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Abstract 

Background: Healthcare associated infections (HAIs) are a significant burden to health systems, 
conferring increased morbidity, mortality and financial costs to hospital admission. 
Antimicrobial resistance (AMR) further compounds the issue as viable treatment options are 
constrained. The hospital environment plays a significant role in the development of HAIs, with 
effective microbial monitoring providing the foundation for targeted interventions and improved 
infection prevention and control strategies.  

Methods: This project sampled door handles in an infectious disease ward at the newly built 
Royal Liverpool University Hospital, Liverpool, UK. Sampling was performed prior to the first 
patients being admitted to the ward and then six and twelve months after this date. In addition 
to identifying all isolates, we also investigated the phenotypic antibiotic resistance of all 
Staphylococcus spp. identified, with further whole genome sequencing analysis of multidrug 
resistant isolates. 

Results: Prior to patient admission, the majority of isolates identified (57%) were 
Staphylococcus spp., reducing to 32% and 29% at six and twelve months respectively where 
Bacillus spp. accounted for 51% of isolates. No ESKAPE pathogens were identified. Antibiotic 
susceptibility testing of the Staphylococcus spp. showed the rates of resistance were relatively 
low for all isolates prior to patient admittance, with the exception of cefoxitin (56%). Overall, 
resistance was highest after six months of ward use, with only tetracycline showing a consistent 
increase in resistance at each consecutive time point. Despite an increase in isolates 
susceptible to all antibiotics after 12 months, the rate of multi-drug resistance remained high. 
Whole genome sequencing revealed the most abundant resistance genes present amongst 
multidrug resistant staphylococci were blaZ (25/26), mecA (22/26) and aac6-aph2 (20/26) 
respectively, followed by ermC (15/26) which was identified in all Staphylococcus hominis 
isolates and dfrC (11/26) which was identified in all Staphylococcus epidermidis isolates. No 
isolates believed to be clonal were observed across the three time points assessed.   

Summary: This study highlighted the prevalence of a resistant reservoir of bacteria recoverable 
on high touch surfaces. However, given all the isolates identified were unique, it would suggest 
that the cleaning protocols in place are sufficient, and that the observed bacteria are a result of 
subsequent recolonisation events. This study emphasises the importance of frequent cleaning 
and efficient, ongoing, environmental surveillance. 

 

Introduction 

Healthcare associated infections (HAIs) are a significant burden to health systems, and can 
affect patients, visitors and healthcare workers. The World Health Organisation estimates out of 
every 100 patients in acute-care hospitals, seven patients in high-income countries and 15 
patients in low- and middle-income countries will acquire at least one HAI during their hospital 
stay (World Health Organization, 2022). Not only are patients faced with poor outcomes in 
terms of morbidity and mortality, but healthcare providers are faced with increased costs as a 
result of ongoing treatment and increased patient length of stay (Stewart et al., 2021). The 
hospital environment plays a significant role in HAIs, where inanimate surfaces may act as a 
reservoir for pathogens. Admitting a new patient to a room where the previous occupant was 
infected and/or colonised with a specific pathogen is a risk factor for further transmission 
(Mitchell et al., 2015). Likewise, cleaning interventions (including chemical, mechanical and 
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human factors) targeted at reducing HAIs, patient colonisation and environmental bioburden 
often lead to positive outcomes (Peters et al., 2022). 

Microbial monitoring of the hospital environment can be a valuable practice, providing the basis 
for targeted interventions and improved infection prevention and control (IPC) strategies 
(Sehulster et al., 2004). Furthermore, in hospital settings, where continuous and increased use 
of disinfectants and antimicrobial drugs create a selective landscape for resistance, it can 
provide a useful means to screen the local microbiome for clinically relevant antimicrobial 
resistance (AMR) (Cason et al., 2022). 

