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Neil P Oxtoby (OrcID: 0000-0003-0203-3909): n.oxtoby@ucl.ac.uk 56 

Abstract: 57 

Background: Structural MRI plays a pivotal role in the radiological workup for assessing 58 

neurodegeneration. Scanner-related differences hinder quantitative neuroradiological assessment of 59 

Alzheimer’s disease (QNAD). This study aims to train a machine-learning model to harmonize brain 60 

volumetric data of patients not encountered during model training. 61 

Method: Neuroharmony is a recently developed method that uses image quality metrics (IQM) as 62 

predictors to remove scanner-related effects in brain-volumetric data using random forest regression. 63 

To account for the interactions between AD-pathology and IQM during harmonization, we developed 64 

a multi-class extension of Neuroharmony. We performed cross-validation experiments to benchmark 65 

performance against existing approaches using data from 20,864 participants comprising cognitively 66 

unimpaired (CU) and impaired (CI) individuals, spanning 11 cohorts and 43 scanners. Evaluation 67 

metrics assessed ability to remove scanner-related variations in brain volumes (biomarker 68 

concordance), while retaining the ability to delineate different diagnostic groups (preserving disease-69 

related signal). 70 

Results: For each strategy, biomarker concordances between scanners were significantly better (p <71 

10−6) compared to pre-harmonized data. The proposed multi-class model achieved significantly 72 

higher concordance than the Neuroharmony model trained on CU individuals (CI: p < 10−6, CU: p =73 

0.02) and preserved disease-related signal better than the Neuroharmony model trained on all 74 

individuals without our proposed extension (ΔAUC= −0.09). The biomarker concordance was better 75 

in scanners seen during training (concordance > 97%) than unseen (concordance < 79%), 76 

independent of cognitive status. 77 

Conclusion: In a large-scale multi-center dataset, our proposed multi-class Neuroharmony model 78 

outperformed other strategies available for harmonizing brain-volumetric data in a clinical setting. 79 

This paves the way for enabling QNAD in the future.  80 
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1 Introduction 81 

Structural MRI such as T1-weighted (T1w) sequences are routinely acquired in memory clinics for 82 

diagnosing Alzheimer’s disease (AD)1, clinical phenotyping2, and for differentiating AD from other 83 

types of dementias3. In current clinical practice, radiologists primarily assess global and regional 84 

atrophy through visual examination of MRI. However, visual examinations are subjective and prone 85 

to intra-rater and inter-rater variability. Quantitative imaging biomarkers such as brain volumetric 86 

data are becoming increasingly popular because of their potential to improve diagnostic confidence4. 87 

Quantitative imaging biomarkers can be used for objective assessment in the radiological workflow 88 

either by using automated digital tools based on normative modelling3 or using latest advances in 89 

artificial intelligence such as brain-age estimation5, or data-driven subtyping6.  90 

However, differences in MRI acquisition protocols and scanners affect consistency and reproducibility 91 

of brain volumetry7 and are a major impediment for the clinical translation to automated tools. To 92 

tackle this problem, many harmonization tools have emerged in recent years8. Such algorithms can 93 

either harmonize original scans9 or derivatives extracted from the scans10. Some of these algorithms 94 

have been shown to harmonize patient data affected by a neurodegenerative disease11,12, while 95 

preserving disease-related signature. However, such harmonization techniques typically work only for 96 

the scanner models they have been trained on, and, in some instances require the same subjects to 97 

be scanned with multiple different scanners13. Harmonizing volumetric data from MRI scanners not 98 

encountered during initial model training needs additional training with a substantial number of 99 

images from these scanners14. This poses a challenge for the deployment of such methods for clinical 100 

use. 101 

Neuroharmony15 is a recently developed harmonization approach that can harmonize volumetric data 102 

from new and unseen MRI scanners. It works under the assumption that the corrections needed to 103 

harmonize data from multiple scanners can be predicted from image quality metrics (IQM) computed 104 

from the scans. While the original experiments indicate that harmonization works for healthy controls, 105 

harmonizing data from patients with neurodegenerative diseases remains an open problem. This is 106 

because disease pathology in patients may affect the IQM, and such effects remain unaccounted for 107 

in a Neuroharmony model trained on healthy controls. 108 

In this paper we propose an extension of Neuroharmony to account for interaction between disease 109 

pathology and IQM to remove scanner-related effects (multi-class model of Neuroharmony). We 110 

systematically compare the performances of the proposed multi-class model in harmonizing data with 111 

two other approaches: the original Neuroharmony model trained only on cognitively unimpaired (CU) 112 

individuals (normative model of Neuroharmony) and the original Neuroharmony model trained on 113 
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cognitively unimpaired as well as cognitively impaired (CI) individuals without our proposed multi-114 

class extension (inclusive model of Neuroharmony). We used data from 11 cohorts across three 115 

continents for evaluating these approaches. Lastly, we identify key challenges for clinical 116 

implementation of the best multicentric harmonization strategy identified in our experiments for 117 

enabling quantitative neuroradiological assessment of Alzheimer’s disease (QNAD).   118 
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2 Materials and Methods  119 

