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Abstract

Collaborative e↵orts in artificial intelligence (AI) are increasingly common
between high-income countries (HICs) and low- to middle-income countries
(LMICs). Given the resource limitations often encountered by LMICs, collabora-
tion becomes crucial for pooling resources, expertise, and knowledge. Despite the
apparent advantages, ensuring the fairness and equity of these collaborative mod-
els is essential, especially considering the distinct di↵erences between LMIC and
HIC hospitals. In this study, we show that collaborative AI approaches can lead
to divergent performance outcomes across HIC and LMIC settings, particularly in
the presence of data imbalances. Through a real-world COVID-19 screening case
study, we demonstrate that implementing algorithmic-level bias mitigation meth-
ods significantly improves outcome fairness between HIC and LMIC sites while
maintaining high diagnostic sensitivity. We compare our results against previous
benchmarks, utilizing datasets from four independent United Kingdom Hospitals
and one Vietnamese hospital, representing HIC and LMIC settings, respectively.
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1 Introduction

Collaborative engagements between high-income countries (HICs) and low- to middle-
income countries (LMICs) in the development of artificial intelligence (AI) tools
represents concerted e↵orts to combine resources, expertise, and knowledge. These col-
laborations involve sharing technological advancements, research findings, and data to
jointly create and implement AI tools. The goal is to foster cooperative and inclusive
approaches that address shared challenges, promote technological equity, and lever-
age the strengths of each participant. These collaborative endeavors contribute not
only to the advancement of AI technologies but also aim to bridge the digital divide
and encourage global inclusivity in the development and utilization of AI tools. While
these collaborative e↵orts o↵er clear benefits, ensuring the fairness and equity of these
data-driven tools is crucial, especially considering the unique contexts and challenges
faced by LMIC hospitals in comparison to HIC hospitals.

Hospitals in LMICs often contend with resource constraints, including inadequate
funding, outdated infrastructure, a shortage of technical expertise, and a limited avail-
ability of comprehensive and digitized healthcare data [1–5]—essential requirements
for the development and validation of AI algorithms. This often results in a signifi-
cant disparity in resource availability between HIC and LMIC settings. Notably, the
discrepancy in data availability creates a bias during the development and training
of collaborative models, a↵ecting their relative e↵ectiveness when deployed across di-
verse settings, especially where there are substantial variations in socioeconomic status
[2, 4, 6, 7]. Consequently, addressing and mitigating unintentional biases in data-
driven algorithms is imperative to prevent the perpetuation or exacerbation of existing
disparities in healthcare and society.

The presence of bias in machine learning (ML) models, stemming from the com-
position of data utilized during training, is well-established [8, 9]. Such biases result
in divergent performance across specific subgroups in predictive tasks, and hinder a
model’s ability to precisely capture the relationship between features and the target
outcome. This causes suboptimal generalization and unfair decision-making [8–12].
Previous studies on training fair ML systems has demonstrated the e↵ectiveness of
specific ML training frameworks in mitigating biases, particularly those associated
with demographic factors. Moreover, our past research demonstrated the e↵ectiveness
of these frameworks in successfully mitigating site-specific biases across four distinct
hospital groups in the United Kingdom (UK) [8, 9], applied to a COVID-19 screening
task. Thus, building upon previous investigations, our present goal is to evaluate the
e↵ectiveness of ML debiasing methods across hospitals situated in diverse socioeco-
nomic strata. Through a partnership between the Oxford University Clinical Research
Unit (OUCRU) in Ho Chi Minh City, Vietnam, the University of Oxford Institute of
Biomedical Engineering in Oxford, England, and the Hospital for Tropical Diseases
(HTD) in Ho Chi Minh, Vietnam, our focus specifically extends to hospitals in the
UK and Vietnam, representing HIC and LMIC settings, respectively.

In line with insights from [8, 9], our focus will be on two state-of-the-art bias
mitigation techniques at the algorithm-level: adversarial debiasing and reinforcement
learning (RL) debiasing. To gauge fairness, we will employ the statistical definition of
equalized odds [8–11, 13]. Using the same COVID-19 case study, our aim is to mitigate
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any site-specific biases and assess the e↵ectiveness—considering both classification
performance and fairness—of bias mitigation models trained collaboratively across
both HIC and LMIC hospital settings. As such, we will utilize datasets from four
independent UK hospitals and one Vietnamese hospital, respectively.

2 Methods

2.1 Datasets

Clinical data comprising linked and deidentified demographic information was ob-
tained from patients across four hospital centers in the UK and one hospital in
Vietnam. From the UK, the datasets included electronic health records (EHRs) from
hospital emergency departments (EDs) in Oxford University Hospitals NHS Founda-
tion Trust (OUH), University Hospitals Birmingham NHS Trust (UHB), Bedfordshire
Hospitals NHS Foundations Trust (BH), and Portsmouth Hospitals University NHS
Trust (PUH). These datasets have received approval from the United Kingdom Na-
tional Health Service (NHS) through the national oversight/regulatory body, the
Health Research Authority (HRA), for the development and validation of artificial
intelligence models aimed at detecting COVID-19 (CURIAL; NHS HRA IRAS ID:
281832). The data from Vietnam was sourced from the intensive care units (ICUs) in
the Hospital for Tropical Diseases (HTD), and approval for its use was obtained from
HTD.

