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Abstract 28 

Wastewater can play a vital role in infectious disease surveillance, especially in underserved 29 

communities where it can reduce the equity gap to larger municipalities. However, using 30 

wastewater surveillance in a predictive manner remains a challenge. We tested if detecting 31 

SARS-CoV-2 in wastewater can predict outbreaks in rural communities. Under the CDC 32 

National Wastewater Surveillance program, we monitored several rural communities in Idaho 33 

(USA). While high daily variations in wastewater viral load made real-time interpretation 34 

difficult, a SEIR model could factor out the data noise and forecast the start of the Omicron 35 

outbreak in five of the six cities that were sampled soon after SARS-CoV-2 quantities increased 36 

in wastewater. For one city, the model could predict an outbreak 11 days before reported clinical 37 

cases began to increase. An epidemiological modeling approach can transform how 38 

epidemiologists use wastewater data to provide public health guidance on infectious diseases in 39 

rural communities.  40 
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Main text 41 

Introduction.  42 

Wastewater-based epidemiology (WBE) is a promising approach for broad-scale, agnostic 43 

surveillance of infectious diseases and antimicrobial resistance within and across communities. 44 

Indeed, many infectious agents such as SARS-CoV-2, poliovirus, RSV, and flu shed through 45 

stool (1,2), and potentially urine (3), and are thus detectable in wastewater (4,5). Additionally, 46 

WBE assesses infectious disease circulation in both symptomatic and asymptomatic populations. 47 

Most importantly, WBE can improve and accelerate the early detection of infectious disease 48 

outbreaks by public health authorities, providing actionable data for epidemiologists. However, 49 

barriers remain to how epidemiologists might use or interpret this data to inform public health in 50 

a predictive way rather than a retrospective approach. A modeling-based approach to wastewater 51 

data can provide the framework to interpret infectious disease spread and burden by estimating 52 

epidemiological parameters such as incidence (6), prevalence (7–9), or effective reproductive 53 

number (10).  54 

WBE also presents a unique opportunity to support vulnerable and underserved communities 55 

(11). In particular, rural communities are at a higher risk of severe outcomes associated with 56 

certain infectious diseases due to demographic factors (e.g., age), underlying healthcare 57 

challenges (e.g. obesity, smoking), limited resources (12–15), or reduced risk perception (16). 58 

Moreover, as rural communities often lack the resources for broader-scale clinical testing, WBE 59 

can help sustain rural community health. Unfortunately, WBE has mainly focused on urban areas 60 

and larger cities, leaving rural communities with reduced access to this critical data (11,17–20). 61 

In that regard, WBE is a tool that promotes equity (21).  62 
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The COVID-19 pandemic provided a unique opportunity to leverage and expand WBE while 63 

concurrently establishing greater value for epidemiologists. Concentrations of SARS-CoV-2 64 

found in wastewater correlate well with the number of COVID-19 cases (22–24). Thus, with the 65 

right tools in place WBE can serve as an early warning for a potential COVID-19 outbreak 66 

(4,25–28). Perhaps more critically for epidemiologists, the utility of wastewater-based detection 67 

of SARS-CoV-2 has become even more significant with reduced COVID-19 clinical testing due 68 

to home tests and general lack of clinical reporting (29). However, there remains a gap in 69 

translating WBE data in a timely manner for use by public health officials. Moreover, a primary 70 

obstacle for epidemiologists is the variability and uncertainty inherent in wastewater monitoring 71 

(30,31). 72 

Modeling SARS-CoV-2 wastewater data represents an opportunity to bridge the information 73 

gap with epidemiologists while bringing enhanced and timely health monitoring to rural 74 

communities. Here we present and discuss a susceptible-exposed-infectious-recovered (SEIR) 75 

epidemiological model developed based on wastewater detection of SARS-CoV-2 for 76 

epidemiological surveillance of COVID-19 in rural area. We specifically tested the hypothesis 77 

that the detection and quantification of SARS-CoV-2 in wastewater forecasts the start of an 78 

outbreak in rural communities.  79 

 80 

Material & Methods. 81 

Sites and sample collection 82 

Wastewater samples were collected from wastewater treatment facilities (WWTFs) located in 83 

five rural communities serving approximately 1,000 or less inhabitants and a small city in a rural 84 
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county in Idaho, USA (Table 1). These rural communities are defined as "rural" according to the 85 