2.1 Participants and scanner characteristics 120 

T1w MRI data of healthy controls (CN), participants with subjective cognitive decline (SCD), mild 121 

cognitive impairment (MCI), and Alzheimer’s disease (AD) from 11 data cohorts were included in our 122 

analysis. The cohorts considered for this study were: Amsterdam Dementia Cohort (ADC)16, 123 

Alzheimer’s Disease Neuroimaging Initiative (ADNI)17, Australian Imaging, Biomarker & Lifestyle 124 

Flagship Study of Ageing (AIBL)18, Alzheimer’s Repository Without Borders (ARWiBo)19, European DTI 125 

Study on Dementia (EDSD)20, Hungarian Longitudinal Study of Healthy Brain Aging (HuBA)21, Italian 126 

Alzheimer’s Disease Neuroimaging Initiative (I-ADNI)22, National Alzheimer’s Coordination Center 127 

(NACC) 23, Open Access Series of Imaging Studies (OASIS, versions 1&2)24, European Alzheimer’s 128 

Disease Neuroimaging Initiative (also known as PharmaCOG)25, and UK Bio-bank (UKBB)26. Detailed 129 

information about each cohort is summarized in Supplementary Table 1. 130 

Minimum inclusion criteria included the availability of a T1w MRI scan along with age, sex, scanner 131 

information, and a clinical diagnosis of either CN, SCD, MCI or AD. All datasets were organized 132 

according to the BIDS standard27 to ensure inter-operability and data anonymization. An overview of 133 

the scanners used in this study is shown in Table 1. 134 

2.2 Image processing 135 

Cortical reconstruction and volumetric segmentation were performed with the cross-sectional 136 

pipeline of FreeSurfer v7.1.128 in order to extract volumes of 68 cortical regions in the Desikan-Killiany 137 

atlas, 14 subcortical brain regions, as well as total CSF volume, total gray matter volume and total 138 

brain volume with and without ventricles. All features derived from FreeSurfer are listed in 139 

Supplementary Figure 1. IQM were estimated using MRIQC v0.16.129. Automatic quality control of the 140 

FreeSurfer segmentations was performed using the Euler number, where outliers defined as 1.5×IQR 141 

(inter-quartile range) below the first quartile and 1.5×IQR above the third quartile30 per scanner were 142 

excluded from our experiments.  143 

In order to ensure reproducibility of our results across different computing environments31, Docker 144 

containers for both FreeSurfer (https://github.com/E-DADS/freesurfer) and MRIQC 145 

(https://github.com/E-DADS/mriqc) have been made available online.  146 

2.3 Multi-class Neuroharmony model 147 

The volumetric data from all individuals in the training set were harmonized using ComBat 148 

harmonization10 with empirical Bayes optimization, for removing scanner related batch effects while 149 
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preserving the effects of age, sex, and cognitive status. The cognitive status was dichotomized based 150 

on the clinical diagnosis as either CU (CN and SCD) or CI (MCI and AD). Subsequently, a random forest 151 

regressor was trained with MRIQC-derived IQM to predict the corrections needed to harmonize the 152 

volumes as predicted by ComBat. To ensure the regressor learns to predict the corrections needed to 153 

harmonize accurately in the presence of AD pathology, we used synthetic minority oversampling 154 

technique (SMOTE) for data augmentation32 before training the random forest regressor. This ensured 155 

that IQM values with and without neurodegeneration were equally distributed by removing data 156 

imbalance between CI and CU individuals. The use of dichotomized cognitive status instead of clinical 157 

diagnosis ensured that in the test phase, a full clinical diagnosis is not required as an input to predict 158 

the harmonized volumes. The hyperparameters for the random forest regressor were chosen to be 159 

the same as the ones used in the original Neuroharmony paper.15 160 

2.4 Model comparisons 161 

The performance of the proposed multi-class extension to Neuroharmony was compared with two 162 

other machine-learning based harmonization strategies that are generalizable to external datasets: 163 