AMR is one of the top threats to global public health, with bacterial AMR estimated to be directly 
responsible for 1.27 million and a contributing factor towards 4.95 million global deaths in 2019 
(Murray et al., 2022). This issue extends to healthcare settings where the ESKAPE pathogens 
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), which pose the highest risk of 
mortality, are responsible for the majority of HAIs and are frequently associated with multidrug 
resistance (MDR) (Mulani et al., 2019). In addition to the dangers of the ESKAPE pathogens, less 
clinically significant bacteria colonising environmental surfaces have the potential to act as 
AMR reservoirs, with dissemination driven by the transfer of mobile genetic elements between 
bacteria (Larsson & Flach, 2022). If such elements were to be acquired by a pathogen, the 
treatment of future infections would become increasingly difficult. 

This project investigated the changing taxonomy of bacteria isolated from door handles in a new 
hospital prior to, and following the admittance of patients. We also investigated the phenotypic 
and genotypic characteristics of antibiotic resistance of all Staphylococcus spp. identified. 

 

Methods 

Sample collection was based at the newly constructed Royal Liverpool University Hospital, 
United Kingdom on an infectious disease ward. Sampling was facilitated at three time points; 
one week prior to the ward opening to patients, six months and 12 months after the ward had 
been opened.  The project was conducted in conjunction with LUHFT Infection Prevention and 
Control team. Only environmental sampling occurred with no patient or staff information 
recorded. In line with NHS Health Research Authority guidance (Is my study research? (hra-
decisiontools.org.uk)) this project was considered to be Health Surveillance rather than 
Research and hence no ethical approval was needed or sought. 

At each time point, 40 sites were sampled consisting of stainless-steel lever door handles and 
push panels. These were situated on the main corridor and the entrance/exit to single 
occupancy bedrooms with ensuite bathrooms. Whilst the main corridor sites remained 
consistent at each time point, variable bedrooms were analysed due to access limitations 
regarding respectful patient care. 

25cm2 3D printed thermoplastic (polylactic acid) templates and cotton swabs pre-moistened 
with neutralising buffer were used to collect samples, swabbing in four directions across the 
template (up to down, left to right, top-left to bottom-right, top-right to bottom-left). 

Bacteria were recovered in 3ml maximum recovery diluent using a Stomacher 80 Biomaster 
(Seward, Worthing, United Kingdom) at maximum speed for two minutes, with 500µl of diluent 
plated onto 5% sheep's blood agar, followed by a subsequent 48-hour incubation at 37°C. 
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Morphologically distinct colonies were picked from each plate for 16S rRNA gene sequencing. 
The primers utilised were: 

27F - AGA GTT TGA TCC TGG CTC AG 

1492R - GGT TAC CTT GTT ACG ACT T 

Species identity was determined utilising the closest sequence match when assessed with 
BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 

All Staphylococcus spp. identified were further assessed utilising disc diffusion susceptibility 
assays following EUCAST guidelines. The antibiotics tested were cefoxitin (30 µg), ciprofloxacin 
(5 µg), gentamicin (10 µg), trimethoprim/sulfamethoxazole (1:19, 5 µg), tetracycline (30 µg), 
erythromycin (15 µg) and clindamycin (2 µg). Isolates resistant to three or more classes of 
antibiotic were classified as multidrug resistant. 

All 26 multidrug resistant Staphylococcus spp. were submitted to MicrobesNG 
(https://microbesng.com/) for paired-end 2 x 250bp NovaSeq 6000 Illumina sequencing with a 
≥50x target coverage, followed by adapter trimming using Trimmomatic v0.30 (Bolger et al., 
2014) with a sliding window quality score cutoff of Q15. De novo assemblies were constructed 
with SPAdes v3.7 (Bankevich et al., 2012) and contigs < 200bp were removed. Assemblies were 
also manually assessed using Quast v5.02 (Gurevich et al., 2013), with key quality statistics 
available in the supplementary material 1. The sequence data for this study has been deposited 
in NCBI BioProject ID: PRJNA1106471. 

Genomes were queried against the SRST2-ARGANNOT database (Gupta et al., 2014; Inouye et 
al., 2014) using ARIBA v 2.14.6 (Hunt et al., 2017) to identify resistance genes. Plasmid replicons 
were similarly predicted by querying against the PlasmidFinder database (Carattoli et al., 2014).  

Intra-species genome assembly relatedness was estimated by Average Nucleotide Identity 
using FastANI v1.33 (Jain et al., 2018). 