2020 U.S. Census Bureau. The county itself falls under the category of a "rural" or 86 

"nonmetropolitan" county, as classified by the U.S. Office of Management and Budget. Rural 87 

cities are abbreviated RC1 to RC5 and the small city SC. All WWTFs primarily treat domestic 88 

wastewater; the SC WWTF also receives effluent from a regional hospital.  89 

Samples were collected three times a week from October 2021 to March 2022. Rural WWTF 90 

samples were time-composite samples collected using Teledyne ISCO 3700 Full Size Portable 91 

Sampler (Teledyne ISCO, Lincoln, NE, USA) autosamplers or homemade autosamplers 92 

constituted of a Sci-Q 323 peristaltic pump (Watson-Marlow, Falmouth, UK) controlled by an 93 

Omron H3CR timer (Omron Corporation, Kyoto, Japan) and housed in a cooler box. Sampling 94 

frequencies were comprised between 10 and 30 minutes for 24h. Approximately 3L of 95 

wastewater was collected, and subsamples were collected at the end of the 24h sampling period 96 

and transported within 6h to the laboratory, where samples were kept at 4°C until further 97 

processing. Samples from the SC WWTF were collected using a Teledyne ISCO model 3700 98 

autosampler (Teledyne ISCO, Lincoln, NE, USA), with samples collected paced with influent 99 

flow. Sampling failed for less than 10% of the total samples sampled. Samples were kept at 4°C 100 

until further processed, at most 3 days later. 101 

Confirmed COVID-19 case counts per zip code were obtained from the Idaho Public Health 102 

District 2 website (https://idahopublichealth.com/district-2/novel-coronavirus). 103 

Sample processing for SARS-CoV-2 detection and quantification.  104 

The detailed protocols presented below are publicly available on protocol.io (32). In brief, 105 

before concentrating the viral fraction of two replicate wastewater fractions through 106 

electronegative membrane filtration, each sample was spiked with the Bovilis® Coronavirus 107 
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(BCoV) (Merck, Kenilworth, NJ, USA) as a process internal control. Subsequently, filters were 108 

inserted together with the DNA/RNA Shield™ (Zymo Research, Irvine, CA, USA) into the Lysis 109 

Bead tubes from the AllPrep® PowerViral® DNA/RNA Kit (QIAGEN, Inc., Germantown, MD, 110 

USA). Lysis was performed on a FastPrep™ (MP Biomedicals, Santa Ana, CA, USA) for 4 111 

cycles of 20 seconds each at 4.5 m/s and the RNA was then extracted as per the kit 112 

manufacturer’s protocol on a QIAcube Connect automated extraction instrument (QIAGEN, Inc., 113 

Germantown, MD, USA).  114 

SARS-CoV-2 was quantified by dPCR using the QIAcuity Digital PCR System (QIAGEN, 115 

Inc., Germantown, MD, USA) using the GT-Digital SARS-CoV-2 Wastewater Surveillance 116 

Assay For QIAcuity® (GT Molecular, Fort Collins, CO, USA). Each 40 µl reaction contained 1x 117 

of the Qiagen QIAcuity One-Step Viral RT-PCR Kit (QIAGEN, Inc., Germantown, MD, USA), 118 

1x of the GT Molecular N1-N2-BCoV Assay Solution, and 20 µl RNA template. RNA extraction 119 

blanks, dPCR non-template controls and positive controls were included in each dPCR run.  120 

Data processing and analysis 121 

Fluorescent thresholds were manually set based on the fluorescent level of the positive 122 

controls. Then we excluded data from samples for which (i) the recovery rate of the internal 123 

processing control BCoV was lower than 1%, or (ii) the RNA extraction process control or dPCR 124 

negative control were positive and more than 10% of the measured sample concentration. 125 

