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Abstract 31 

Background Novel influenza viruses pose a potential pandemic risk. Rapid detection of novel influenza 32 

virus infection in humans is critical to characterizing the virus and facilitating the implementation of 33 

public health response measures. 34 

Methods We use a probabilistic framework to estimate the likelihood that novel influenza virus cases 35 

would be detected under different community and healthcare (urgent care, emergency department, 36 

hospital admission, and intensive care unit) testing strategies while at low frequencies in the United 37 

States. Model parameters were informed by data on seasonal influenza virus activity and existing testing 38 

practices. 39 

Results In a baseline scenario reflecting the presence of 100 infections of a novel virus with similar 40 

severity to seasonal influenza, the probability of detecting at least one infection per month was highest 41 

in urgent care settings (72%) and when random testing was conducted in the community (77%). 42 

However, urgent care testing was over 15 times more efficient (estimated as the number of cases 43 

detected per 100,000 tests) due to the larger number of tests required for community testing. In 44 

scenarios that assumed increased clinical severity of novel virus infection, probabilities of detection 45 

increased across all healthcare settings, with testing in hospital and ICU settings being most efficient. 46 

Conclusions Our results suggest that novel influenza virus circulation is likely to be detected through 47 

existing healthcare surveillance, with the most efficient testing setting impacted by the disease severity 48 

profile. These analyses can help inform future testing strategies to maximize the likelihood of novel 49 

influenza detection. 50 

Keywords: influenza; H5N1; novel virus; detection; healthcare testing  51 

 52 

Introduction  53 

Novel influenza viruses are influenza viruses that are different from the seasonal influenza viruses 54 

currently circulating in humans (i.e., A/H3N2, A/H1N1, B/Yamagata and B/Victoria). Human infections 55 

with novel influenza viruses are generally rare and isolated events that occur through exposure to 56 

infected animals (such as swine or poultry) during recreational or occupational activities. Widespread 57 

avian influenza A(H5N1) virus outbreaks among wild and commercial birds that occurred from January 58 

2022 – July 2023 in the United States were associated with just one detected U.S. case in an individual 59 

exposed to infected poultry [1, 2]. The H5N1 viruses associated with these outbreaks do not easily bind 60 

to receptors in the human upper respiratory tract and so the risk to the general public is low [1]. 61 

However, a novel influenza virus that transmits efficiently between humans could pose a pandemic risk. 62 

Rapid detection of human infection with a novel influenza virus is critical to characterizing the virus 63 

causing the infection and facilitating a rapid public health response [3].  64 

Testing is particularly important to distinguish novel influenza virus infection from seasonal influenza or 65 

other respiratory virus infections with similar symptom profiles [4]. Although active monitoring and 66 

testing of individuals with exposure to infected animals can identify new spillover infections [2], such 67 

measures are not designed to detect cases in the wider community following sustained human-to-68 

human transmission. Public health surveillance systems must be equipped to detect novel influenza 69 
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cases through testing in the community or in healthcare settings where infected individuals might seek 70 

care. 71 

We use a probabilistic framework to estimate the likelihood of detection of novel influenza virus cases 72 

occurring at low frequencies in the United States (i.e., 1,000 total cases or less). We consider testing of 73 

individuals presenting to different healthcare settings with no known previous exposure to infected 74 

animals or humans and use information on testing for seasonal influenza viruses to develop assumptions 75 

about plausible testing rates. Our findings can help inform testing strategies to improve detection of 76 

novel influenza virus cases occurring at low frequencies. 77 

 78 

Methods 79 

Model 80 

We adapted an existing framework to estimate detection probabilities for a novel influenza virus in the 81 

United States [5]. For a given case of novel influenza virus infection, the probability of detection in a 82 

particular healthcare setting can be expressed as  83 

𝑝𝑑𝑒𝑡𝑒𝑐𝑡 =  𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒) × 𝑝𝑑 × 𝑡𝑠𝑛 × 𝑝𝑓, 84 

where 𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒) is the probability that someone is tested in that setting given that they are a case; 85 