The four UK datasets used in training are identical to those utilized in prior studies
[9, 14–17], ensuring a consistent approach across investigations. Specifically, for OUH,
we encompassed all patients presenting and admitted to the ED. As for PUH, UHB,
and BH, the inclusion criteria comprised all patients admitted to the ED. The full
inclusion and exclusion criteria for patient cohorts can be found in Supplementary
Section B.

From OUH, we obtained three data extracts corresponding to distinct periods:
pre-pandemic presentations (Before December 1, 2019), the first wave of the COVID-
19 epidemic in the UK (December 1, 2019, to June 30, 2020), and the second wave
(October 1, 2020, to March 6, 2021). The positive COVID-19 presentations from “wave
one” and pre-pandemic controls were employed in training and continuous validation,
with an 80% to 20% random split, respectively.

Similar to earlier investigations [9, 14–17], our focus is on rapid patient triaging,
acting as a preliminary measure during the period when confirmatory laboratory test-
ing is awaiting results or when access to definitive molecular testing for COVID-19
is constrained. Consequently, these datasets encompass a segment of regularly ac-
quired clinical data, comprising initial blood tests, vital signs, and the confirmation of
COVID-19 diagnosis through a polymerase chain reaction (PCR) swab test (additional
details can be found in the subsequent section).

During the initial wave, challenges such as incomplete testing and the imperfect
sensitivity of the PCR swab test led to uncertainties in determining the viral status of
patients who were either untested or tested negative [16]. To address this, following the
methodology used in [9, 14–17], each positive COVID-19 presentation from “wave one”
was matched with a set of pre-pandemic negative controls based on age. Using patient
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presentations from OUH prior to the global COVID-19 outbreak guarantees that these
cases are COVID-free. Thus, this careful selection of data ensures the accuracy of
COVID-19 status labels used during the training phase of the model. For our purposes,
we employed a ratio of 20 controls to 1 positive presentation for the training set.
This matching approach aimed to simulate a disease prevalence of 5%, consistent
with the actual COVID-19 prevalences observed at all four UK sites during the data
extraction period (ranging from 4.27% to 12.2%). It is important to note that this
matching process was exclusively applied to the training set, as it directly influences
the model weights and biases. The continuous validation set, used solely to evaluate
model training and determine an evaluation threshold (without altering the model
itself), retains the full stratification without simulating a 5% prevalence. To account
for the uncertainty in negative PCR results, a sensitivity analysis was conducted,
yielding improvements in the apparent accuracy of the models, as outlined in [8, 14].

The “wave two” dataset, comprising both negative and positive COVID-19 cases
confirmed through PCR testing, was designated as the held-out test set.

Since UHB, PUH, BH, and HTD each provided a single extract, we divided each
into training, continuous validation, and test sets through a random split (allocated at
60%, 20%, and 20%, respectively). This division was stratified based on the COVID-
19 status, which was determined through confirmatory PCR testing. A full summary
of each respective dataset can be found in Supplementary Table B1.

As outlined in [3], it’s important to highlight that HTD functions as a specialized
hospital primarily dedicated to infectious diseases. Thus, throughout the pandemic,
patients experiencing severe COVID-19 or other critical infections were frequently
admitted to either the ICU or high dependency units. Noteworthy is the consider-
able variability in the terminology used for recording COVID-19 cases, encompassing
terms such as “COVID-19 lower respiratory infection,” “COVID-19 pneumonia,”
“SARS-COV-2 Infection,” “COVID-19 acute respiratory distress syndrome,” “Acute
COVID-19,” and various others. Consistent with the approach detailed in [3], any la-
bel indicating the presence and severity of COVID-19 was categorized as “COVID-19
positive.”

Finally, we merged data from all sites, yielding final training, continuous validation,
and held-out test sets comprising 42,385, 33,371, and 33,095 presentations, respectively
(including 2,912, 944, and 2,805 COVID-19 positive cases, respectively). A summary
of each dataset is provided in Table 1.

Table 1 Aggregate of patients, positive COVID-19 instances, and distribution across hospitals in
the training, continuous validation, and test sets.

Training Continuous Validation Test

n, Patients 42,385 33,371 33,095
COVID-19 positive (%) 2,912 (6.9%) 944 (2.8%) 2,805 (8.5%)

OUH (%) 11,676 (27.5%) 23,132 (69.3%) 22,857 (69.1%)
UHB (%) 6,175 (14.6%) 2,059 (6.2%) 2,059 (6.2%)
PUH (%) 22,737 (53.6%) 7,580 (22.7%) 7,579 (22.9%)
BH (%) 705 (1.7%) 236 (0.7%) 236 (0.7%)

HTD (%) 1,092 (2.6%) 364 (1.1%) 364 (1.1%)
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2.2 Clinical Features

To ensure a meaningful comparison with prior studies [3, 8, 9, 14–17], we opted for a
similar feature set. Prioritizing scalability for rapid triaging, our models were trained
on a focused subset of routinely collected clinical data, including initial laboratory
blood tests (encompassing full blood counts, liver function tests, and electrolytes),
along with vital signs.

It’s important to note that certain features, such as C-reactive protein, bilirubin,
albumin, alkaline phosphatase, urea, and estimated glomerular filtration rate (found in
the UK datasets), are not part of the standard admission protocol at HTD. Therefore,
in order to integrate data from both the UK and HTD, we had to match the features
available in the UK hospitals with those present in the HTD database. Additionally,
any features with missing values exceeding 30% were excluded. Table 2 summarizes
the final features included.

Table 2 Clinical predictors considered for COVID-19 diagnosis.