The date of an outbreak's start was determined with a piecewise regression model using 126 

either the cumulative sum of the copies per day of the N1 target or the cumulative sum of 127 

COVID-19 clinically confirmed cases to estimate the breakpoint in a linear dataset. For each 128 

city, we subsampled the linear data around the inflection points corresponding to the dates of the 129 

main surge of N1 copies or COVID-19 reported cases in early 2022. Then we fitted a linear 130 
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regression model in R using the “lm” function with cumulative copies of cases as the response 131 

(Y) and the date as the predictor (X). Finally, we fitted the piecewise regression model to the 132 

original model, estimating a breakpoint around the inflection of the line, using the segmented() 133 

function from the segmented package in R (33). 134 

SARS-CoV-2 Epidemiological Model.  135 

We constructed a compartmental model to approximate the dynamics of the epidemic in each 136 

city. Due to the small size of populations in the rural areas, we expected stochastic effects to be 137 

important, and opted to use a discrete-time discrete-state Markov process to approximate the 138 

spread of the disease. In this model, individuals in the population can be in one of four states: 139 

susceptible (S), exposed (E), infectious (I), and removed (R). Importantly, in this model exposed 140 

individuals have contracted the disease and shed the virus but are not yet infectious. The changes 141 

in the compartments are assumed to be binomially distributed: 𝑋𝑋𝑡𝑡  ∼ 𝐵𝐵𝐵𝐵𝐵𝐵 �𝑆𝑆(𝑡𝑡), 𝛽𝛽𝛽𝛽(𝑡𝑡)
𝑁𝑁(𝑡𝑡)� is the 142 

number of newly exposed individuals on day t, 𝑌𝑌𝑡𝑡 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵 �𝐸𝐸(𝑡𝑡), 1
𝜏𝜏
� is the number of newly 143 

infectious individuals on day t, and  𝑍𝑍𝑡𝑡 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵 �𝐼𝐼(𝑡𝑡), 1
𝛿𝛿
� is the number of newly recovered 144 

individuals on day t. The parameter β is the transmission rate, 𝜏𝜏 is the mean incubation period, 145 

and 𝛿𝛿 is the mean infectious period, and 𝑁𝑁(𝑡𝑡)  =  𝑆𝑆(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) is the total 146 

population at time t. The discrete-time Markov process is given by: 147 

 148 

(1a)  Δ𝑆𝑆(𝑡𝑡)  =   − 𝑋𝑋𝑡𝑡, 149 

(1b)   Δ𝐸𝐸(𝑡𝑡)  =  𝑋𝑋𝑡𝑡 − 𝑌𝑌𝑡𝑡, 150 

(1c)   Δ𝐼𝐼(𝑡𝑡)  =  𝑌𝑌𝑡𝑡 − 𝑍𝑍𝑡𝑡, 151 
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(1d)   Δ𝑅𝑅(𝑡𝑡)  =  𝑍𝑍𝑡𝑡. 152 

 153 

The number of virus particles shed by exposed individuals was assumed to be log-normally 154 

distributed (34). However, the log-normal distribution is difficult to work with mathematically, 155 

so we approximated the log-normal distribution using the Gamma distribution by matching the 156 

first two moments. For simplicity, we assumed that only the individuals in the exposed class 157 

𝐸𝐸(𝑡𝑡) shed virus in the stools. This assumption is reasonable since it has been shown that the 158 

amount of virus shed by a single individual is time-varying, with a peak occurring around 159 

symptoms onset (35,36). If there are 𝐸𝐸(𝑡𝑡) exposed individuals, the amount of virus in the 160 

wastewater is a random variable 𝑉𝑉(𝑡𝑡) with probability density function:  161 

 162 

(2) Φ(𝑉𝑉; 𝑘𝑘,𝜃𝜃,𝐸𝐸)  = 𝛾𝛾(𝑉𝑉;𝐸𝐸𝐸𝐸,𝜃𝜃), 163 

where 𝛾𝛾(𝑉𝑉; 𝑘𝑘,𝜃𝜃) is the probability density function for the gamma distribution with rate 𝑘𝑘  =   𝐸𝐸𝑣𝑣
2