𝑝𝑑 is the probability that testing occurs while virus is still detectable; 𝑡𝑠𝑛  is the sensitivity of the 86 

diagnostic test; and 𝑝𝑓 is the probability a positive test is forwarded to a public health laboratory for 87 

further testing. Most commercial assays used for human influenza virus testing cannot distinguish novel 88 

influenza A viruses from seasonal influenza A viruses. Thus, further testing at a public health laboratory 89 

is required for a positive specimen to be identified as a novel virus. We initially assumed 50% of positive 90 

specimens are forwarded (i.e. 𝑝𝑓 = 50%). This was informed by the average percentage of influenza A 91 

hospitalizations that were subtyped between 2010—2019 [6]. However, we considered a range of 92 

forwarding levels (25, 50%, 75% and 100%) in sensitivity analyses. All specimens forwarded for further 93 

testing were assumed to be correctly identified as a novel influenza virus. 94 

The per case probability of being tested is the combined probability that a case will develop symptoms 95 

(𝑝𝑠𝑦𝑚𝑝), seek care for those symptoms in a particular healthcare setting (𝑝𝑠𝑒𝑒𝑘), and be tested in that 96 

setting (𝑝𝑡𝑒𝑠𝑡), i.e., 97 

 𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒) = 𝑝𝑠𝑦𝑚𝑝 × 𝑝𝑠𝑒𝑒𝑘 × 𝑝𝑡𝑒𝑠𝑡. 98 

Assuming a certain incidence of novel cases each month, I, in a population of size N (where I is the 99 

fraction of the population assumed to be infected with the novel influenza virus), we estimate the 100 

probability of detecting at least one novel case as 1 - the probability of detecting no cases, or 101 

1 − (1 − 𝐼 × 𝑝𝑑𝑒𝑡𝑒𝑐𝑡)N. 102 

The expected number of clinical tests used per month, 𝐸(𝑇), is the combined number of tests 103 

conducted among cases and non-cases. Non-cases represent individuals presenting at healthcare 104 

settings with respiratory illness symptoms that are not due to novel influenza virus infection. The 105 

expected number of tests can be expressed as 106 
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𝐸(𝑇) = 𝐼 × 𝑁 ×  𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒) + (1 − 𝐼) × 𝑁 × 𝑃(𝑡𝑒𝑠𝑡 |𝑛𝑜𝑡 𝑐𝑎𝑠𝑒), 107 

where 𝑃(𝑡𝑒𝑠𝑡 |𝑛𝑜𝑡 𝑐𝑎𝑠𝑒) is the probability that someone without novel influenza virus infection is 108 

tested. The latter quantity is estimated as the background rate of presentation with respiratory illness 109 

symptoms to a given healthcare setting among the general population (𝑏𝑠𝑒𝑒𝑘) multiplied by the 110 

probability of being tested in that setting (𝑝𝑡𝑒𝑠𝑡). To compare testing efficiency in different settings we 111 

estimated the expected number of detected cases per 100,000 clinical tests conducted as 112 

(𝐼 × 𝑁 × 𝑝𝑑𝑒𝑡𝑒𝑐𝑡  / 𝐸(𝑇)) × 100,000.  113 

Finally, we considered random testing in the community as a supplemental strategy that could be 114 

deployed in addition to healthcare testing. Given that community testing does not depend on symptom 115 

presentation or care-seeking behavior, 𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒) was simply the frequency of community tests 116 

conducted per month and the expected number of tests was 𝑁 ×  𝑃(𝑡𝑒𝑠𝑡 |𝑐𝑎𝑠𝑒). Similarly, 𝑝𝑑 was the 117 

approximate time (in months) that virus would remain detectable and was parameterized to capture 118 

individual variation in virus shedding dynamics. Since community testing would be initiated to seek out 119 

novel influenza virus infection, we did not adjust for specimen forwarding (i.e., we assumed all 120 

specimens would be tested to distinguish novel influenza virus from seasonal influenza viruses).   121 

For each healthcare and community setting, we drew 10,000 parameter combinations from data-122 

informed distributions (outlined below) and calculated the quantities described above. All analyses and 123 

visualizations were performed in R version 4.0.3 using the data.table, truncnorm, here, 124 

scales, patchwork, colorspace and tidyverse packages [7-14].   125 

Healthcare settings and model parameterization 126 

We considered three distinct healthcare settings to reflect different care-seeking behaviors and testing 127 

practices: (i) outpatient urgent care and emergency departments (UC/ED); (ii) inpatient hospital settings; 128 

and (iii) intensive care units (ICU). Each setting was assumed independent such that a person presenting 129 

to both (for example, a hospital admission followed by a subsequent ICU admission) could be tested in 130 

both, according to the corresponding testing probabilities. Data were collated from various existing 131 

influenza surveillance platforms to inform parameters for each setting (Table 1). We defined N = 330 132 

million to approximate the U.S. population [15] and considered incidence values that corresponded to 133 