Category Matched UK and Vietnam

Vital Signs Heart rate, respiratory rate, systolic blood pressure,
diastolic blood pressure, temperature

Blood Test Haemoglobin, haematocrit, white cell count,
platelets, mean cell volume, neutrophil count, lym-
phocyte count, monocyte count, eosinophil count,
basophil count

Liver Function Tests Alanine aminotransferase
Electrolytes Sodium, potassium, creatinine

2.3 Pre-processing

We first verified uniformity in the units used for identical features. Following this, all
features were standardized to have a mean of 0 and a standard deviation of 1. This
standardization process aids in achieving convergence in neural network models [18–
20]. For handling missing values within the dataset, we employed population median
imputation. These pre-processing steps are consistent with established practices in
prior studies [3, 8, 9, 14, 15, 17].

2.4 Model Architectures

XGBoost: In prior research on COVID-19 detection [8, 14, 15], XGBoost demon-
strated robust classification performance, establishing itself as a dependable bench-
mark for this task. Consequently, we initiate the training process with an XGBoost
model, employing it as a reference point for evaluating subsequent neural network mod-
els. Additionally, we assess feature importance, inherently determined by XGBoost
through score assignments during training.

Neural Network: Past studies have demonstrated that a conventional fully-
connected neural network attains excellent performance for COVID-19 classification
[8, 9, 17]. Moreover, a neural network architecture forms the basis for the advanced
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debiasing methods assessed in this study (namely, an RL-based framework and an
adversarial debiasing framework), establishing it as a robust baseline for comparison.
In the context of the binary task of COVID-19 classification, the rectified linear unit
(ReLU) activation function was used in the hidden layers, and the Sigmoid activation
function was used in the output layer of the network.

Adversarial Debiasing Model: Adversarial debiasing stands out as a state-of-
the-art technique for fairness-aware ML, serving to alleviate and diminish undesired
biases in models, particularly those linked to sensitive attributes like gender, race, or
other protected characteristics [9, 13, 25, 26]. The primary objective of adversarial
debiasing is to improve the fairness of a model’s predictions by minimizing the influence
of these sensitive attributes in the decision-making process. This methodology entails
training a model with a dual-component structure: a primary task network and a
debiasing network. The primary task network focuses on generating desired predictions
(in our case, classifying COVID-19 status), while the debiasing network, also referred
to as the adversary, seeks to identify and counteract the impact of a sensitive attribute
on the model’s predictions (in our case, the hospital where a patient received care).
Notably, this technique has proven e↵ective in mitigating bias associated with hospital
location across the UK sites examined in this study [9]. We extend this prior work
by incorporating data from HTD, a hospital in Vietnam, enabling us to assess bias
across diverse socioeconomic strata. Accordingly, we implement the same adversarial
debiasing framework as detailed in [9].

Reinforcement Learning Debiasing Model: Recently, a novel approach to de-
biasing, based on reinforcement learning (RL), has emerged as a paradigm shift to
standard supervised learning algorithms (the conventional method of tackling clas-
sification tasks)[8]. In the RL-based method, an “agent” engages with the input,
determining its class and receiving immediate rewards based on that prediction. Pos-
itive rewards are granted for correct predictions, while negative rewards are assigned
otherwise. This iterative feedback guides the agent in learning the optimal “behav-
ior” to correctly classify samples, maximizing cumulative rewards. The methodology
introduced in [8] demonstrates that employing a specialized reward function designed
to additionally mitigate unwanted biases can e↵ectively enhance classification fairness
with respect to a sensitive attribute. This technique has proven e↵ective in addressing
bias related to hospital location across the UK sites examined in this study [8]. Once
again, we expand upon this prior work by including data from HTD, enabling the as-
sessment of bias across diverse socioeconomic strata. Consequently, we implement the
same RL debiasing framework as outlined in [8].

2.5 Experimental Outline

For each task, we employ a training set to select hyperparameters and train the mod-
els. Details on the hyperparameter values used in the final models can be found in
Supplementary Section C.

A continuous validation set is utilized for ongoing validation and threshold adjust-
ment. It should be noted that for classification tasks, an ML algorithm’s raw output
is the probability of class membership, later mapped to a specific class. Therefore,
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using the continuous validation set, we conduct a grid search to fine-tune the sensi-
tivity/specificity for identifying COVID-19 positive or negative cases. Following the
approach of previous studies [8, 9], we opt to optimize the threshold to achieve sensi-
tivities of 0.9 (±0.05). This selected sensitivity exceeds the sensitivity of lateral flow
device (LFD) tests, which achieved 56.9% sensitivity for OUH admissions between
December 23, 2021, and March 6, 2021 [14]. Additionally, real-time PCR was found
to have estimated sensitivities between 80% and 90% [23, 24]. Thus, by optimizing
for a sensitivity of 0.9, we ensure clinically acceptable performance in detecting pos-
itive COVID-19 cases, comparable to the sensitivities of the current diagnostic gold
standard.

After successful development and training, the held-out test set is used to assess
the performance of the final models.

To establish a benchmark for comparing our neural network-based models, we
start by training an XGBoost model utilizing the complete set of features outlined in
Table 2. This model will additionally be used to assess the significance of variables for
the classification task.

Following this, we proceed to train a neural network baseline using the entire
feature set, facilitating comparison to various bias mitigation methods.

Regarding bias, our initial step involves exploring potential sources of bias across
hospital sites. To achieve this, we utilize the Kolmogorov-Smirnov test for assessing
covariate shift. Identifying features displaying the most significant distribution shift
between the UK sites and HTD, we subsequently exclude these features and train
models using a reduced feature set. This approach e↵ectively minimizes the impact of
covariate shift in the training data.

