – Algorithm impact, 
Ntrain=22 276, Ntest=5 570). However, using the vanilla setup but correcting the GMV features for the 
confounding variables sex and age by linearly regressing them out, rendered HGS (linearly) unpredictable, i.e. 
true and predicted HGS did not correlate anymore (r=.08) (Figure 1 – Confounder impact, Ntrain=18 593, 
Ntest=4 649).   

The choice of both, features and learning algorithm plays a crucial role in predictive modelling. 
Features should provide sufficient information about the target variable, and different learning algorithms can 
capture different aspects of the feature-target relationship, e.g. linear vs. non-linear relations, to different 
degrees. Therefore, tweaking the choice of features and learning algorithm in predictive workflows is 
important. Nonetheless, our illustrative analysis highlights the high impact of confounding variables on 
neurobiomedical predictive models. This renders informed decisions on confounder adjustment essential. 
Using the introduced predictive example, in the following we will elaborate on aspects to consider for informed 
confounder decisions. 

 

Figure 1. Impact of selection of neuroimaging derived feature, machine learning algorithm and confounder 
adjustment on out of sample (OOS) predictive performance. All plots show how accurate the respective model 
predicted the true, measured HGS. Performance is measured by Pearson correlation r between true and 
predicted HGS, coefficient of determination R2, and by mean absolute error (MAE). GMV: Gray matter 
volume, FC: Functional Connectivity, SVR: Support Vector regression, RBF: Radial Basis Function Kernel.     
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3. A two-dimensional approach to confounding – an exemplary take 

3.1. The statistical context of confound removal 

Commonly, the relevance of a set of candidate confounders is determined by assessing their statistical 
association with the data. Variables with strong associations or high shared variance are considered as 
confounders in the predictive analysis. Performing statistical confounder evaluations is essential because one 
should only acknowledge confounding variables that share signal with the features and/or the target. This 
ensures that no confounder information is inadvertently introduced to the data by variables that do not share 
any signal31 and reveals variables which’s removal may enhance the signal to noise ratio of the feature-target 
relationship (high shared signal variables). 

Following the traditionally established approach of seeing confounders primarily through the lense of 
association strengths, we exemplarily correlated 130 candidate confounding variables from the UKB with both 
HGS and GMV to evaluate their statistical association with the introduced GMV-HGS example (Figure 2A, 
Supplementary Figure S1B). We here illustrate the evaluation of statistical association strengths by means of 
correlations, but the particular statistical approach chosen can and should vary depending on the respectively 
wished insights (see e.g.12 for a broader approach). For illustration purposes in the following we mainly focus 
on a variable’s statistical association with the target. Focusing on a selection of example variables, body 
composition measures, sex and respiratory variables yielded highest absolute correlations with the target HGS. 
Variables such as “length of the working week in the main job” (LoWW), “systolic blood pressure”, “age” and 
“bone density” exhibited medium to small correlations with HGS (Figure 2A). Based on the absolute strength 
of their statistical association, candidate confounders can be ordered from low to high absolute association 
strength. This forms a statistical axis for confounder evaluations. For a set of example candidate confounders 
this could for instance be: scan-site < systolic blood pressure < age < LoWW ≈ bone density < sex. 