100 and 1,000 total novel influenza cases. 134 

Table 1. Baseline care-seeking and testing parameters. Surveillance platforms are Flu Near You (FNY), Outbreaks 135 
Near Me (ONM), VISION Vaccine Effectiveness Network, FluSurv-Net, and IBM MarketScan® Commercial Claims 136 
and Encounters Database (MarketScan) [16-19]. Further details of each platform are provided in the 137 
Supplementary Information. 138 

Parameter Assumed distribution Source and available timeframe (if applicable) 

Proportion of novel cases 

developing symptoms, 𝑝𝑠𝑦𝑚𝑝   

Uniform with range:  
40-80% 

[20] 

Care-seeking and presentation 
of novel symptomatic cases at 

specific sites, 𝑝𝑠𝑒𝑒𝑘: 
      UC / ED 
       
     Hospital 
      ICU 

Uniform with range: 
 
 
10-20% of symptomatic 
cases 
1-2% of symptomatic cases 
15-20% of hospitalizations 

 
 
 
FNY, ONM: 2018-2023 
 
CDC burden estimates: 2010-2021 [21] 
VISION: 2020-2021; FluSurv-Net: 2022-2023 
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Testing of individuals with ARI, 

𝑝𝑡𝑒𝑠𝑡: 
      UC / ED 
      Hospital 
      ICU 

Truncated normal with  
mean / SD / range: 
50% / 10% / 10-90% 
53% / 10% / 20-95% 
46% / 10% /   1-95% 

 
VISION: December 2021 – May 2022 

Community testing as a 
proportion of the general 
population, regardless of 
symptoms 

3–6% of general population 
per month 

Assumption following [22] 

Tests that occur while virus is 

detectable, 𝑝𝑑 
     Healthcare settings 
     Community settings 

Uniform with range: 
 
50–85% 
25–50% 

 
Proportion seeking care ≤7 days after symptom 
onset [23] 
Proportion of month that virus is detectable [24] 

Test sensitivity, 𝑡𝑠𝑛  Uniform with range 80–100% [25] 

Proportion of positive 
specimens that are forwarded 
to a public health laboratory, 

𝑝𝑓  

50% Assumption following [6] 

Background occurrence in the 

general population, 𝑏𝑠𝑒𝑒𝑘 , of: 
   ILI* 
   Hospital ARI admissions 
   ICU ARI admissions 

Uniform with range: 
 
0.6 – 6% 
0.03-0.1%  
0.02-0.03% 

 
 
FNY, ONM: 2019, 2022 
MarketScan: 2015-2021 
MarketScan: 2015-2021 

Abbreviations: UC = urgent care; ED = emergency department; ICU = intensive care unit; ILI = influenza-like-illness; ARI = acute 139 
respiratory illness; SD = standard deviation. 140 
*Background ILI occurrence is multiplied by care-seeking rates in urgent care or emergency departments (Table 1) to estimate 141 
the rate of presentation to urgent care or emergency departments with influenza symptoms in the general population. We 142 
omitted data from 2020 and 2021 due to atypically low levels of respiratory virus circulation.   143 

 144 

Our baseline scenario reflected a novel influenza virus with similar severity to seasonal influenza. 145 

However, we also considered increased severity scenarios that ranged from severity that was similar to 146 

COVID-19, to the severity of recent H5N1 virus infections in humans (Table 2). For these scenarios, we 147 

assumed similar or increased probabilities of developing symptoms and seeking care in each healthcare 148 

setting, while ensuring that the combined percentages did not exceed 100%. We initially assumed 149 

testing probabilities were fixed (Table 1) but explored alternative scenarios with increased testing (𝑝𝑡𝑒𝑠𝑡 150 

mean = 90%) to compare the effect of enhanced surveillance across healthcare settings.  151 