𝑉𝑉𝑣𝑣
 164 

and scale 𝜃𝜃  =   𝑉𝑉𝑣𝑣
𝐸𝐸𝑣𝑣

. See Table 2 for parameter values.  165 

We used a sequential Monte Carlo (particle filter) method to fit the collected wastewater data 166 

to the stochastic model to the collected wastewater data (Figure 1). In simulations, 50,000 167 

particles (initial conditions) were sampled, using the normalized likelihood distribution for the 168 

initial concentrations of virus measured in the wastewater to determine the number of exposed 169 

individuals (Figure 1 top row). The initial states of the other classes were sampled uniformly 170 

from the remaining population. 171 
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Each time step, every particle evolved according to the Markov process in equation 1 (Figure 172 

1 bottom left). On days that we have collected wastewater data, the particles were weighted 173 

according to their likelihood (Figure 1 bottom center) and resampled using a systematic sampling 174 

method to filter out the least likely particles and reinforce the most likely particles (Figure 1 175 

bottom right).  176 

Data and scripts of this study are available on https://github.com/Tyler-Meadows/wastewater-177 

surveillance. 178 

 179 

Results. 180 

Dynamics of SARS-CoV-2 in rural wastewater vs. clinically confirmed cases. 181 

For the period investigated, clinically reported cases revealed that the cities experienced one 182 

or two COVID-19 outbreaks, as shown in Figure 2. The first outbreak occurred in late October 183 

2021, but it was not detected in all cities and was relatively small compared to the second 184 

outbreak experienced by all cities in early January 2022. This second surge was driven by the 185 

Omicron variant, which emerged in the United States in early December 2021 (37).  186 

Examining the collected wastewater data, 293 samples were retained following data 187 

processing, with each WWTF yielding 44-58 measurements over a five-month period. The daily 188 

load of SARS-CoV-2 present in wastewater varied greatly day-to-day, making interpretation of 189 

the real-time spread of COVID-19 challenging. Interestingly, the variability in the order of 190 

magnitude tended to be larger as the city population decreased, indicating a greater level of 191 

randomness (as shown in Figure 3). Additionally, the difference in variance of daily SARS-CoV-192 

2 quantities between cities was significant, as confirmed statistically using Brown-Forsythe, 193 
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Levene, Barlett, and Kligner-Killeen tests (test results provided in the Supplementary Material). 194 

These results suggest that the fluctuations in daily SARS-CoV-2 measurements in smaller cities 195 

are more stochastic than in larger cities. 196 

Despite this stochasticity, the Omicron outbreaks resulted in a sharp increase of quantities of 197 

the virus collected at the WWTFs above the background levels (Figure 2) by 7- to 81-fold. After 198 

estimating the date of the outbreak start (vertical dashed line in Figure 2), we estimated that the 199 

SARS-CoV-2 wastewater signal tends to lead the clinically confirmed COVID-19 cases by 0 to 200 

10 days. This supports other retrospective observations, mostly performed in larger cities, that 201 

wastewater surveillance could improve and even accelerate the early detection of infectious 202 

diseases in rural communities (36,38,39). However, the lead times were variable, and in one 203 

case, the wastewater signal was not inferred to precede the clinically reported case data. Other 204 

studies have also observed cases where wastewater signal was not preceding clinical testing 205 

(38,40).  206 

 207 

Epidemiological model to forecast a COVID-19 outbreak from wastewater detection of the 208 