2.4.1 Normative model: In the training phase, volumetric data from only the CU individuals were 164 

harmonized using ComBat harmonization using the aforementioned strategy, while preserving the 165 

effects of age and sex. Subsequently, a random forest regressor was trained to predict the corrections 166 

needed to harmonize the volumes as predicted by ComBat using MRIQC-derived IQM.  167 

2.4.2 Inclusive model: The training strategy remained the same as for the normative model, but 168 

volumetric data of both CU and CI individuals were used for training.  169 

2.5 Measures for model evaluations 170 

We use two evaluation metrics to assess the ability of the harmonization strategies to remove 171 

scanner-related variations in brain-volumetric data between each pair of scanners (biomarker 172 

concordance), while retaining the ability to delineate diagnostic groups (preserving disease-related 173 

signal).  174 

Firstly, to assess if the volumetric data are harmonized, we compared the distributions of each 175 

volumetric measure for each pair of scanners. This was done independently within each diagnostic 176 

group, and after correcting for the confounding effects of age and sex by regressing out their effects 177 

estimated in CU individuals. The Kolmogorov-Smirnov (KS) test was used for comparing these 178 

distributions with the null hypothesis that the distributions between any two pair of scanners were 179 

the same. For statistical validity we excluded scanners with fewer than 10 participants of the same 180 

diagnostic group from this evaluation. A measure for evaluating harmonization was defined as the 181 
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percentage of such comparisons across brain regions for each scanner pair, where distributions were 182 

not statistically different from each other (p ≥ 0.05) after correcting for multiple testing via false 183 

discovery rate (FDR). To provide a reference measure for biomarker concordance, we also computed 184 

this measure in the non-harmonized data. 185 

Secondly, to assess if disease-related signal was preserved in the volumetric measures, we used area 186 

under the receiver operating characteristic (ROC) curve (AUC) as an auxiliary evaluation measure. The 187 

ROC curve for distinguishing CN participants from AD patients was computed independently for each 188 

volumetric measure. A reference measure for AUC was also computed for the non-harmonized 189 

dataset. 190 

2.6 Cross-validation experiments 191 

We performed two experiments in a cross-validation framework. Experiment 1 assessed concordance 192 

of the three harmonization strategies, by performing cross-validation at the scanner-level. Experiment 193 

2 performed cross-validation at the participant level, using the best-performing scanner-level 194 

harmonization models. 195 

Experiment 1: To investigate the generalizability of the model to unseen scanners (not included in the 196 

training set), we performed 5-fold cross-validation across the 43 available scanners, where in each 197 

fold 80% of the scanners were used for training the models, and the remaining 20% of the scanners 198 

were used for evaluation. In this experiment, to evaluate the bias introduced by using single-scanner 199 

data from the large UKBB cohort, we repeated this experiment for increasing portions of UKBB 200 

participants such that when the UKBB data is included in the training data the proportions included 201 

were: 10%; 33%; 67%; 100%. However, when UKBB cohort data is used in the test set, we always used 202 

100% of the cohort. The non-parametric McNemar Chi-square test was used to compare accuracies 203 

across harmonization strategies. 204 

Experiment 2: In this experimental setup, the test set consisted of participants from the scanners 205 

which were also present in the training set. We selected the two best performing models from 206 

Experiment 1 and performed a stratified 5-fold cross-validation across participants, stratified based 207 

on the dichotomized cognitive status. For this, the proportion of the UKBB participants included was 208 

also decided based on Experiment 1. To provide a reference measure, we compared the accuracies 209 

obtained with the corresponding accuracies obtained in Experiment 1.  210 
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3 Results 211 

3.1 Participants 212 

Table 2 shows descriptive statistics for the combined study sample used in our experiments, which 213 

consisted of QC-passed volumetric data from 20,864 participants (53.3% female) from 43 scanners 214 

across 11 cohorts. Figure 1 shows age distributions by scanner and cognitive group. 215 

3.2 Model evaluation 216 

Figure 2 shows the first result of Experiment 1: biomarker concordance under cross-validation, 217 

independently for each diagnostic group and with increasing proportions of the UKBB dataset. 218 