Table 2. Scenarios for increased symptom severity. All parameters are assumed to follow a Uniform distribution. 152 
Scenario Symptomatic UC / ED** CHR or IHR ICU*** Source(s) 

Baseline  40 – 80% 10-20% 1-2% CHR 15-20% [20, 21] 

COVID-like 40 – 80% 10-20% 1-2% IHR 20-30% [22, 26] 

Intermediate 1 25% > baseline* 25% > baseline* 4.5-5.5% IHR 30-40% [22] 

Intermediate 2 50% > baseline* 50% > baseline* 9.5-10.5% IHR 45-55% [22] 

Recent H5-like 50% > baseline* 50% > baseline* 60-70% IHR 75-85% [1] 
Abbreviations: UC = urgent care; ED = emergency department; ICU = intensive care unit; CHR = case-hospitalization ratio; IHR = 153 
infection-hospitalization ratio. 154 
*Up to a maximum of 100% 155 
**Expressed as a percentage of symptomatic individuals 156 
***Expressed as a percentage of hospitalizations 157 
 158 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 5, 2024. ; https://doi.org/10.1101/2024.02.02.24302173doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302173
http://creativecommons.org/licenses/by-nc-nd/4.0/


We also considered scenarios in which testing practices changed according to seasonal influenza activity. 159 

For example, clinicians may be less likely to test for influenza viruses during summer months when 160 

background respiratory virus activity is low. To explore this, we first defined distinct probability 161 

distributions for the background rates of presentation to each healthcare setting, 𝑏𝑠𝑒𝑒𝑘 , during peak 162 

(November – February) and off-peak (May – August) time periods (Table 3). We then simulated the 163 

model for each time period and healthcare setting, assuming the care-seeking behavior of novel 164 

influenza cases did not change but that testing in off-peak periods was either equal to, or 50% of, testing 165 

in peak periods. 166 

 Table 3. Baseline occurrence of ILI or ARI symptoms partitioned by peak vs off-peak activity.  167 

Abbreviations: ILI = influenza-like-illness; ARI = acute respiratory illness; ICU = intensive care unit; FNY = Flu Near You; ONM = 168 
Outbreaks Near Me. 169 
*Background ILI occurrence is multiplied by care-seeking rates in urgent care or emergency departments (Table 1) to estimate 170 
the rate of presentation to urgent care or emergency departments in the general population. We omitted data from 2020 and 171 
2021 due to atypically low levels of respiratory virus circulation.   172 
 173 

Results 174 

We first simulated the model with baseline severity assumptions and no distinction between peak and 175 

off-peak time periods. At the lowest incidence (100 novel cases in the population), the median 176 

probability of detecting at least one case was highest in community and UC/ED settings, at 77% (95th 177 

percentile: 56–91%) and 72% (44–92%), respectively (Figure 1C; Baseline scenario). In comparison, 178 

median detection probabilities in hospital and ICU settings were less than 15%. The probability of 179 

detection increased across all settings when there were 1,000 assumed novel cases in the population, to 180 

100% (100–100%) in UC/EDs and the community, 74% (47–94%) in hospitals, and 19% (9–35%) in ICUs. 181 

Testing in UC/ED settings was always most efficient and detected more cases per 100,000 tests than 182 

other settings (Figure 1E). Notably, community testing was least efficient due to the much greater 183 

number of tests required (more than 10,000,000 per month; Figure 1D), and no setting detected more 184 

than 3% of all novel cases under our assumptions (Figure 1F). Increasing the percentage of influenza 185 

positive specimens forwarded to public health laboratories to 75% or 100% increased detection 186 

probabilities and test efficiency across all healthcare settings (Figure S1). For example, the median 187 

detection probability in UC/EDs increased to 85% (58–98%) and 92% (69–99%) at the lowest incidence, 188 

respectively. Conversely, a decrease in the percentage forwarded to 25% decreased detection 189 

probabilities and test efficiencies, although the relative ordering of setting efficiency was preserved. 190 