SARS-CoV-2. 209 

We used an SEIR-based model (Figure 4A) to investigate whether wastewater-based 210 

surveillance of SARS-CoV-2 could enhance the prediction of a COVID-19 outbreak. To test the 211 

model’s ability to forecast upcoming trend of cases, we determined if the model could have 212 

predicted the Omicron outbreak using exclusively wastewater data. Specifically, we fit the 213 

predicted cases using the wastewater measurements up to the onset of the outbreak. This 214 

corresponded to the first measurement performed two days after the inflection point defining the 215 

start of the outbreak using wastewater data. Then we let the model forecast the upcoming trend 216 
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in active cases (Figure 4B). When comparing the forecasted COVID-19 cases with the clinically 217 

confirmed cases we found that the model successfully captured the clinically active cases in five 218 

of the six cities. For the rural cities, the forecasts were within the 95% confidence interval at 219 

least up to eight days ahead; corresponding to R4 (Figure 4). While the number of predicted 220 

cases tended to be lower than the number of the clinically confirmed cases reported, they were 221 

following them closely in two rural cities and in the small city. For those two rural cities (sites 222 

R1 and R2), the model accurately predicted the number of active cases more than 14 days ahead. 223 

In city SC, the model was able to forecast the number of active cases accurately more than eight 224 

days ahead. These results show that in the majority of sewersheds surveyed the model would 225 

have confidently predicted the outbreaks even before the COVID-19 reported cases started to 226 

increase. Anticipation of the model on the COVID-19 reported cases ranged from 0 days for R5 227 

to 11 days for R2 (see blue dashed line on Figure 4).  228 

Since our objective was primarily to test if a SEIR model could predict an outbreak occurring 229 

in rural communities, we then focused on the capacity of the model to predict an increase in the 230 

trend of active cases. To that end, we used a simulated wastewater dataset to count the number of 231 

times the model predicted upward or downward trends in cases correctly (i.e., true positive rate) 232 

or incorrectly (i.e., false positive rate). We varied the threshold used to accept predictions to 233 

create receiver operating characteristic (ROC) curves (Figure 5). Measured area under the curve 234 

(AUC) values presented in Figure 6 reflect the sensitivity and specificity of the forecast for a 235 

range of forecasted days. The model tends to predict trends better as the forecast range increases. 236 

The ROC curves for predictions made less than a week in advance were significantly lower than 237 

those made over nine days (p-values presented in Supplementary Material). After nine days, the 238 
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AUC medians were above 0.7, and increased to 0.75 at 15 days. These results suggest 239 

epidemiologists could rely on these 9 to 15-day forecasts. 240 

 241 

Discussion 242 

Wastewater-based detection of SARS-CoV-2 has been primarily focused on large urban and 243 

metropolitan areas and much less on rural towns. Here we address this gap by having conducted 244 

a surveillance effort of the SARS-CoV-2 in the wastewaters of several rural cities of the state of 245 

Idaho (USA) since October 2021. Below we discuss the barriers associated with WBE in rural 246 

areas and how SEIR modeling could help overcome some of these challenges by forecasting 247 

trends in COVID-19 cases based on wastewater-based measurements. 248 

While epidemiologists can examine wastewater data side-by-side with clinical testing to help 249 

understand what is happening, many infectious diseases are not reportable, or in the case of 250 

COVID-19, at-home self-testing replaced clinical testing (41). For example, influenza and 251 

COVID-19 are not reportable diseases in Idaho (USA). Thus, epidemiologists are left with few 252 

tools to help them characterize epidemiological trends and forecasts; ultimately only wastewater 253 

data may be available to provide insight into disease burden in rural areas.  254 

However, as we experienced, the variability in viral quantities arriving at the rural WWTF 255 

per day made the determination of the start of the outbreak in real-time difficult without 256 

retrospective statistical analysis. As we observed, the variability in the order of magnitude tended 257 

to be larger as the rural sewershed size decreased (42), making interpretation of wastewater-258 

based detection of infectious diseases in rural areas even more complicated for public health. 259 
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This noise is typically lower in larger sewersheds that are more active over a 24-hr time 260 

compared to smaller ones (43).  261 

SEIR epidemiological models offer a framework for epidemiologists to analyze the dynamics 262 

of outbreaks using wastewater data (7,8,44–48). Specifically, in our study, we demonstrate that 263 

our SEIR model can provide reliable forecasts of when case numbers are trending upwards in 264 

rural communities. Sensitivity and specificity assessments of the model in predicting start of the 265 

outbreak revealed that the forecasts were more reliable when looking at trends beyond a week, 266 

with the best forecast being over a period of nine to 15 days. Similar ranges of short-term 267 

forecasts of seven to nine days to predict upcoming cases based on wastewater detection of the 268 