For comparison, we then proceed to train new models using the complete feature
set, incorporating bias mitigation techniques, namely adversarial debiasing [9, 13, 25,
26] and RL-based debiasing [8].

This thorough comparison enables us to assess the models and techniques that
contribute to enhancing classification fairness, thereby reducing undesired bias, in
collaborative training across various hospital sites.

2.6 Metrics

To assess the performance of the trained models, we present the following met-
rics: area under the receiver operating characteristic curve (AUROC), area under
the precision-recall curve (AUPRC), sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV). It should be noted that PPV and NPV
are prevalence-dependent, and thus, they are calculated based on the actual preva-
lence within each test set. These metrics are accompanied by 95% confidence intervals
(CIs), computed using 1000 bootstrapped samples drawn from the test set. Tests of sig-
nificance, indicated by p-values, involve evaluating how often one model outperforms
another across 1000 pairs of bootstrapped iterations. We use 0.05 as the threshold
value for determining statistical significance, unless otherwise stated.

Regarding fairness, our objective is to optimize for equalized odds. In our study, we
aim to predict labels yi✏{0, 1} for samples i with features xi. A subgroup of samples
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Z is designated as sensitive (Z0 is the non-sensitive complement) based on a real-
world attribute (in our case, hospital location). Equalized odds, as defined, deems a
classifier Ŷ fair if Ŷ and Z are conditionally independent given Y [8–11]. For binary
classification, this translates to P (Ŷ = 1|Y = y, Z = 0) = P (Ŷ = 1|Y = y, Z =
1), y✏{0, 1}. In simpler terms, a classifier achieves fairness if true positive rates and
false positive rates are equal across all potential classes of the sensitive attribute
[8, 9, 27]. When evaluating multiple labels (i.e., whenNZ > 2), we employ the standard
deviation (SD) of true positive and false positive scores [8, 9]. SD scores approaching
zero indicate greater outcome fairness. As used in [8, 9], the formulas utilized for
calculating true positive and false positive SD scores are as follows:

SDTP =SD
��

P (Ŷ = 1|Y = 1, Z = zi), P (Ŷ = 1|Y = 1, Z = zi+1),

..., P (Ŷ = 1|Y = 1, Z = zN )
 �

=SD

✓⇢
TPi

TPi + FNi
,

TPi+1

TPi+1 + FNi+1
, . . . ,

TPN

TPN + FNN

�◆
,

(1)

SDFP =SD
��

P (Ŷ = 1|Y = 0, Z = zi), P (Ŷ = 1|Y = 0, Z = zi+1),

..., P (Ŷ = 1|Y = 0, Z = zN )
 �

=SD

✓⇢
FPi

TPi + FNi
,

FPi+1

TPi+1 + FNi+1
, . . . ,

FPN

TPN + FNN

�◆ (2)

3 Results

During the data extraction period, COVID-19 prevalences at all four UK sites varied
from 4.27% to 12.2%. The BH cohort exhibited the highest COVID-19 prevalence,
attributed to the assessment timeframe covering the second wave of the UK pandemic
from January 1, 2021, to March 31, 2021 (12.2% compared to 5.29% in PUH and
4.27% in UHB). As anticipated, the prevalence at HTD was notably higher (74.7%),
given its exclusive focus as an infectious disease hospital, managing the most severe
cases of COVID-19.

Among all cohorts from the UK and Vietnam, every matched feature exhibited a
statistically significant di↵erence in population median (Kruskal-Wallis, p < 0.0001).
Comprehensive summary statistics, including medians and interquartile ranges, for
vital signs and blood tests across all datasets are provided in Supplementary Tables
D3 and D4, respectively.

Table 3 COVID-19 status prediction test results across di↵erent models. Model performance is
optimized to sensitivities of 0.9, and PPV and NPV are reported using true prevalences. Metrics are
reported alongside 95% confidence intervals based on 1,000 bootstrapped samples. Bolded values
represent the best (†) and second best scores. *RR: Respiratory Rate, T: Temperature.

Model AUROC AUPRC Sensitivity Specificity PPV NPV
XGBoost (All features) 0.876(0.870-0.882)† 0.609(0.593-0.623)† 0.801(0.789-0.813) 0.788(0.784-0.792)† 0.259(0.254-0.264)† 0.977(0.976-0.979)

NN (All features) 0.866(0.860-0.873) 0.551(0.534-0.568) 0.811(0.799-0.823) 0.761(0.757-0.765) 0.239(0.235-0.244) 0.978(0.976-0.979)
NN (Remove RR) 0.839(0.832-0.847) 0.500(0.484-0.517) 0.819(0.808-0.831) 0.674(0.669-0.678) 0.189(0.186-0.192) 0.976(0.974-0.977)
NN (Remove T) 0.863(0.856-0.870) 0.538(0.520-0.555) 0.827(0.815-0.838) 0.732(0.728-0.737) 0.222(0.219-0.226) 0.979(0.977-0.980)†

NN (Remove RR & T) 0.837(0.830-0.845) 0.467(0.451-0.485) 0.835(0.824-0.847)† 0.634(0.629-0.638) 0.174(0.172-0.177) 0.977(0.975-0.978)
RL (All features) 0.858(0.851-0.864) 0.517(0.500-0.535) 0.829(0.817-0.840) 0.716(0.712-0.720) 0.213(0.210-0.216) 0.978(0.977-0.98)

Adversarial (All features) 0.852(0.845-0.859) 0.535(0.518-0.552) 0.784(0.773-0.796) 0.773(0.769-0.777) 0.242(0.238-0.247) 0.975(0.973-0.976)
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Previously, in studies focused on COVID-19 detection [8, 14, 15], XGBoost exhib-
ited strong classification performance, serving as a reliable benchmark for assessing
neural network-based models. When utilizing all features during training, the XGBoost
model attained an area under the receiver operating characteristic curve (AUROC)
of 0.876 (0.870-0.882) and a sensitivity of 0.801 (0.789-0.813). These results align
closely with findings from comparable studies that utilized similar features and patient
cohorts, reporting AUROC performances ranging from 0.836 to 0.900 [8, 14, 15].