Thus, for a novel influenza virus with similar severity to seasonal influenza, UC/ED settings are likely to 191 

provide greatest opportunities for case detection.192 

Parameter Range of uniform distribution Period Source and available timeframe 

Occurrence of: 
ILI* 
       
 
Hospital ARI admission 
  
 
ICU ARI admission 

 
1.0-6.0%  
0.6-2.5%  
 
0.04-0.10% of general population 
0.03-0.09% of general population 
 
0.014-0.035% of general population 
0.010-0.030% of general population 

 
Peak 
Off-peak 
 
Peak 
Off-peak 
 
Peak 
Off-peak 

 
FNY, ONM: 2019, 2022 
 
 
MarketScan: 2015-2021 
 
 
MarketScan: 2015-2021 
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193 
Figure 1. Probabilities of detection and test usage under different severity scenarios. (A) Assumed probabilities of 194 

presentation to a particular setting, calculated as 𝑝𝑠𝑦𝑚𝑝 × 𝑝𝑠𝑒𝑒𝑘  for UC/ED, hospital, and ICU settings. All cases 195 

are assumed to be in the community, resulting in a probability of one for that setting (not shown). (B) Assumed 196 
proportion of individuals with ILI or ARI tested in UC/ED, hospital and ICU settings, or proportion of all individuals 197 
tested in the community. (C) Estimated probability of detecting at least one novel case per month. Panels indicate 198 
different assumed levels of incidence (100 and 1,000 novel cases). (D) Expected number of clinical tests used per 199 
month. (E) Estimated test efficiency, calculated as the number of detected novel cases per 100,000 tests. (F) 200 
Percent of all novel cases detected per month. In all panels, points represent median values across 10,000 201 
simulations, inner shaded bands show 50th percentiles, and outer shaded bands show 95th percentiles. 202 
Abbreviations: UC = urgent care; ED = emergency department; H = hospital; ICU = intensive care unit; ILI = 203 
influenza-like illness; ARI = acute respiratory illness. 204 

Given uncertainty in the potential severity of a novel influenza virus, we explored additional scenarios in 205 

which cases were more likely to develop symptoms and/or present to a particular healthcare setting 206 

than the baseline severity scenario (Table 2; Figure 1A). As severity increased, the probability of 207 

detection also increased across all healthcare settings due to the greater probability of requiring medical 208 
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attention (Figure 1C). The difference between detection probabilities in UC/ED compared with hospital 209 

and ICU settings also decreased as cases were more likely to be severe and require admission to the 210 

latter. For example, median detection probabilities for ICU settings increased from 2% (1–4%) and 19% 211 

(9–35%) at baseline with 100 and 1,000 novel cases, respectively, to 100% (98–100%) and 100% (100–212 

100%) in the “Recent-H5” scenario. There were also substantial increases in testing efficiency in hospital 213 

and ICU settings (Figure 1E) and increases in the percent of novel cases detected (for example, from a 214 

maximum of 0.3% in hospital settings at baseline to 16% in the Recent H5 scenario; Figure 1F). Test 215 

usage is driven primarily by background seasonal influenza virus testing and thus did not change across 216 

severity scenarios (Figure 1D). Simulating an increase in clinical testing rates (𝑝𝑡𝑒𝑠𝑡 mean = 90%) 217 

substantially increased detection probabilities and test usage for all healthcare settings but did not 218 

impact the relative performance among settings (Figure S2).  219 

Finally, we assessed how seasonal changes in background activity could impact probabilities of case 220 

detection and testing efficiency. Assuming testing practices did not change seasonally led to equal 221 

probabilities of detection in peak and off-peak periods, although testing efficiencies were increased in 222 

off-peak periods due to the lower number of background tests conducted (Figure S3). Conversely, 223 

assuming a 50% reduction in testing across all healthcare settings in off-peak periods (Figure 3B) 224 

reduced the corresponding probabilities of detection (Figure 2C). However, for the most severe 225 

scenarios (Intermediate 1, Intermediate 2, and Recent H5) there was always at least one healthcare 226 

setting with a median detection probability greater than 60% in off-peak periods at the lowest 227 

incidence.  228 

 229 

Discussion 230 

Here we modeled the likelihood of detection of novel influenza virus cases occurring at low incidence in 231 

the United States. We adapted a simple probabilistic framework that accounted for symptom severity, 232 

care-seeking behavior, and testing practices in different healthcare settings, and used care-seeking and 233 

testing information from recent influenza seasons to inform model parameters. We found that the most 234 

efficient setting for detection depends on the severity profile of the novel influenza virus. Although the 235 

percent of total novel influenza cases detected was relatively low, the probabilities of detecting at least 236 

one case, and thus identifying novel influenza virus circulation, were high in at least one setting across a 237 

range of different testing, severity, and specimen forwarding assumptions. 238 

The high probabilities of detecting at least one case that we have estimated here are relevant for public 239 

health pandemic preparedness. The detection of one case would facilitate the implementation of public 240 

health actions including increased testing strategies, further virus characterization, vaccine development 241 