SARS-CoV-2 were reported for larger cities using SEIR or SEIR-like approaches (8,46,48). The 269 

fact that the model was not performing well under 9 days may, in part, be attributed to the noise 270 

of the SARS-CoV-2 quantities in rural wastewater that creates a sawtooth pattern in the trend. 271 

Thus, while the trend over a week goes up, there is a chance that some of the points between 272 

went down. This led us to hypothesize that the noise in the wastewater data may have made 273 

short-term trend predictions less accurate.  274 

While our SEIR model functions well to provide advanced warning of a COVID-19 275 

outbreak, it failed to predict the outbreak peak (Fig. S1) and we could not assess the accuracy of 276 

case number predictions. Predicted cases tended to be lower than reported clinical cases for the 277 

area, contrasting with other studies on larger sewersheds that have shown that SEIR models 278 

typically estimate more COVID-19 cases than the reported number (45,53,54). The 279 

underestimation of COVID-19 cases observed in this study may be attributed, in part, to 280 

differences between the population of the city sampled and the zip code used (Table 1); the latter 281 

corresponds to the clinically recorded cases. When comparing city with zip code census, 39 to 282 
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71% of the residents of rural zip codes were not connected to the sewer system of the cities. In 283 

rural areas, zip codes often cover a larger geographical area beyond the city limits, which means 284 

that comparisons between wastewater data and reported cases should be approached with 285 

caution. It is important to note that we did not intend to use the model to predict case numbers; 286 

the study was not designed for this purpose. Instead, it was intended to forecast an increase in 287 

COVID-19 cases to provide an early warning that could be shared with the community.  288 

Despite the successful application of SEIR models to wastewater surveillance of the SARS-289 

CoV-2, there are some uncertainties on how to connect the model with wastewater data. Some 290 

authors have included the cumulative virus titer in the sewershed as a dynamic variable (8) or as 291 

a linear combination of other dynamic variables (45). However, this approach can be problematic 292 

when measurements are sparse or there are gaps between collection periods – which would be 293 

very common in rural WWTFs. Most authors directly connect wastewater measurements to the 294 

incidence rate, or prevalence, similar to what we have done herein. In addition, the connection 295 

between the disease compartments (the exposed ‘E’ and infected ‘I’ compartments) in the SEIR 296 

model and wastewater measurements is not well established. Contribution to viral load in 297 

wastewater can tie to the individuals in the ‘I’ compartment (7,8,45) or to the ‘E’ compartment; 298 

the SEIR model in this study resulted in better predictions than when connected to ‘I’. This 299 

difference could be attributed to the fact that peak virus shedding in stool may occur for a few 300 

days around the onset of symptoms (35,36). This means that individuals contributing to the load 301 

of SARS-CoV-2 measured in wastewater may be at the transition between 'E' and 'I' 302 

compartments in the SEIR model. Some researchers have incorporated the results from 303 

wastewater measurement in both ‘E’ and ‘I’ (44) while others created a new compartment 304 

structure to account for viral shedding dynamic in wastewater (47,48).  305 
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Finally, our model was able to successfully forecast the upcoming cases in most of the cities 306 

surveyed. In one city this resulted in predicting the outbreak as much as 11 days before reported 307 

clinical cases started to increase. However, it failed for one city, suggesting that the disease 308 

dynamics do not always follow the model assumptions. This may be because the model does not 309 

include potential traveling between cities, which may impact the accuracy of predictions, 310 

especially in rural areas where residents often have to commute to work. In the rural cities 311 

surveyed between 79.4 and 94.5% of residents work outside their place of residence, versus 312 

27.3% in the small city surveyed (data from U.S. Census Bureau Topic: Commuting – Survey: 313 