Regarding fairness, when assessed on the test set, the XGBoost model attained
equalized odds (EO) values (represented as standard deviation) of 0.086 and 0.264 for
true positive (TP) and false positive (FP) rates, respectively (Table 4).

Table 4 Equalized odds evaluation for hospital bias across di↵erent models. Model performance is
optimized to sensitivities of 0.9. Bolded values represent the best (†) and second best scores. *RR:
Respiratory Rate, T: Temperature.

Model EO (TP) EO (FP)
XGBoost (All features) 0.086 0.264

NN (All features) 0.075 0.246
NN (Remove RR) 0.052 0.196†
NN (Remove T) 0.070 0.226

NN (Remove RR and T) 0.053† 0.186
RL (All features) 0.056 0.204

Adversarial (All features) 0.074 0.227

To evaluate the significance of variables in the classification process, we conducted
feature ranking for the XGBoost model by examining the importance scores assigned to
each feature during the training phase. Figure 1 depicts the relative importance of the
features utilized in the training. Notably, respiratory rate emerged as the most crucial
variable, followed by granulocyte counts (specifically basophils and eosinophils) and
temperature. This observation aligns with the feature rankings identified in [14, 16]
using Shapley Additive Explanations, where both granulocyte counts and respiratory
rate were found to be influential features in the classification of COVID-19.

As a reference point, we then trained a conventional fully-connected neural net-
work (NN) utilizing the complete feature set. This serves as a baseline for assessing the
comparative impacts of di↵erent bias mitigation techniques. The NN model demon-
strated an AUROC of 0.866 (0.86-0.873) and a sensitivity of 0.811 (0.799-0.823) on
the test set. This performance is within 1% to that of the XGBoost model, indicat-
ing the e↵ectiveness of our initial training in establishing a robust NN model. When
comparing the NN model to XGBoost, the di↵erence in performance was found to be
statisically significant (p < 0.0001 based on 1,000 bootstrapped iterations).

Regarding fairness, the baseline NN model achieved equalized odds values of 0.075
and 0.246 for the TP and FP rates, respectively. These values, slightly lower than
those obtained with XGBoost, suggest an enhancement in fairness compared to the
XGBoost model.

To investigate potential sources of bias among hospital sites, we analyzed covariate
shift using the Kolmogorov-Smirnov (KS) test for two-sample hypothesis testing. Using
each of the UK datasets as the reference, we compared the input features between
each UK site and the HTD dataset. Our examination revealed respiratory rate and

9

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 3, 2024. ; https://doi.org/10.1101/2024.02.01.24302010doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.01.24302010
http://creativecommons.org/licenses/by/4.0/


Figure 1 Feature Ranking from XGBoost Model. The bar chart illustrates the feature importance
scores obtained from the trained XGBoost model. Each bar represents the relative importance of a
specific feature in predicting the target variable. Features with higher importance scores contribute
more to the model’s predictive performance.

temperature as features displaying the most notable distribution shifts. Here, the KS
statistics ranged from 0.636 to 0.804, with p < 0.0001 across all UK and HTD pairs
(these p-values remained significant after Bonferroni Correction). In contrast, all other
features showed KS statistics below 0.5 across all UK and HTD pairs. Notably, when
scrutinizing feature distribution di↵erences among solely the UK sites, the KS statistic
remained below 0.5 (0 < p < 0.677) across all features for all UK hospital pairs. This
suggests a more pronounced bias between the UK sites and HTD, compared to biases
exclusively between the UK sites.

Consequently, in addition to a model that encompasses all features, we proceeded
to train distinct models (without any inherent bias mitigation technique) on feature
subsets excluding respiratory rate, excluding temperature, and excluding both fea-
tures. This approach enables us to compare the performance of models trained on
feature sets with reduced covariate shift, to models that include these features, but
instead, implement a bias mitigation technique (aimed at addressing bias stemming
from di↵erent centers).

Training the same neural network (NN) with all features except respiratory rate
resulted in a decreased AUROC of 0.839 (95% CI: 0.832-0.847) when compared to the
baseline). While sensitivity remained comparable at 0.819 (0.808-0.831), there was a
reduction in specificity from 0.761 (0.757-0.765) to 0.674 (0.669-0.678) compared to
the baseline NN. In contrast, excluding temperature during training led to a much
smaller decline in performance, with the model achieving an AUROC of 0.863 (0.856-
0.870) (p = 0.053 when compared to the baseline using 1,000 bootstrapped iterations).
In this scenario, there was a slight increase in sensitivity to 0.827 (0.815-0.838), but
at the cost of a decrease in specificity to 0.732 (0.728-0.737).