 

Results 

Prior to the opening of the ward, median (interquartile range) colony forming units per cm2 
(CFU/cm2) across all 40 sites was 0.24 (0 to 2.04), increasing to 3.12 (1.14 to 11.64) six months 
after opening and 13.8 (2.6 to 34) twelve months after opening. Equally, the total number of 
morphologically distinct colonies identified increased at each time point, being 47, 87 and 126 
respectively (we acknowledge that human error could affect these counts as distinctness is 
open to individual interpretation); additionally, the number of different species of bacteria 
identified increased, with a total of 13, 23 and 30 different species identified at each time point 
respectively. 

No ESKAPE pathogens were identified from any of the samples. The most prevalent genus of 
bacteria identified prior to the arrival of patients was Staphylococcus, identified at 17/40 sites 
(43%, 95% CI 33-52%). At this time, only a single Bacillus species was identified (3%, 95% CI 0-
6%). However, once the ward was in active use, the number of sites where Bacillus was 
identified sharply increased above that of Staphylococcus to 27/40 (68%, 95% CI 58-77%) after 
6 months and 34/40 (85%, 95% CI 78-92%) after 12 months. Across the same period, the 
number of sites where Staphylococcus was identified slightly increased to 22/40 (55%, 95% CI 
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45-65%) and 26/40 (65%, 95% CI 56-74%) respectively. Staphylococcus spp. and Bacillus spp. 
were the most prevalent genera of bacteria by a large margin. 

 

Figure 1. The 16S rRNA gene sequence identity of bacteria isolated from door handles on the 
infectious disease ward one week prior to, six months after and twelve months after it opened to 
patients. The data indicates the number of sites the respective genus was identified from a total 

of 40 sites at each time point. 

The greatest prevalence of antibiotic resistance amongst the Staphylococcus spp. identified 
was six months after the ward had been in use, with the highest prevalence of resistance 
observed across all antibiotics tested except tetracycline as seen in Figure 2. Prior to the ward 
opening, there was already varying levels of resistance to all antibiotics tested, with tetracycline 
being the only one where isolates were 100% (27/27) susceptible. Resistance to cefoxitin was 
already as high as 56% (15/27) and further increased to 71% (20/28) after 6 months of ward use. 
However, after 12 months this had reduced to 22% (8/37) of isolates. Whilst other antibiotic 
resistance rates fell close to those observed at the start of the study after the high peak at 6 
months, cefoxitin was the only one that went below the initial rate. Tetracycline was the only 
antibiotic where resistance increased at each consecutive time point. With the exception of 
one, all isolates which tested resistant to tetracycline were MDR. Similarly, all isolates 
displaying resistance to gentamicin or trimethoprim/sulfamethoxazole were MDR. 
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Figure 2 The percentage of Staphylococcus spp. resistant to each antibiotic tested at each 
sample point (prior to ward opening n=27, 6 months after ward opening n=28, 12 months after 
ward opening n=37). 

Whilst overall prevalence of resistance to different agents appear to largely decrease between 6 
and 12 months, it is worth noting that the levels of multidrug resistant isolates remain high. 
Figure 3 shows prior to the opening of the ward, most isolates were either susceptible to all 
antibiotics tested or resistant to just one. After 12 months of ward use the percentage of 
isolates susceptible to all antibiotics actually increased relative to the first time point. However, 
the proportion of multidrug resistant isolates also increased from 7% (2/27) to 27% (10/37) 
respectively. 
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Figure 3 The percentage of Staphylococcus spp. identified resistant to 0, 1, 2 or ≥3 different 
classes of antibiotic (prior to ward opening n=27, 6 months after ward opening n=28, 12 months 
after ward opening n=37). 