Having a broader look at all associations it becomes apparent that a huge variety of variables, in fact, 
almost all variables to some degree correlate with HGS. Especially in large datasets with many measured 
variables available, such as the UKB, almost everything is somewhat related to everything. Consequently, for 
meaningful evaluation, if a variable is relevant to be considered as a confounder, another dimension, 
independent of statistical considerations must be employed. 
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Figure 2. The principles of statistical and conceptual relevance of candidate confounding variables. A) Correlations of 
130 summary behavioural variables that could potentially be considered as confounders with the exemplary target HGS. 
The variables were sorted into 12 higher-level categories. Correlations refer to Pearson’s r for continuous confounds, 
Spearman correlations for ordinal variables and point-biserial correlation coefficients for binary variables. Grey areas 
mark absolute correlations smaller than |r|=0.3 for illustration purposes. B) The general concept of biomedical relevance 
of two variables for each other. Two variables can share a different amount of biomedical information (top). The shared 
biology between sex and hand grip strength (HGS) for example is higher than between HGS and Length of working week 
(LoWW) (middle). The degree of biomedical overlap can be ranked on a conceptual axis, ranging from a negligible 
biological link to two variables expressing (almost) the same underlying biology (bottom). C) Seven exemplary candidate 
confounders for the GMV-HGS prediction task can be sorted according to their biological relevance for the prediction 
task, following the definition of the conceptual axis as specified in (B). 
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3.2. Consideration of potential biological relationships 

Beyond the statistical association, however, variables can also be of different relevance for each other from a 
biomedical, i.e. conceptual point of view. This viewpoint relies on domain knowledge, expert experience and 
literature. Conceptually, two variables can express quasi the same biology or describe completely distinct 
biological phenomena. In extreme cases, one of the variables does not describe any biological phenomenon at 
all. For example, sex and hormonal composition describe almost the same underlying biology. Therefore, they 
strongly overlap in biomedical terms (Figure 2B). The same applies to sex and HGS, for which there is a 
directly describable biological link, namely sex → testosterone → muscle mass → HGS. On the other hand 
side, a measurement such as LoWW primarily does not describe a biological phenomenon and is therefore not 
directly biomedically meaningful for a second variable that exhibits biological meaning, such as HGS. In other 
words, LoWW and HGS may have shared influences, but per se do not overlap in their biological meaning. In 
the most extreme case, for instance with a biased convenience sample, there is no common biology whatsoever 
with any other biologically relevant variable as it is a purely technical influencing factor. Of course, using an 
appropriate data sample is highly relevant for any study, nonetheless this is not directly conceptually 
biologically linked to a variable that inherently carries biological meaning. 

 The varying degree of biomedical relevance (or overlap) of two variables for each other can be 
perceived as a continuum. This continuum can reach from a negligible biological link as the lowest extreme, 
to expressing the same underlying biology as the highest extreme. Thereby one can form an axis of increasing 
biomedical, conceptual linkage between two variables (Figure 2B bottom). The principal of biomedical 
relevance can be used to build a biomedical, conceptual axis for confounder evaluations. Candidate 
confounders can be evaluated and sorted on this axis based on their biological overlap with the feature and/or 
target variables, here with GMV and/or HGS (Figure 2C). If we take the same example set of candidate 
confounders as for the statistical illustration, the sorting in the biomedical, conceptual dimension could be: 
scan-site < LoWW < bone density < systolic blood pressure < age < sex.    

Importantly, this clearly delineated suggested sorting serves as a simplified and illustrative example to 
explain the broader concept. However, in many practical applications, determining the exact order can be 
challenging. While extreme cases are often clear, the middle regions of the axis may be more ambiguous, 
leading to a final order that could appear somewhat subjective. For instance, in GMV-HGS predictions, factors 
such as sex and age clearly play a significant biological role. In contrast, the placement of variables such as 
bone density or blood pressure on the biomedical axis could vary, ultimately reflecting subjective judgment. 
This is not a major issue, as the precise ordering is unlikely to be critical. What is crucial, however, is that 
potential confounders are assessed based on their biomedical relevance to the specific scientific question, 
drawing on domain knowledge and a thorough review of the literature. The key point is the thinking about the 
biomedical meaning of a variable and its implications in a research endeavour - something that purely statistical 
analysis cannot capture. Incorporating domain expertise and formalizing it using the proposed conceptual axis 
enables the reasoning process to be traceable, i.e. the why behind including or excluding variables is made 
transparent. 