(if warranted), the implementation of appropriate public health control measures, and updated 242 

recommendations for the use of influenza antiviral medications. One key parameter influencing the 243 

detection probability was the rate of testing in each healthcare setting. We found that detection 244 

probabilities could decrease if influenza testing is substantially reduced below in-season values (for 245 

example, during off-peak months). However, it is also possible that clusters of cases and outbreaks could 246 

be more likely to be detected and tested during off-peak months if clinicians remain vigilant for signs of 247 

atypical respiratory virus circulation. The detection probability was also influenced by assumptions 248 

about the forwarding of clinical specimens. Our baseline value of 50% was informed by subtyping 249 

information from hospitalized influenza infections between 2010—2019 [6]. However, we included a 250 
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lower bound of 25% to reflect recent post-COVID-19 pandemic trends and potentially lower rates in 251 

UC/ED outpatient settings [18]. We also included higher rates up to 100% to explore maximum 252 

attainable detection probabilities if all tests were forwarded and found a substantial improvement in 253 

our estimates. Therefore, during the current H5N1 situation, it is critical that clinicians maintain high 254 

rates of testing and forward influenza A positive specimens to public health laboratories for further 255 

testing when recommended. Finally, given the severity of prior H5N1 cases (for example, there has been 256 

a 50% case-fatality proportion in cases identified since 1997 [1]), additional strategies to increase testing 257 

in ICU settings may help increase the likelihood of detection and testing efficiency, particularly during 258 

summer months when background acute respiratory illness rates are low. 259 

 260 

Figure 2. Probabilities of detection and test usage in healthcare settings assuming reduced testing rates during 261 
periods of off-peak seasonal activity. Incidence is fixed at 100 novel cases in the population. (A) Assumed 262 

probabilities of presentation to a particular setting, calculated as 𝑝𝑠𝑦𝑚𝑝 × 𝑝𝑠𝑒𝑒𝑘. (B) Assumed proportion of 263 

individuals with ILI or ARI tested in peak and off-peak periods. (C) Estimated probability of detecting at least one 264 
novel case per month. (D) Expected number of clinical tests used per month. (E) Estimated test efficiency, 265 
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calculated as the number of detected novel cases per 100,000 tests. (F) Percent of all novel cases detected per 266 
month. In all panels, points represent median values across 10,000 simulations, inner shaded bands are the 50th 267 
percentiles, and outer shaded bands are the 95th percentiles. Abbreviations: UC = urgent care; ED = emergency 268 
department; H = hospital; ICU = intensive care unit; ILI = influenza-like illness; ARI = acute respiratory illness. 269 

Although the probability of detecting one case was generally high, the percent of total cases detected 270 

was low, especially in the lower severity scenarios. This finding assumes there are no immediate 271 

changes to testing or healthcare seeking behavior once the first case is detected, and arises because 272 

detection of influenza through clinical settings requires someone to become symptomatic, seek care, be 273 

tested in a timely manner, and have a positive specimen forwarded for further characterization. 274 

Although community testing removes these barriers to identification, it is resource intensive and would 275 

need to occur even in the absence of perceived novel influenza virus spread to be effective, potentially 276 

requiring over 100,000,000 tests per year at the level modeled in this analysis. Similarly, at-home or self-277 

administered tests could alleviate issues associated with care-seeking and clinical testing practices. 278 

However, such tests would need to be specific to the novel influenza virus and undergo potentially 279 

lengthy development and authorization procedures before being available for widespread use. 280 