 

Whole genome sequencing analysis of all 26 multidrug resistant Staphylococcus spp. (11 
Staphylococcus epidermidis, 11 Staphylococcus hominis, three Staphylococcus haemolyticus 
and one Staphylococcus capitis) highlighted the presence of genes and plasmid replicons 
associated with antimicrobial resistance as seen in Figure 4 below. The genes found at the 
highest frequency were blaZ (25/26), mecA (22/26) and aac6-aph2 (20/26) respectively, followed 
by ermC (15/26) which was identified in all Staphylococcus hominis isolates and dfrC (11/26) 
which was identified in all Staphylococcus epidermidis isolates. With the exception of 
trimethoprim/sulfamethoxazole, the associated resistance genes identified were largely in 
agreement with the observed phenotype. This data is available in supplementary material 2. 

There were three Staphylococcus hominis isolates (3-747B, 3-759A and 3-762B) and two 
Staphylococcus epidermidis (2-29C and 2-40C) which possessed identical intra-species 
resistance genes, albeit with varying plasmid replicon profiles, whilst Staphylococcus hominis 
isolates 3-760F and 3-742C possessed both identical resistance genes and plasmid replicons. 
Staphylococcus hominis isolates 1-22A and 2-29E had identical plasmid profiles yet variable 
resistance gene presence. All remaining isolates had both unique resistance gene and plasmid 
profiles. 

Whilst antimicrobial associated genetic variations were evident across most isolates, high 
similarities were observed when assessing the intra-species genome assembly relatedness, 
estimated by Average Nucleotide Identity (ANI) as shown in Figure 5. ANIs ranged from 97.21% - 
100%, 99.20% - 99.99% and 99.17% - 99.89% for Staphylococcus hominis, epidermidis and 
haemolyticus respectively.

30

44

19

7

11

25

14

50

54

16

3

27

0

10

20

30

40

50

60

0 1 2 3≤

Pe
rc

en
ta

ge
 o

f r
es

is
ta

nt
 S

ta
ph

yl
oc

oc
cu

s s
pp

. 

Number of antibiotic classes

Prior to ward opening

6 months after ward opening

12 months after ward opening

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2024.02.02.24302185doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302185
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4 The presence/absence of genes and plasmid replicons associated with antibiotic resistance observed amongst all multidrug resistant 
Staphylococcus spp. collected at three time points; (1-) prior to patient admission, (2-) after six months of ward usage and (3-) after 12 months of 
ward usage.
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Figure 5 The intra-species genome assembly relatedness of multidrug resistant 
Staphylococcus spp. estimated by Average Nucleotide Identity using FastANI v1.33. 
Staphylococcus spp. were collected at three time points; (1-) prior to patient admission, (2-) 
after six months of ward usage and (3-) after 12 months of ward usage. 
 

Discussion 

The hospital environment is a known source of bacteria causing nosocomial infection outbreaks 
(Gastmeier et al., 2006), with healthcare organisations including the UK’s NHS employing a wide 
array of extensive decontamination protocols in an effort to reduce the environmental 
bioburden of facilities (Castelli et al., 2022). However, a considerable range of microbial 
diversity remains (Martineau et al., 2018; Yano et al., 2017). The most clinically significant of 
these are the ESKAPE pathogens, with third-generation cephalosporin/carbapenem-resistant 
Enterobacterales and carbapenem-resistant Acinetobacter baumannii defined by the WHO as 
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“Priority 1: Critical”, and carbapenem-resistant Pseudomonas aeruginosa, methicillin-resistant 
Staphylococcus aureus and vancomycin-resistant Enterococcus faecium as “Priority 2: High” 
(Denissen et al., 2022). Within this study, no ESKAPE pathogens (including Escherichia coli), 
MDR or susceptible, were identified. The annual 2022/2023 hospital IPC report does however 
indicate that at least 51 E. coli, 22 K. pneumoniae, four P. aeruginosa, one methicillin-resistant 
Staphylococcus aureus (MRSA) and 16 methicillin-susceptible Staphylococcus aureus (MSSA) 
hospital onset, hospital associated, infections occurred across LUHFT within a time frame 
overlapping this study (NHS, 2023). Whilst data collection constrained to three time points 
could play a role in the lack of ESKAPE pathogens identified, it is likely that other limitations also 
played a part. Where this project was limited to door handles, previous studies which observed 
a higher prevalence of priority organisms swabbed a much wider range of environmental 
surfaces including sinks, tables, bed rails, television remote controls and walls (Anderson et al., 
2019; Arduino et al., 2016; Mody et al., 2019; Tanner et al., 2021; van der Schoor et al., 2023). 
van der Schoor et al. (2023) even noted how nearly all the highly resistant microorganisms they 
found were present in and around sinks and shower drains as opposed to “dry” surfaces. 
Furthermore, some of the aforementioned studies utilised broth enrichment, enhancing the 
detectability of low concentration nosocomial pathogens (French et al., 2011). 