American Community Survey –  2021, ACS 5-Year Estimates Subject Tables).  314 

In conclusion, our study reveals that wastewater-based epidemiology (WBE) in rural 315 

communities and small sewersheds in general is associated with high daily variation in SARS-316 

CoV-2 levels. This variation creates a challenge for epidemiologists who seek to monitor real-317 

time data in rural areas based solely on the raw data. However, our research also shows that the 318 

SEIR modeling approach can help to decipher this data and actually predict the start of 319 

outbreaks. Our model provides a suitable framework for epidemiologists to analyze the dynamics 320 

of outbreaks using wastewater data. 321 
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Table 1: Site characteristics and outbreak detection from the wastewater data and 489 

clinically confirmed cases. Start of outbreaks was measured using a Piecewise regression 490 

model.  491 

City City 

census* 

ZIP Code 

population*  

Outbreak 

Start WW 

Outbreak 

Start Cases 

Δ Outbreak 

Start (Day) 

Fold change in 

SARS-CoV-2 

SC 25,435 26,739 2022-01-04 2022-01-11 7 7.4 

R1 1,030 1,701 2022-01-06 2022-01-13 7 15.2 

R2  763+196† 2,115 2022-01-01 2022-01-11 10 53.9 

R3 890 2,015 2022-01-14 2022-01-16 2 21.7 

R4 624 1,167 2022-01-05 2022-01-09 4 42.5 

R5 288 985 2022-01-12 2022-01-12 0 81.2 

* Data from the 2020 Decennial Census obtained from https://data.census.gov/  

† Wastewater treatment facility collects effluents from a second city. 

 492 

 493 

Table 2: Parameters used in model fitting. 494 

Parameter Description Value Reference 

𝐸𝐸𝑣𝑣 Mean virus copies shed by a single individual 4.49 x 107 gc/l (8) 

𝑉𝑉𝑣𝑣 Variance of virus shed by individuals 2 x 107 (gc/l)2 (49) 

𝜏𝜏 Incubation period 3 days (8) 

𝛿𝛿 Infectious period 8 days (8) 

𝛽𝛽 Force of infection Fit from data  

𝑄𝑄  Flow rate of sewershed Various Individual treatment plants 

 Average faeces produced per day 128 g (50) 

  495 
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FIGURE LEGENDS 496 

 497 

Figure 1: Diagram showing steps of the particle filter method we use to determine the 498 

number of active cases from the wastewater titers of SARS-CoV-2. The particle filter is 499 

initialized using the first measurement of virus concentration in the wastewater. We generate a 500 

distribution of the possible number of infections in the community and sample many (50000) 501 

values from this distribution. These values are used as the possible number of exposed 502 

individuals (E) on day 1 (top right graph). Each of these values also gets a potential number of 503 

Susceptible (S), Infected (I), and Recovered (R) individuals. Each set of values (S,E,I,R) is called 504 

a particle. The darker dots in the diagram signify a higher number of particles with that value of 505 

E. We apply one step of the stochastic SEIR model to each particle to predict the number of 506 

infections on the next day (bottom left graph). The measurement of the virus in the wastewater 507 

on the next measurement is used to determine which particles are more likely than others. Less 508 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 3, 2024. ; https://doi.org/10.1101/2024.02.01.24302131doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.01.24302131


   
 

   
 

likely particles are filtered out using a systematic resampling procedure and replaced with more 509 

likely particles (bottom right graph).  510 

 511 

Figure 2: Trend in SARS-CoV-2 in wastewater mirrors the dynamic of the COVID-19 512 

outbreak in rural areas. Each panel represents a city. In each panel, the bar graph shows the 513 

time series of the COVID-19 clinically confirmed cases at the specimen collection dates and the 514 
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second graph shows the measured concentration of SARS-CoV-2 (green dots) with the 7-day 515 

moving average (red line). Vertical dash lines represent the estimated start of the outbreak using 516 

either the cumulative sum of the copies per day of the N1 target or the cumulative sum of 517 