Omitting both respiratory rate and temperature from training resulted in the
model achieving an AUROC of 0.837 (0.830-0.845), comparable to the situation where
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only respiratory rate was excluded. In this instance, sensitivity improved to 0.835
(0.824-0.847). Once again, this heightened sensitivity came at the cost of a reduction
in specificity to 0.634 (0.629-0.638). Although the deviation in AUROC from the stan-
dard model was statistically significant (p < 0.0001), it was found to be statistically
similar to the model trained on all features except respiratory rate (p = 0.168).

Regarding fairness, models trained with the exclusion of respiratory rate and with-
out both respiratory rate and temperature demonstrated a distinct enhancement, as
evidenced by decreased equalized odds for TP and FP rates, ranging between 0.052-
0.053 and 0.186-0.196, respectively. When only temperature was excluded from the
training set, there was still an improvement in TP and FP equalized odds, albeit to a
lesser extent than when respiratory rate was excluded, achieving values of 0.070 and
0.226, respectively.

Despite the apparent improvement in fairness achieved by removing features
exhibiting the most bias (in terms of data drift), there was a notable decline in clas-
sification performance. As both respiratory rate and temperature were identified as
important features during training (according to XGBoost rankings), we proceeded to
train two state-of-the-art bias mitigation models - a reinforcement learning (RL) de-
biasing model and an adversarial debiasing model. These models enable us to leverage
all features while mitigating site-specific biases during the training process.

Both RL and adversarial debiasing techniques achieved AUROCs similar to the
baseline neural network, with values of 0.858 (0.851-0.864) and 0.852 (0.845-0.859),
respectively. Although slightly lower than the baseline NN’s performance (p = 0.001
for RL and p < 0.0001 for adversarial models), it outperformed all NNs trained on
reduced feature sets, except for the NN trained without temperature. When comparing
RL and adversarial debiasing models to those trained on reduced feature sets, the
di↵erences in performance were found to be statistically significant (0 < p < 0.021).

The RL debiasing model exhibited a notable improvement in fairness, with TP
and FP equalized odds decreasing to 0.056 and 0.204. These values are akin to the
equalized odds observed in models trained with the exclusion of respiratory rate and
without both respiratory rate and temperature, although slightly higher. Importantly,
this represents a significant enhancement in fairness compared to the baseline NN.
Conversely, the adversarial debiasing model only marginally improved upon the base-
line, achieving equalized odds of 0.074 and 0.227 for TP and FP standard deviations,
respectively.

Full numerical results including AUROC, area under the precision-recall curve
(AUPRC), sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) can be found in Table 3.

When analyzing the subset of test data from HTD, the XGBoost model demon-
strated the highest AUROC among all models, achieving a score of 0.836 (0.796-0.873).
This figure is slightly lower when compared to the AUROCs achieved across each
UK site, ranging from 0.859 to 0.909. In contrast, the standard NN (trained using
all features) attained a lower AUROC at HTD than XGBoost, with a score of 0.723
(0.672-0.770) (p < 0.0001 when comparing the di↵erence in performance between XG-
Boost and the baseline NN). This is notably lower than the AUROCs attained on
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Table 5 COVID-19 status prediction test results on the HTD subset, across di↵erent models.
Model performance is optimized to sensitivities of 0.9, and PPV and NPV are reported using true
prevalences. Metrics are reported alongside 95% confidence intervals based on 1,000 bootstrapped
samples. Bolded values represent the best (†) and second best scores. *RR: Respiratory Rate, T:
Temperature.

Model AUROC AUPRC Sensitivity Specificity PPV NPV

XGBoost (All features) 0.836(0.796-0.873)† 0.944(0.926-0.960)† 0.989(0.978-0.997)† 0.159(0.099-0.226) 0.787(0.775-0.800) 0.824(0.660-0.956)†
NN (All features) 0.723(0.672-0.770) 0.887(0.855-0.917) 0.971(0.953-0.986) 0.170(0.105-0.240) 0.786(0.773-0.801) 0.652(0.481-0.810)
NN (Remove RR) 0.694(0.640-0.741) 0.880(0.848-0.910) 0.931(0.904-0.956) 0.205(0.141-0.280) 0.786(0.771-0.803) 0.486(0.360-0.617)
NN (Remove T) 0.768(0.721-0.809) 0.913(0.889-0.937) 0.957(0.936-0.975) 0.216(0.147-0.288) 0.793(0.778-0.809) 0.613(0.468-0.742)

NN (Remove RR & T) 0.677(0.622-0.727) 0.867(0.831-0.900) 0.917(0.888-0.940) 0.216(0.146-0.290) 0.786(0.770-0.802) 0.452(0.333-0.569)
RL (All features) 0.781(0.734-0.824) 0.913(0.885-0.940) 0.942(0.917-0.963) 0.239(0.170-0.313)† 0.795(0.780-0.812)† 0.568(0.439-0.685)

Adversarial (All features) 0.757(0.711-0.802) 0.904(0.872-0.932) 0.938(0.913-0.960) 0.227(0.155-0.307) 0.792(0.777-0.810) 0.541(0.412-0.665)

the UK datasets, which ranged from 0.853 to 0.901. Despite XGBoost’s robust per-
formance at HTD compared to the baseline NN, performance across the UK sites was
similar for both models.