Reference concordance for non-harmonized dataset are also shown for each diagnostic group for 219 

comparison. As expected, concordance for each harmonization strategy were significantly higher than 220 

the non-harmonized data for all the diagnostic groups (𝑝 < 10−6). The use of the inclusive and multi-221 

class models significantly improved the concordance with respect to the normative model for the 222 

diagnostic categories of MCI and AD (𝑝 <  10−6). For diagnostic groups of CN and SCD, the 223 

concordance of the multi-class model was significantly higher than the normative model when the 224 

proportion of UKBB subjects included was 100% (𝑝𝐶𝑁 = 0.01, 𝑝𝑆𝐶𝐷 = 0.02). The inclusive model’s 225 

concordance for CN and SCD subjects was statistically similar to that of the normative model (𝑝 >226 

 0.05). 227 

Figure 3 shows the second result of Experiment 1: CN vs AD AUC computed independently for each 228 

brain regional volume in the test set. Removing scanner-related differences decreased AUC for all 229 

harmonization approaches, potentially due to the imbalance in the number of CN and AD participants 230 

in the different scanners. The AUCs of the normative model and multi-class model are slightly lower 231 

than non-harmonized volumes (𝛥𝐴𝑈𝐶 = −0.01, paired t-test 𝑝 =  10−5). However, the multi-class 232 

model significantly outperformed the inclusive model (𝛥𝐴𝑈𝐶 =  −0.09, paired t-test 𝑝 <  10−10), 233 

indicating relative loss of disease related signal when using the inclusive model harmonization 234 

strategy. 235 

3.3 Harmonization in seen vs unseen MRI scanners 236 

Figure 4 shows the results of Experiment 2: biomarker concordance as a function of scanners seen vs 237 

unseen scanners during model training, for the normative model and the multi-class model. 238 

Supplementary Figure 1 shows the same for each brain volume individually. Biomarker concordance 239 

of the multi-class model was significantly higher than the normative model for unseen scanners, based 240 

on McNemar test for all diagnostic categories  (𝑝𝐶𝑁 = 0.01,  𝑝𝑆𝐶𝐷 = 0.02, 𝑝𝑀𝐶𝐼 < 10−6, 𝑝𝐴𝐷 <241 

10−6). For seen scanners, the multi-class model harmonization strategy significantly outperformed 242 
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the normative model for the diagnostic groups of CN, MCI, and AD (𝑝𝐶𝑁 < 10−6, 𝑝𝑀𝐶𝐼 < 10−6, 𝑝𝐴𝐷 <243 

10−6), but significantly underperformed for SCD (𝑝𝑆𝐶𝐷 = 0.02).  Harmonization accuracy using the 244 

multi-class model in a seen scanner (accuracy > 97%) was better for all diagnostic groups than in 245 

unseen scanners (accuracy < 79%).  246 
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4 Discussion 247 

We introduced a novel extension to the Neuroharmony harmonization model to train a generalizable 248 

machine learning model for harmonizing multicentric brain-volumetric data for quantitative neuro-249 

radiological assessment of Alzheimer’s disease. The data for these evaluation experiments were 250 

derived from T1w MRIs acquired with 43 different scanners from 20,864 participants spanning 11 251 

cohorts. The newly introduced multi-class model would be helpful in harmonizing volumetric data 252 

while using automated methods in clinics and research where there could be data from new scanners 253 

not included in training. The trained model has been made openly available at 254 

https://www.neugrid2.eu/index.php/edads_harmonization/ while the code to train the model has 255 

been made available in: https://github.com/e-dads/Multiclass-Neuroharmony/. 256 

Our experiments showed that the multi-class model, that accounts for the interaction between 257 

disease pathology and image quality metrics to remove scanner-related effects, significantly improved 258 

harmonization accuracy for patients in unseen scanners, as compared to normative modelling. For 259 

seen scanners, it improved the harmonization accuracy for all diagnostic groups except SCD, 260 

potentially due to the low sample size of the SCD group (n=1,376). Additionally, we showed that the 261 

multi-class model of Neuroharmony preserves disease-related signature during harmonization. 262 

Harmonization of biomarker data from unseen scanners remains a challenge: biomarker concordance 263 

for both normative and multi-class models in unseen scanners was lower than obtained for seen 264 

scanners. While this leaves scope for further methodological improvements to harmonization 265 

strategies for unseen scanners, it would also be useful to investigate if the achieved harmonization 266 

performance is sufficient for the generalizability of machine learning approaches such as classification, 267 

subtyping33, and brain aging. 268 

The different number of participants used to train the respective models could potentially bias the 269 

results against the model which uses a smaller dataset for training (normative model). However, we 270 

think this setting is a realistic and fair comparison, because normative modelling always discards data 271 

from CI individuals. Through our modifications to the Neuroharmony model, we provided a way to 272 

include both CI and CU individuals in the training data, which our experiments show improves 273 

harmonization in both seen and unseen scanners while preserving disease-related signature. 274 