COVID-19 clinically confirmed cases, determined by the Piecewise regression model. Delta 518 

shows the difference of days between predicted dates from wastewater-based detection of SARS-519 

CoV-2 and clinically confirmed COVID-19 cases. Cities are ordered by population size (largest 520 

on the top left and smallest on the bottom right). 521 
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 522 

Figure 3: Daily quantities of SARS-CoV-2 tend to be more spread as the city population get 523 

smaller. Panel A) shows the distribution of the copies per day of the SARS-CoV-2 on the log 524 

scale over the sampling period at each site ordered by city size, detailed in panel B. Note: bin 525 

width = 1/30. Dots on the x axis show the samples where N1 was under the detection limit (SC: 526 

n = 0, R1: n = 8, R2: n = 8, R3: n = 4, R4: n = 6, R5: n = 7). Panels B) shows the population size 527 

of the cities sampled, and C) shows the log scale sample variance measured for each city 528 
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calculated using the log10 of copies per day of the SARS-CoV-2. This essentially shows that the 529 

magnitude of the estimate is less consistent as population size gets smaller (i.e., more 530 

stochasticity).  531 

 532 

Figure 4: Susceptible-exposed-infectious-recovered model can forecast cases in the early 533 

stage of a COVID-19 outbreak. A) SEIR model framework depicting a population in green 534 

with infected people in red. The SARS-CoV-2 shed by a fraction of the exposed population is 535 

measured in the wastewater collected at the WWTF. This titer is integrated into a Susceptible 536 

(S), Exposed (E), Infected (I), and Recovered (R) model to estimate the number of exposed 537 
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individuals E. B) Left white side contains known data at the time of the forecast where the blue 538 

lines show the fitted predicted active cases from wastewater up to the beginning of the outbreak, 539 

and the blue shade shows the data not yet observed at the time of forecast whereas the red lines 540 

are active cases forecasted. Vertical dashed lines represent the estimated start of the outbreak 541 

based on clinically confirmed COVID-19 cases. Using the wastewater data, the model forecasted 542 

the start of the outbreak between 0 to 11 days earlier than the onset of the increase in clinical 543 

confirmed cases. 95% confidence intervals are shown by the gray bars. Dots show the active 544 

cases determined as the 11-day moving sum of the clinically confirmed cases. Since the mean 545 

infectious period from fitting data was 10.88 days, we determined the actual active cases as the 546 

11-day moving sum of new clinically confirmed cases. Breakpoints between fitted and forecast 547 

values were chosen to be two days after the start of the outbreak, determined by the Piecewise 548 

regression model. Cities are ordered by population size (largest on the top left and smallest on 549 

the bottom right). 550 
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 551 

Figure 5: Receiver operating characteristic (ROC) curves for a synthetic data set. A plot 552 

showing the number of true increases against false increases for predicted case counts 553 

1,3,5,7,9,11,13, and 15 days beyond the current measurements. A true increase is counted when 554 

there was an increase in cases and the model predicted a greater than 𝛼𝛼 probability of an 555 

increase. A false increase is counted when there was no increase in cases but the model predicted 556 

a greater than 𝛼𝛼 probability of increase.  557 
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 558 

Figure 6: Evaluating SEIR model predictability for an emerging COVID-19 outbreak. Box 559 

plot showing the distribution of measured area under the curve (AUC) when computing 50 560 

receiver operating characteristic (ROC) curves when true positive rate is plotted as function of 561 

the false positive rate for prediction forecasted from one to 15 days. A random classifier, which 562 

represents the outcome if the model randomly picks predictions, has an AUC of 0.5. The further 563 

away the curve is from the one of the random classifier, the higher the AUC and the better it 564 

illustrates the ability of the model to forecast a trend, with the 1 representing the highest 565 

accuracy corresponding to 100% positive rate and 0% false negatives.  In general, for a 566 

diagnostic test to be able to discriminate patients with and without a disease, the AUC must be 567 

above 0.5. Values between 0.7 and 0.8 are considered to be ‘fair’ or acceptable (34,35).  568 
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