3.3. The biomedical relevance of a confounder is independent of its statistical association strength 

Both, statistical and biomedical evaluations of candidate confounders are essential as they evaluate 
complementary aspects of a candidate confounder’s relevance in a predictive task. Therefore, biomedical and 
statistical evaluations can be orthogonally combined in a two-dimensional (2D) grid. The statistical evaluation 
forms the vertical axis, while the biomedical conceptual evaluation builds the horizontal axis. Candidate 
confounders can be sorted in this 2D grid according to their statistical association strength and biomedical 
relevance as elaborated on in 3.1 and 3.2, respectively. For the previously introduced example set of candidate 
confounders, the respective statistical ordering was scan-site < systolic blood pressure < age < LoWW ≈ bone 
density < sex and the conceptual ordering was scan-site < LoWW < bone density < systolic blood pressure < 
age < sex. Therefore, sex is positioned in the top right corner of the 2D grid, while scan-site is positioned in 
the bottom left corner. The other example candidate confounders can be sorted in this 2D grid following the 
same principle (Figure 3A). Sorting all previously statistically evaluated variables (Figure 2A) in this manner 
leads to a fully filled 2D Confound Continuum for the GMV-HGS prediction task (Figure 3B). 
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While sex and scan-site lie on the diagonal in the example 2D space, the other example variables are 
positioned off-diagonal (Figure 3A). This emphasizes the independent and complementary nature of statistical 
and biomedical investigations. For instance, LoWW correlated with HGS with r=0.25. Following the 
ubiquitous definition of a confounder as variables that correlate with features and/or targets, but are not of 
primary interest, this statistical association could be considered strong enough to qualify LoWW as a 
confounder to adjust for. However, thinking about the biomedical meaning behind predicting HGS from GMV, 
the presumable goal would be to find out meaningful information in the brain that is predictive of an 
individual’s grip strength. With this biomedical goal in mind, correcting gray matter brain information for how 
long a person works per week does not appear to be biomedically meaningful. In contrast, age correlated with 
HGS only with |r|1=0.16, i.e. less than LoWW, and with GMV with |r|=0.20. However, when again keeping in 
mind the biomedical goal of a GMV-HGS prediction task, one might want to address age as a confounder 
because of its biological relevance for both HGS and GMV. To gain insights into gray matter brain information 
that is predictive for an individual’s grip strength, one therefore might want to make sure that indeed brain 
information without age influences was used for successful predictions. In other words, for variables on the 
diagonal the decision for or against adjustment is most often clear as it only depends on an individually set 
importance threshold, e.g. r=0.2. Variables in off-diagonal areas however alert to scenarios where it is crucial 
to counterweight the statistical and biomedical importance to make biomedically meaningful decisions on 
confounder adjustment. 

 
Figure 3. Two-dimensional Confound Continuum. A) Schematic of the 2D grid, combining the exemplary statistical and 
biomedical evaluations as performed in 3.1 and 3.2 (Figure 2) as vertical and horizontal axis, respectively. Variables 
lying on the diagonal are similarly relevant from a statistical and conceptual perspective so that confounder decisions are 
clear. In contrast, variables in off-diagonal areas emphasize the independence of statistical and biomedical relevance. 
Such variables require to counterweigh the statistical and biomedical importance to make the most appropriate decision 
for a given prediction task. B) Full 2D Confound Continuum for the GMV-HGS prediction task taking into account all 
130 variables introduced in the statistical evaluations (3.1, Figure 2A). 

In summary, statistical and biomedical conceptual evaluations of confounder influences are independent 
and must therefore both be taken into account. This can be facilitated by the introduced 2D Confound 
Continuum. Acknowledging that biomedical and statistical validity are distinct but complementary concepts 
can enhance the understanding of the role of confounders in a predictive task. The Confound Continuum 
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thereby can facilitate and support informed decisions on confound removal through acknowledging problem-
specific nuances. 