The harmonization performance obtained with the normative model in our experiments was lower 275 

than reported in the original Neuroharmony paper15. We think this is due to removal of sex and age 276 

variability in the original Neuroharmony method. We preserved these effects, retaining this biological 277 

variability, which we would argue is important for both research studies and future clinical 278 

implementation.  279 
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Some limitations of the original Neuroharmony model15 also apply to this work as well. The 280 

harmonization performance for an individual in the test-set depends on the contrast-to-noise ratio in 281 

the T1w MRI and the pipeline cannot guarantee effective harmonization if the ratio is outside the 282 

range seen in our training data, and might lead to incorrect harmonization. Secondly, the 283 

harmonization performance based on biomarker concordance across scanner-pairs is a surrogate 284 

measure to measure consistency in the absence of a ground-truth. To overcome this limitation, it 285 

would be useful to measure the harmonization performance for participants scanned with multiple 286 

scanners, in the future. 287 

An important limitation of this study, as with most research studies in this field, is that the imaging 288 

data used predominantly came from the developed Western countries of the EU, US, UK, and 289 

Australia. A more generalizable and inclusive machine learning model for harmonization would 290 

require data from nations in South-America, Asia, and Africa. This would include low field-strength 291 

scanners that are predominantly used in these regions, as well as more diverse biological variation in 292 

the training data. Large global consortia such as the UNITED consortium34 could potentially help in 293 

getting access to such diverse neuroimaging data. Further developing Neuroharmony for distributed 294 

or federated learning for harmonizing imaging data can also facilitate data inclusion from under-295 

represented countries. 296 

Challenges in the clinical implementation of the harmonization strategy: while the multi-class model 297 

outperformed the normative model in terms of harmonization accuracy, the implementation of the 298 

model in memory clinics might require additional work to include cognitive status of a patient during 299 

regular radiological workup. Machine learning models could potentially be used to overcome this 300 

limitation as it has been shown in recent studies that classifying CI from CN/SCD can be done with high 301 

accuracy using MRI35. To avoid a circular dependency between the two tasks, we think that developing 302 

multi-task machine learning models to jointly harmonize and predict cognitive status is an important 303 

avenue of future work.  304 

While the current work was focused on the AD spectrum, we expect that our new method will be 305 

valuable for impaired cognition in general (e.g.: vascular dementia, frontotemporal dementia, 306 

dementia with Lewy bodies). Future work validating harmonization approaches for patients with other 307 

types of dementia is crucial for eventual clinical implementation. 308 

In summary, we have generalized the Neuroharmony model to harmonize imaging biomarker data 309 

from multisite studies while retaining disease signal that could otherwise be removed by the 310 

harmonization procedure. Demonstrating on brain MRI biomarker data from the Alzheimer’s disease 311 

spectrum, our new method outperforms others on both seen and unseen scanners, making it more 312 
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suitable for clinical applications related to cognitive decline, such as memory clinics and clinical trials 313 

of new interventions for neurodegenerative diseases.   314 
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Figures and Tables 511 

Manufacturer Scanner Model Magnetic Field (T) Number of scans 

(Female %) 

Canon Titan 3.0 581 (43.4%) 

GE 

Discovery MR750 3.0 662 (43.8%) 

Discovery MR750w 3.0 24 (33.3%) 

Genesis Signa 1.5 9 (66.7%) 

Signa Excite 1.5 378 (47.8%) 

Signa PET/MR 3.0 31 (48.3%) 

Signa HDx 1.5 29 (34.5%) 

Signa HDx 3.0 99 (44.4%) 

Signa HDxt 1.5 486 (46.3%) 

Signa HDxt 3.0 998 (46.4%) 

Signa Premier 3.0 14 (42.9%) 

Philips 

Achieva 1.5 11 (36.3%) 

Achieva 3.0 295 (60.6%) 

Achieva dStream 3.0 23 (56.5%) 

Eclipse 1.5 41 (68.3%) 

Gemini 3.0 526 (59.3%) 

Gyroscan NT 1.0 195 (65.1%) 

Ingenia 3.0 51 (35.3%) 

Ingenuity 3.0 637 (46.7%) 

Intera 1.0 436 (63.1%) 

Intera 1.5 61 (31.1%) 