Pandemic planning efforts should therefore include strategies to rapidly increase testing of acute 281 

respiratory illness cases in clinical settings once human-to-human spread of a novel influenza virus has 282 

been identified or is likely. Such strategies should account for the possibility that many cases may not be 283 

detected, even with increased testing. 284 

There are several caveats to our modeling framework. First, we did not stratify detection probabilities by 285 

age. The severity of seasonal influenza can vary substantially among different age groups [27], and age 286 

patterns of severity may differ for a novel influenza virus compared to seasonal influenza viruses due to 287 

immunological imprinting and age-related exposures to previous circulating viruses [28, 29]. Age may 288 

also impact testing probabilities and healthcare seeking behavior [30, 31]. However, mean testing 289 

probabilities for children <18 years were similar to those of adults ≥18 years in the VISION data used to 290 

parameterize 𝑝𝑡𝑒𝑠𝑡  (for example, 55 vs. 50% in UC/ED for children and adults, respectively). Including 291 

age in the current framework would require additional assumptions regarding the novel influenza virus 292 

subtype and its cross-reactivity with previous viruses to make inferences about age distributions and 293 

thus reduce the generalizability of our results. Second, we did not explicitly incorporate delays in case 294 

admission to hospital or ICU that could reduce the window for viable virus detection relative to other 295 

settings. These delays are likely on the order of several days and are captured within our conservative 296 

range for the proportion of care-seekers who are tested while virus is still detectable [32]. Third, we 297 

modeled the United States as a single population and did not explicitly consider spatial or other 298 

heterogeneities in care-seeking and testing practices. If such data were available, our analysis could be 299 

replicated at finer resolution to assess local response and detection capabilities. Fourth, data were not 300 

available to fully inform our test forwarding assumptions. Although we considered a range in sensitivity 301 

analyses, further information would increase the accuracy of our detection probability estimates. We 302 

also assumed perfect sensitivity and specificity for all forwarded tests in line with evaluation of real-time 303 

RT-PCR tests for novel H1N1 variant influenza viruses [33]. Although minor reductions in sensitivity 304 

should not substantially impact our detection probability estimates, reductions in specificity could lead 305 

to false positive results that we have not considered. However, the number of false positive results is 306 

likely to be small unless testing reaches extremely high rates, such as considered here in the community 307 

setting.  308 
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Finally, our assumed rates of baseline testing and background activity were informed by previous 309 

influenza seasons and may not reflect future changes to these values. Where possible, we developed 310 

parameter distributions based on data from multiple influenza seasons, before and after the COVID-19 311 

pandemic, to account for broad fluctuations in care-seeking behavior, testing practices, and seasonal 312 

influenza dynamics. We also explored scenarios with increased testing rates to capture the potential 313 

impacts of changes to healthcare surveillance following additional policy recommendations. More 314 

generally, our estimates of detection probabilities and test efficiency reflect the combined uncertainty in 315 

each underlying parameter value and should thus be robust to small changes in any single parameter. 316 

Novel influenza viruses pose a potential pandemic risk, and prompt detection is critical to characterizing 317 

the virus causing the infection and facilitating a rapid public health response. Here we demonstrate how 318 

a simple probabilistic framework can be used to estimate novel influenza virus detection probabilities 319 

through testing in different community and healthcare settings, and can help inform the targeting of 320 

future testing efforts. Our work was motivated by the 2022/23 H5N1 situation in the United States but 321 

could be applied more broadly to other locations and/or other potential novel influenza virus subtypes.  322 
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Supplementary Information 398 

Surveillance Systems 399 

Flu Near You (FNY) and Outbreaks Near Me (ONM) 400 

FNY and ONM are participatory surveillance systems in which individuals can self-report a variety of 401 

respiratory virus symptoms in addition to care-seeking behavior and testing results. ONM was launched 402 

during the 2020/21 influenza season and is the successor to FNY. Seasons run from July to June the 403 

following year, and the case definition for influenza-like-illness (ILI) is a participant who self-reported 404 

fever, chills, or night sweats, in addition to a cough and/or sore throat. In addition to ONM participants, 405 

an additional cross-sectional survey among individuals in the United States aged 18 years and older was 406 

conducted in collaboration with Momentive, the parent company for Survey Monkey. Individuals who 407 

completed an unrelated survey on Survey Monkey were randomly selected and asked to complete a 408 

respiratory virus survey containing the same questions as the ONM platform. Responses were weighted 409 

to reflect the U.S. population. For further details see https://outbreaksnearme.org/us/en-US. 410 