4. Discussion 

Confounders play a significant role in machine learning predictive workflows as they can have major impact 
on both performance and meaning of predictions without themselves being of primary interest. By exemplarily 
predicting hand grip strength (HGS) from gray matter volume (GMV) under varying conditions, we illustrated 
that confounder adjustments can have a greater impact on model performance than the choice of features or 
learning algorithm. Consequently, informed confounder decisions are indispensable to improve both 
interpretability and generalizability of machine learning models. Traditionally, confounders are often primarily 
approach through statistical association strengths. The here presented 2D framework aims to create awareness 
for the imperative need to complement such statistical considerations with biomedical, conceptual domain 
knowledge to arrive at meaningful and informed confounder decisions. 

A key element of the suggested 2D approach, is addressing the semantic meaningfulness of confounder 
adjustment by assessing the biomedical validity of confound-adjusted features and targets as well as the 
biomedical meaning of resultant models and predictions. The here presented exemplary conceptual evaluations 
were tried to be kept clear example cases. However, candidate confounders may exhibit more complex 
networks of nested and cascadic conceptual relationships with the features and/or the target as well as with 
each other. Such cascadic influences can emerge because biomedical mechanisms usually form complex 
networks24,66. For instance, hormone levels (e.g. sex hormones) can influence body fat composition. However, 
body fat composition in conjunction with sex can also influence hormone levels67. Such interactions can affect 
the introduced cascade sex → testosterone → muscle growth → HGS. Additionally, body fat composition may 
further interact with respiratory capacities and thereby influence additional factors such as physical fitness. 
Consequently, even seemingly unrelated variables may indirectly impact the actual relationship between GMV 
and HGS. While pure statistical evaluations are blind to such cascadic mechanisms, the conceptual axis by 
design is meant to integrate exactly these types of interactions into confounder considerations.  

Ultimately, the evaluation of biomedical relevance of a candidate confounder requires a causal analysis 
that investigates cause-effect relationships between involved variables, i.e. candidate confounding variables, 
features and the target. Such a causal analysis can result in a directed acyclic graph (DAG) or causal diagram 
that captures the network-like nature of biomedical mechanisms24,56,57,66. The here presented conceptual axis 
can be seen as a simplified version of such a causal investigation. Such a DAG allows to differentiate if there 
exists a path between two variables, the directionality of such a path, the connection strength of the two 
variables the path connects as well as the sum of all paths from one variable to another. In contrast, the here 
introduced conceptual dimension summarizes all these aspects in one axis. The biomedical conceptual axis 
thereby summarizes all causal paths and their respective causal strength, by combining the question about the 
existence of causal path and the corresponding direction and strength into the question of “how biomedically 
relevant is this candidate confounding variable?”. While this comes for the price of losing some details, it 
comes with the strength of allowing an expert- and experience-oriented intuitive approach. By introducing this 
biomedical conceptual axis we want to create awareness for the need of investigating the biomedical 
meaningfulness and role of candidate confounders additional and complementary to statistical evaluations and 
want to provide an intuitively usable framework that combines the statistical and conceptual perspective (for 
a more recipe-style tool leveraging DAGs see e.g. 24,55. 

The Confound Continuum aims to support informed confound removal decisions in a problem-
dependent manner, bridging the gap between statistical and biomedical conceptual perspectives. It emphasizes 
that biomedical and statistical validity are distinct concepts and connects confound removal to model 
interpretation. In the realm of biology, no variable exists in complete isolation from others. Certain datasets 
might create the impression of some variables being biologically unrelated, but this likely reflects the inherent 
limitations of any dataset, which can only capture a finite number of measured variables. Conversely, in wide-
enough data, most measured variables will be multi-correlated from a statistical perspective and (cascadically) 
inter-related from a conceptual viewpoint. This multi-correlatedness can be exploited by methods such as meta-
matching68, but renders pure statistical evaluations of confounders not sufficient. Therefore, it is crucial to 
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dissect the interconnectedness of biological variables from a bio-conceptual perspective and combine this 
perspective with statistical data-insights to derive valid models and corresponding interpretations – a bridge 
provided by the Confound Continuum.  
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