Intera 3.0 54 (50.0%) 

Intera Achieva 1.5 5 (20.0%) 

Intera Gyroscan 1.5 27 (40.7%) 

Siemens 

 

Allegra 3.0 84 (59.5%) 

Avanto 1.5 303 (49.5%) 

Biograph 3.0 5 (0.0%) 

Espree 1.5 7 (42.8%) 

Magnetom Expert 1.0 813 (48.8%) 

Magnetom Impact 1.0 9 (77.8%) 
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Magnetom Vida 3.0 20 (30.0%) 

Magnetom Vision 1.5 27 (74.1%) 

Prisma 3.0 253 (51.8%) 

Prima fit 3.0 216 (56.5%) 

RCNS 3.0 116 (58.6%) 

Skyra 3.0 11181 (54.9%) 

Sonata 1.5 415 (45.5%) 

Sonata Vision 1.5 5 (60%) 

Symphony 1.5 156 (57.7%) 

Trio 3.0 62 (66.2%) 

Trio Tim 3.0 837 (54.6%) 

Verio 3.0 323 (57.6%) 

Vision 1.5 359 (64.9%) 

Table 1: Scanners considered in this study and their characteristics. 512 

  513 
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 Participants 

(processed/ 

considered 

after removing 

outliers) 

Age [years] † Sex (F/M)† Diagnosis  

 (CN / SCD / MCI / AD) † 

 

Unique 

scanners † 

ADC 
4,086 / 3,722 63.9 ± 9.2 1,717 / 2,005 0 / 1,355 / 805 /1562 12 

ADNI 2,044 / 1,830 72.2 ± 7.06 889 / 941 687 / 0 / 851 / 292 27 

AIBL 557 / 524 72.7 ± 6.5 299 / 225 388 / 0 / 83 / 53 3 

ARWiBo 913 / 831 56.3 ± 16.2 529 / 302 603 / 16 / 116 / 96 7 

EDSD 416 / 384 70.4 ± 7.3 197 / 187 143 / 0 / 119 / 122 8 

HuBA 121 / 116 62.4 ± 6.9 68 / 48 116 / 0 / 0 / 0 1 

I-ADNI 179 / 172 72.2 ± 8.0 106 / 66 2 / 5 / 35 / 130 4 

NACC 1,861 / 1,731 71.9 ± 9.8 910 / 821 0 / 0 / 949 / 782 22 

OASIS 373 / 359 73.2 ± 10.7 233 / 126 211 / 0 / 111 / 37 1 

PharmaCog 141 / 137 69.0 ± 7.3 80 / 57 0 / 0 / 137 / 0 7 

UKBB 12,259 / 

11,058 
63.5 ± 7.6 6,083 / 4,975 11,058 / 0 / 0 / 0 1 

Total 22,950 / 

20,864 
65.3 ± 9.4 

11,111 / 

9,753 

13,208 / 1,376 / 3,206 / 

3,074 
43 

Table 2: Participant Demographics. † Values indicated in the column are calculated after removing the outliers, as 514 

described in section 2.2. Abbreviations: CN: cognitively normal; SCD: subjective cognitive decline; MCI: mild cognitive 515 

impairment; AD: Alzheimer’s Disease. 516 
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 517 

Figure 1: Diagnosis-wise distributions of age for each scanner in the training cohort. Abbreviations: CN: cognitively normal; 518 

SCD: subjective cognitive decline; MCI: mild cognitive impairment; AD: Alzheimer’s Disease.  519 

  520 
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 521 

Figure 2: Experiment 1: Biomarker concordance for brain volumes on unseen scanners using different harmonization 522 

strategies. Concordance for non-harmonized data has also been shown here as a reference measure for comparison. 523 

Abbreviations: CN: cognitively normal; SCD: subjective cognitive decline; MCI: mild cognitive impairment; AD: Alzheimer’s 524 

Disease.  525 
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 526 

Figure 3: Experiment 1: Boxplots of AUCs for distinguishing CN participants from AD patients in the test set based on the 86 527 

brain ROIs considered before and after harmonization. Abbreviations: CN: cognitively normal; AD: Alzheimer’s Disease.  528 

  529 
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 530 

Figure 4: Experiment 2: Accuracy of harmonization for harmonizing brain volumes on seen versus unseen scanners using 531 

normative model and multi-class model. Abbreviations: CN: cognitively normal; SCD: subjective cognitive decline; MCI: mild 532 

cognitive impairment; AD: Alzheimer’s Disease. 533 

 534 
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