Staphylococcus aureus is a human commensal organism found on skin and in the nasopharynx, 
with carriage rates of up to 30% (Wertheim et al., 2005). As such it was anticipated to be found 
on the door handles sampled within this study. However, this was not the case, as no 
Staphylococcus aureus was identified. This may have been partially influenced by the approach 
of the hospital to reduce the risk of MRSA infections. As such, the majority of patients are 
screened for MRSA colonisation either preoperatively or on admission, with positive patients 
decolonised using standard protocols to reduce the risk of bacteraemia and transmission (NHS, 
2023). Whilst this could explain the absence of MRSA, we still would have expected to find 
MSSA. That being said, multiple Staphylococcus species were consistently identified across all 
time points in relatively high abundance. All of these are known to colonise a specific niche on 
human skin (Becker et al., 2014), with the exception of S. pasteuri which is more closely 
associated with food specimens (Chesneau et al., 1993). This suggests that microorganisms 
isolated from door handles are likely derived from human microbiota. Other studies 
investigating the hospital environment also frequently isolated various Staphylococcus spp. 
(Martineau et al., 2018; Nygren et al., 2023; Wright et al., 2022; Yano et al., 2017), with S. capitis, 
S. epidermidis and S. hominis being the most prevalent on frequently touched surfaces (Liu et 
al., 2022).  

Amongst the Staphylococcus spp. identified, an initial finding of two MDR isolates, both 
resistant to cefoxitin, prior to the admittance of patients was noted – without any patients on the 
ward, these are likely to have originated from healthcare staff or construction workers. This was 
further compounded by an increase in resistance observed once patients had been admitted.  
Furthermore, whilst after 12 months the proportion of completely susceptible isolates might 
have increased (20/37), the isolates resistant to at least one antibiotic were predominantly MDR 
(10/17), two of which were resistant to all antibiotics tested. Available literature seldom reports 
on the resistance profiles of coagulase-negative Staphylococcus spp. (CoNS) isolated from 
clinical environments, often focusing on those isolated from clinical cases of infection and/or 
those colonising healthcare workers. Across these sites there was a consistent observation of 
high rates of MDR on par with this study (Al-Haqan et al., 2020; Koksal et al., 2009; Ma et al., 
2011; Mendes et al., 2010). Similarly, Liu et al. (2022) assessed staphylococci isolated from 
both hospital personnel and high touch surfaces, observing MDR rates of 61% and 43% 
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respectively. MDR was also prevalent amongst 643 CoNS isolated from a range of non-
healthcare associated environmental settings in London, with 6% of isolates fully susceptible, 
94% resistant to at least one and 18% resistant to at least 5 antibiotics tested (Xu et al., 2018). 