Models trained with the exclusion of respiratory rate and without both respiratory
rate and temperature exhibited lower AUROC performance at HTD, suggesting a
potential decrease in model generalizability and, consequently, increased algorithmic
bias between di↵erent hospital sites. In this context, the AUROC at HTD was 0.677
(0.622-0.727) and 0.694 (0.640-0.741) for each model, respectively (p < 0.0001 and p =
0.032 when comparing the di↵erence in performance to the baseline NN, respectively).
This contrasts with significantly higher AUROCs ranging from 0.826-0.885 and 0.812-
0.881 on the UK datasets, respectively. Models trained without temperature improved
in terms of performance on the HTD dataset, relative to the baseline, improving to
0.723 (0.672-0.770) (p = 0.008). And, similar to the baseline, AUROCs on the UK
datasets ranged from 0.845 to 0.911. Again, despite varying scores at HTD compared
to the XGBoost and baseline NN models, performances across the UK sites remained
similar across all models.

The RL debiasing model attained the second-highest AUROC on the HTD dataset,
achieving a score of 0.781 (0.734-0.824) (p < 0.0001 when comparing the di↵erence in
performance to the baseline NN and the models trained on reduced feature sets). Once
again, this figure is lower than the AUROCs achieved at the UK sites, which ranged
from 0.842 to 0.888. Adversarial debiasing similarly reached a high AUROC score of
0.757 (0.711-0.802) on the HTD dataset (p = 0.072 when comparing the di↵erence
in performance to the baseline NN, and p = 0.002 and 0.004 when compared to the
models trained on reduced feature sets), in contrast to AUROCs ranging from 0.830
to 0.849 on the UK datasets. When using algorithm-level bias mitigation methods,
generalizability across the UK sites and HTD seems to improve compared to models
trained using reduced feature sets. As observed previously, while there were varying
performances at HTD, performances achieved across the UK sites remained similar
across all models.

Full numerical results for HTD including AUROC, AUPRC, sensitivity, specificity,
PPV, and NPV can be found in Table 5.

4 Discussion

Ensuring impactful collaborative AI development that benefits both HIC and LMIC
hospitals requires strategies aimed at mitigating inadvertent site-specific biases. With
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a specific focus on biomedical engineering and AI, our goal was to evaluate the fairness
and generalizability of algorithms, especially when deploying a collaboratively-trained
model across HIC and LMIC hospitals. We aimed to demonstrate that implement-
ing bias mitigation techniques enhances both algorithmic fairness and generalizability
while maintaining e↵ective classification performance. This is particularly crucial in
healthcare settings where algorithmic findings directly impact clinical decision-making
and patient care. Hence, the objective of this study was to introduce methods aimed
at cultivating increased trust among clinicians and patients in the e↵ectiveness and
reliability of ML-based technologies. This, in turn, serves to encourage and enhance
international collaboration and development initiatives in AI.

In general, we observed that models incorporating some form of bias mitigation,
whether through the removal of biased features or through the inclusion of bias mit-
igation training methods, exhibited greater fairness (with respect to equalized odds)
compared to those without such considerations. It’s important to note that this re-
duction in bias came at a modest cost to performance, as both the removal of features
from the training set and the implementation of bias mitigation at the training-level
resulted in a decline in performance. The act of excluding features from training re-
moves potentially valuable information that the model could learn from, emphasizing
the need to strike a balance when constructing models with the dual objectives of
mitigating undesirable biases and training a robust classifier.

We observed that excluding respiratory rate from model training resulted in a more
pronounced decrease in AUROC (compared to the baseline model trained on all fea-
tures) than a model trained without temperature. This aligns with respiratory rate
being identified as the most influential feature, relative to all other features, in deter-
mining the presence of COVID-19 (as illustrated in Figure 1). Therefore, omitting this
feature from model development would have the greatest impact on test performance.
This is reinforced by the similarity in performance between the model trained without
respiratory rate and the model trained without both respiratory rate and temperature,
with further removal of temperature showing no significant impact.

Similarly, as respiratory rate emerged as one of the most biased features (exhibit-
ing greatest data drift) between the UK hospital sites and HTD in Vietnam, excluding
this feature from training resulted in improved fairness, as evidenced by noticeable
enhancements in both TP and FP equalized odds. In contrast, removing tempera-
ture from training led to only a slight improvement in fairness. Despite temperature
being identified as highly biased across di↵erent sites, its influence on classification
performance was comparatively lower than that of respiratory rate. Consequently, its
presence or removal had a lesser impact on equalized odds.

Generally, discovering respiratory rate and temperature as the most biased features
between the UK hospitals and HTD is not unexpected. Given that HTD is a spe-
cialized hospital receiving referrals from other medical facilities, its high workload is
an important factor to consider. Consequently, the meticulous counting of respiratory
rate may not have been consistently performed unless a patient appeared unwell. In
busy LMIC wards, reduced sta�ng time may also contribute to less precise counting.
Similarly, the disparity in temperature readings may be attributed to monitoring dif-
ferences, as HTD utilizes auxillary non-digital thermometers, resulting in less detailed
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output. Nonetheless, temperature measurements can exhibit significant variability in
any case, thus using a single temperature measurement may be an unreliable indicator
[28]. Subsequent experiments may explore the option of excluding temperature as a
variable if it proves to be inconsistent, exhibits substantial data shift across di↵erent
sites, or is determined to have limited impact on the classification.

Regarding algorithmic-level bias mitigation methods, the decrease in performance,
as measured by AUROC, was notably less compared to the direct removal of biased
features; however, there was still a slight performance decrease. Similar findings have
been reported in prior studies exploring bias mitigation methods, where improvements
in fairness were achieved at the expense of a marginal reduction in performance [8,
21, 22].