 411 

VISION Vaccine Effectiveness Network  412 

VISION comprises a network of nine sites in eleven states that collect information on influenza-413 

associated outcomes for people of all ages in a variety of healthcare settings including urgent care, 414 

emergency departments, and hospitals. The network’s primary focus is to assess seasonal influenza 415 

vaccine effectiveness against influenza-related illness, but also provides information on testing practices 416 

and ICU admission for patients presenting with acute respiratory illness. For further details see 417 

https://www.cdc.gov/flu/vaccines-work/vision-network.html. 418 

 419 

FluSurv-NET 420 

FluSurv-NET captures laboratory-confirmed influenza-associated hospitalizations for all ages through a 421 

network of acute care hospitals in 14 states, and represents over 29 million people (roughly 9% of the 422 

total U.S. population). Surveillance typically runs from October 1st each year to April 30th the following 423 

year. Cases are defined as patients who received a positive laboratory-confirmed influenza test within 424 

14 days prior to, or during, hospitalization. For each case, a range of data are collected including any 425 

admission to an ICU. For further details see https://www.cdc.gov/flu/weekly/influenza-hospitalization-426 

surveillance.htm. 427 

 428 

IBM MarketScan® Commercial Claims and Encounters Database (Marketscan)  429 

Marketscan is produced by IBM and comprises de-identified insurance claims data from approximately 430 

40 million people per year through employer-sponsored healthcare plans across all 50 states in the 431 

United States. The database includes diagnostic and procedure codes that can be used to identify 432 

admissions due to acute respiratory illness in different inpatient settings. For further details see 433 

https://www.ibm.com/downloads/cas/OWZWJ0QO. 434 
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Supplementary Figures 435 

436 
Figure S1. Test forwarding, 𝑝𝑓, impacts probabilities of detection in healthcare settings under baseline 437 

assumptions. (A) Estimated probability of detecting at least one novel case per month. (B) Expected number of 438 
clinical tests used per month. (C) Estimated test efficiency, calculated as the number of detected novel cases per 439 
100,000 tests. (D) Percent of all novel cases detected per month. In all panels, points represent median values 440 
across 10,000 simulations, inner shaded bands show 50th percentiles, and outer shaded bands show 95th 441 
percentiles. Abbreviations: UC = urgent care; ED = emergency department; H = hospital; ICU = intensive care unit.442 
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443 
Figure S2. Increasing mean healthcare testing rates, 𝑝𝑡𝑒𝑠𝑡, to 90% increases probabilities of detection across all 444 
healthcare settings and severity scenarios. The number of novel cases in the population is fixed at 100. (A) 445 
Estimated probability of detecting at least one novel case per month. Panels indicate different assumed testing 446 
rates (baseline rates and increased rates). (B) Expected number of clinical tests used per month. (C) Estimated test 447 
efficiency, calculated as the number of detected novel cases per 100,000 tests. (D) Percent of all novel cases 448 
detected per month. In all panels, points represent median values across 10,000 simulations, inner shaded bands 449 
show 50th percentiles, and outer shaded bands show 95th percentiles. Abbreviations: UC = urgent care; ED = 450 
emergency department; H = hospital; ICU = intensive care unit. 451 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 5, 2024. ; https://doi.org/10.1101/2024.02.02.24302173doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302173
http://creativecommons.org/licenses/by-nc-nd/4.0/


452 
Figure S3. Probabilities of detection and test usage in healthcare settings assuming equal testing rates in periods 453 
of peak and off-peak seasonal activity. The number of novel cases in the population is fixed at 100. (A) Assumed 454 

probabilities of presentation to a particular setting, calculated as 𝑝𝑠𝑦𝑚𝑝 × 𝑝𝑠𝑒𝑒𝑘. (B) Assumed proportion of 455 

individuals with ILI or ARI tested in peak and off-peak periods. (C) Estimated probability of detecting at least one 456 
novel case per month. (D) Expected number of clinical tests used per month. (E) Estimated test efficiency, 457 
calculated as the number of detected novel cases per 100,000 tests. (F) Percent of all novel cases detected per 458 
month. In all panels, points represent median values across 10,000 simulations, inner shaded bands show 50th 459 
percentiles, and outer shaded bands show 95th percentiles. Abbreviations: UC = urgent care; ED = emergency 460 
department; H = hospital; ICU = intensive care unit; ILI = influenza-like-illness; ARI = acute respiratory illness. 461 
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