Whilst S. aureus is often deemed the most clinically relevant, CoNS are frequently associated 
with nosocomial infections. In particular, they are known to cause invasive disease in neonates 
and in the context of immunosuppression or indwelling prosthetic material (Becker et al., 2014). 
Furthermore, the ability of mobile genetic elements, notably the Staphylococcal cassette 
chromosome (SCC), to transfer resistance genes amongst Staphylococcus spp. provides a 
pathway for the rapid spread of AMR amongst these opportunistic pathogens, in addition to 
facilitating the evolution of AMR in S. aureus (Cave et al., 2019; Hanssen & Ericson Sollid, 2006; 
Nasaj et al., 2020). The most prominent resistance gene in this context, the mecA gene 
responsible for methicillin resistance, is a major public health threat (Stefani & Varaldo, 2003). 
Given its’ significance, resistance to cefoxitin observed within this study of 56% prior to and 71% 
six months after patient admission appeared high. However, high resistance is frequently seen 
in clinical isolates, with rates ranging from 57% - 79% (Al-Haqan et al., 2020; Koksal et al., 2009; 
Ma et al., 2011; Mendes et al., 2010). Furthermore, Liu et al. (2022) found 50% of isolates from 
healthcare personal and 35% from high touch surfaces were methicillin resistant. These results 
show that whilst we may have found high levels of cefoxitin resistance, they were in agreement 
with pre-existing clinical studies, and a figure of 22% after 12 months of ward use was actually 
much lower than other settings. Given the high prevalence of cefoxitin resistance, including 
20/26 MDR isolates, it was to be anticipated that mecA would be found in high abundance. 
Present in 85% (22/26) MDR Staphylococcus spp. identified, it correctly predicted phenotypic 
cefoxitin resistance in 85% (22/26) isolates. Two out of three susceptible isolates with mecA 
present were on the clinical breakpoint susceptibility boundary (22mm), whilst a single isolate 
was phenotypically resistant despite lacking mecA. These observations have been noted before 
and can be linked to upstream regulatory factors (Marr et al., 2021). 

Prior to patient admission, all 27 isolates tested were susceptible to tetracycline; yet six months 
later, 4/28 (14%) isolates were resistant, all of which were MDR, with one resistant to all 
antibiotics tested. Again by 12 months, 10/37 (27%) isolates were tetracycline resistant, nine of 
which were MDR and two of which were resistant to all antibiotics tested. Interestingly, when 
evaluating the data obtained by Liu et al. (2022), a high proportion of tetracycline resistant 
isolates were also MDR (8/10 isolates from frequently touched surfaces and 21/23 from 
healthcare personnel). All phenotypic tetracycline resistance observed amongst the MDR 
Staphylococcus spp. correlated with the presence of tetK (11/13) or tetL (2/13), both of which 
encode efflux pumps and are frequently found on small plasmids or, more rarely, integrated into 
the chromosome or large staphylococci plasmids (Roberts, 1996). These plasmids are mobile 
and capable of carrying multiple resistance genes, potentially indicating how tetracycline 
resistance is associated with MDR. As with tetracycline, gentamicin and 
trimethoprim/sulfamethoxazole resistance was much higher during ward use as opposed to 
prior to patient admittance, where there was resistance to only a single gentamicin and two 
trimethoprim/sulfamethoxazole isolates. Equally, all isolates resistant to gentamicin or 
trimethoprim/sulfamethoxazole were MDR. The presence of aac6-aph2 correlated closely with 
gentamicin resistance, with only a single isolate on the breakpoint boundary displaying 
resistance where the gene was absent. aac6-aph2 is the only gene currently known to confer 
gentamicin resistance in Staphylococcus and can be located in large plasmids e.g. pSK1 and in 
chromosomes e.g. SCCmec IV (Mlynarczyk-Bonikowska et al., 2022), providing a reasonable 
basis for the resistance patterns observed. 
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Conversely, trimethoprim/sulfamethoxazole phenotypic and genotypic resistance correlations 
had mixed results. dfrG was only present in the three Staphylococcus haemolyticus isolates, all 
of which had a matching phenotype. dfrC on the other hand, present in all Staphylococcus 
epidermidis isolates and no others, poorly correlated with phenotypic resistance across any of 
the species. This may be due to dihydrofolate reductase, the enzyme targeted by trimethoprim, 
having multiple variations spanning across different bacterial species beyond the scope of 
those analysed (Charpentier & Courvalin, 1997). Trimethoprim/sulfamethoxazole resistance 
association with MDR is again likely due to the presence of dfr genes on transmissible mobile 
genetic elements (Nurjadi et al., 2014). 