The RL debiasing method significantly enhanced equalized odds, achieving a level
comparable to models trained on reduced feature sets, while maintaining robust classi-
fication performance (similar to standard models trained on all features). In contrast,
although adversarial debiasing also upheld strong classification performance, its im-
pact on equalized odds improvement was comparatively modest. This di↵erence may
be attributed to the standard supervised learning setting employed in adversarial debi-
asing, where cross-entropy loss provides a learning signal irrespective of the presented
data. Consequently, a model can become skewed or biased based on the majority class
within the batch, due to the aggregation of errors. By opting for an RL setup (instead
of a supervised learning framework dependent on gradient descent), one gains control
over when and how a learning signal is backpropagated, thereby reducing the risk of
skewing a model towards the majority class [8]. In our case, this approach mitigated
the risk of biasing the model towards the distribution from the location with the most
data points in training, i.e., the UK. Nevertheless, since there is no universal solution
applicable to all datasets and machine learning scenarios, both options (among others)
can be evaluated for di↵erent tasks.

We found that generalizability, measured by AUROC, was optimal when using the
XGBoost and baseline NN models. However, corresponding fairness metrics were the
poorest among all models. It is crucial to highlight that the equalized odds metrics used
in the evaluation are based on TP and FP rates, determined after thresholding. Con-
sequently, despite a high AUROC, the model exhibited bias toward the distributions
in the UK datasets, resulting in the classification threshold performing suboptimally
on the HTD dataset.

Moreover, the removal of features with the most distribution drift also led to
a significant decrease in generalizability. This could be attributed to the fact that
these features were identified as highly influential in accurately classifying COVID-
19. Therefore, their removal made it more challenging to correctly classify patients,
especially those from an external hospital site or distribution.

On the other hand, with the application of bias mitigation techniques, generaliz-
ability increased, as evidenced by the improved AUROC on the HTD dataset compared
to both the baseline NN and NN models trained on a reduced number of features.
However, the NN trained on all features except temperature slightly outperformed the
adversarial debiasing model, which again, may relate to the trade-o↵ between fairness
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and accuracy [8, 21, 22]. Although these performances did not match those of XG-
Boost, fairness, as measured by equalized odds, significantly improved. The focus of
bias mitigation methods on reducing bias between di↵erent hospital sites likely con-
tributed to increased classification accuracy at HTD, making the algorithm less biased
toward the UK sites, despite the majority of the data originating from there.

Although achieving widespread generalizability is desirable for scalability, cost-
e↵ectiveness, and relevance to diverse cohorts and environments, it is often unattain-
able. This limitation became evident when comparing performance on the HTD
dataset with that on the UK datasets. When conducting subset analysis for each site
independently, we noted that AUROCs across all UK datasets were consistently within
a similar range across all tested models. However, there was significant variability
in performance on the HTD dataset. Despite improvements in performance at HTD
through the application of bias mitigation techniques, the AUROC remained signifi-
cantly lower than the scores achieved on the UK hospital datasets. This is likely due
to the fact that the HTD dataset represents the sole LMIC hospital, whereas the UK
datasets are all part of the NHS, sharing more similarities with each other. Factors
contributing to this divergence between settings may include concept drift in disease
patterns (alterations in presentation, prevalence, and characteristics), population vari-
ability (patients at one center may not represent those in another location), evolving
medical practices (changes in diagnostic, treatment, and management methods), and
data drift (changes in patient behaviors, trends, or data collection methods) [1, 3–
6, 8, 9]. Moreover, the majority of the data originates from the UK sites. Consequently,
despite e↵orts to mitigate bias, the model remains more attuned to the characteristics
of the UK datasets, resulting in better performance on these specific subsets.

Furthermore, HTD, being a specialized hospital for infectious diseases, typically in-
cluded COVID-19 negative cases involving other infectious diseases, and critical cases
with various comorbidities were treated there. Additionally, HTD was specifically des-
ignated as a “COVID-19” hospital during the pandemic, primarily receiving referrals
for severe COVID-19 cases [3]. Given that the Vietnamese dataset predominantly con-
sisted of severely ill patients, models may face di�culties in accurately distinguishing
COVID-19 from other diseases based on vital signs and blood test features. This chal-
lenge arises because other diseases, including infectious ones, may coexist. And, in the
context of UK hospitals, a broader spectrum of COVID-19 case severity is evident, cov-
ering all individuals presenting to the hospital, with only a small subset progressing to
ICUs. As a result, the AI-based diagnosis of COVID-19 becomes a notably more chal-
lenging task at HTD, as the model must discern the specific reason for ICU admission,
especially in cases involving other infectious diseases. For instance, as highlighted in
[3], distinguishing COVID-19 from pneumonia (which is common at HTD, with much
more similar clinical features to COVID-19) is more challenging than distinguishing
it from cases such as a fractured leg.

This di�culty might also be a factor in the lower observed specificity in the HTD
dataset compared to the UK datasets. Therefore, despite a high AUROC at external
sites, it may be crucial to tailor the classification threshold (i.e., the criterion for
categorizing COVID-19 status as positive or negative) independently for each site to
uphold desired levels of sensitivity and specificity [17]. Hence, future studies should
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delve into identifying an optimal decision threshold, as it directly impacts performance
and fairness metrics by altering true positive/true negative rates [9]. Particularly in
clinical contexts, maintaining consistent sensitivity/specificity scores across various
hospitals is typically desirable, as fluctuations in these metrics may impede clinicians’
trust in a model’s performance [17].
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