The large fluctuations in resistance observed across the study period imply the bacteria present 
on the sampled hospital door handles is constantly changing and adapting. As indicated by the 
antibiotic susceptibility data, it would appear as though despite an increase in highly 
susceptible bacteria by the 12-month time point, a significant MDR cohort of Staphylococcus 
persisted. The average nucleotide identity data corroborated this to an extent, particularly with 
Staphylococcus epidermidis, where percentage similarities were consistently high. However, 
discussions are ongoing as to how to appropriately classify relationships with respect to ANI 
values. Typically, a threshold of >95% signifies the same species, >99.5% for the same 
sequence type and approaching 100% for clonal relationships (Rodriguez-R et al., 2024; 
Varghese et al., 2015). With these breakpoints in mind, there appears to be multiple cases of 
highly related sequence types spanning across all three sample points, with a select few 
potentially clonal relations. The most prominent of these are Staphylococcus hominis isolates 
3-760F and 3-742C, sharing 100% similarity in terms of ANI, resistance genes and plasmid 
replicons. These were isolated at the same time point from a bedroom exit and a dirty utility 
room exit respectively and are likely to be clonal. Isolate 3-759A was isolated from the entrance 
to the same bedroom as 3-760F. These two isolates also shared 100% ANI, had identical 
plasmid replicons and near-identical resistance genes, the exception being 3-759A harboured 
mecA where 3-760F did not. As such, it is unlikely that they are clonal unless the mecA gene 
had only just been acquired very recently. Crucially, these high similarities did not extend across 
different time points. Even amongst Staphylococcus epidermidis, isolates 1-30B and 2-28D, 
collected in the first and second cohort respectively, shared the highest ANI similarity of 
99.99%, yet only one has a tetL gene and the other a vgaB, with further variations in their 
plasmid replicons. Again, these are unlikely to be clonal. As such, we identified that a persistent 
cohort of increasingly MDR staphylococci was not present. Instead, we hypothesise the 
microorganisms recovered from hospital door handles change over time, with cleaning 
protocols effectively removing and / or killing those present and subsequent recolonisation 
events leading to the addition of new bacteria. 

Whilst Staphylococcus spp. formed the predominant genus isolated pre-patient admission, 
after six and twelve months of ward usage Bacillus spp. accounted for 51% of all isolates. This 
is likely due to their wide distribution in the environment, particularly in soil, and association 
with food products (Rana et al., 2020). Similar to this study, Al-Habibi et al. (2022) examined 407 
environmental isolates across three hospitals, identifying 43.2% as Bacillus spp. and 19.2% as 
CoNS. The Bacillus genus has long been considered too broad, with many members being 
incrementally reclassified (Gupta et al., 2020). Several of these were identified within this study 
including Metabacillus, Paenibacillus, Peribacillus, Psychrobacillus, and Priesta species. All of 
these are frequently found in soil and rarely cause disease (Biedendieck et al., 2021; de 
Andrade et al., 2023; Krishnamurthi et al., 2010; Sáez-Nieto et al., 2017). The most clinically 
significant Bacillus species identified was Bacillus cereus, frequently associated with food- 
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borne outbreaks and more recently implicated in localised wound and eye as well as systemic 
infections (Bottone, 2010; Glasset et al., 2018). Given its wide prevalence in the environment, it 
does not provide cause for immediate concern. However, it is something that should be 
monitored over time. The large majority of other bacteria isolated as part of this study bear little 
clinical relevance and were observed in agreement with other previous studies, albeit with 
Streptococcus spp. identified at much lower levels (Martineau et al., 2018; Nygren et al., 2023; 
Yano et al., 2017). 

 

Conclusion 

The presence of a resistant reservoir of bacteria recoverable on high touch surfaces highlights 
the importance of extensive and sustained cleaning protocols and efficient environmental 
surveillance systems, especially considering CoNS are being increasingly viewed as emerging 
pathogens. That being said, unique antimicrobial profiles and a lack of potentially clonal 
isolates observed across different time points signifies the cleaning protocols in place are 
effective. This was further justified by the absence of ESKAPE pathogens including 
Staphylococcus aureus. Instead, the presence of the observed bacteria can likely be attributed 
to post-cleaning recolonisation events. 

In future, it would be beneficial to expand such studies to a greater variety of sites in addition to 
door handles to ensure an accurate representation of the hospital environment and respective 
microbiome. Furthermore, regularly assessing the bacteria colonising patients and healthcare 
staff would shed light on potential routes of transmission and recolonisation of high touch 
surfaces.  
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