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Abstract  
 
Background: Long QT syndrome (LQTS) is a lethal arrhythmia condition, frequently 
caused by rare loss-of-function variants in the cardiac potassium channel encoded by 
KCNH2. Variant-based risk stratification is complicated by heterogenous clinical data, 
incomplete penetrance, and low-throughput functional data.  
Objective: To test the utility of variant-specific features, including high-throughput 
functional data, to predict cardiac events among KCNH2 variant heterozygotes.  
Methods: We quantified cell-surface trafficking of 18,323 variants in KCNH2 and 
recorded potassium current densities for 506 KCNH2 variants. Next, we deeply 
phenotyped 1150 KCNH2 missense variant patients, including ECG features, cardiac 
event history (528 total cardiac events), and mortality. We then assessed variant 
functional, in silico, structural, and LQTS penetrance data to stratify event-free survival 
for cardiac events in the study cohort.  
Results: Variant-specific current density (HR 0.28 [0.13-0.60]) and estimates of LQTS 
penetrance incorporating MAVE data (HR 3.16 [1.59-6.27]) were independently 
predictive of severe cardiac events when controlling for patient-specific features. Risk 
prediction models incorporating these data significantly improved prediction of 20 year 
cardiac events (AUC 0.79 [0.75-0.82]) over patient-only covariates (QTc and sex) (AUC 
0.73 [0.70-0.77]).   
Conclusion: We show that high-throughput functional data, and other variant-specific 
features, meaningfully contribute to both diagnosis and prognosis of a clinically 
actionable monogenic disease.  
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Graphical Abstract. Implementation of KCNH2 variant functional studies, deep clinical 
phenotyping, and cardiac event risk stratification.   
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Main Text 
 

Congenital Long QT Syndrome (LQTS) is a frequently fatal inherited arrhythmia 
syndrome with strong monogenic contributions1. Rare, loss-of-function variants in 
KCNH2, which encodes for the cardiac repolarizing potassium ion channel current IKr, 
are implicated in approximately 30% of Long QT syndrome cases (LQT2)2. Integrating 
genetic data into clinical practice is hindered by complex variant interpretation, 
incomplete penetrance, and environmental interactions. Variant-specific information, 
including functional data, can assist with variant classification and diagnosis3,4; however, 
whether variant-specific information can assist with prognosis is unknown. Here, we 
implemented two high-throughput functional assays to study the KCNH2-LQT2 
relationship: 1) Multiplexed Assays of Variant Effect (MAVE)5,6, and 2) Automated Patch 
Clamping (APC)7. The MAVE probed the effect on protein trafficking of nearly all 
possible KCNH2 missense variants, providing prospective evidence for unascertained 
variant future classification8. APC recorded detailed effects on variant protein 
electrophysiological function after clinical ascertainment. To evaluate the significance of 
these and other variant-specific attributes in stratifying the risk of LQTS events, we 
recorded QTc, survival data, and cardiac events in 1150 patients heterozygous for 
KCNH2 missense or in-frame insertion/deletion variants. 

We quantified the trafficking effect of 18,323 total variants by MAVE (Figure 1A; 
Supplemental Table 1)5,6,9. We observed excellent stratification of WT normalized 
variant trafficking scores across synonymous (mean 100.4±23.9%), missense (mean 
71.4±46.4%), and nonsense (mean 17.9±36.0%) variant classes (Figure 1B/C; 
Supplemental Table 2). Consistent with a previous study, nonsense variation had 
minimal effect on trafficking function downstream of residue 863 (Supplemental Figure 
1)10. In parallel, we used the SyncroPatch 384 PE platform to comprehensively 
interrogate potassium peak tail currents among KCNH2 variants observed in our clinical 
cohorts, the literature, and gnomAD11 (Figure 1D; Supplemental Methods). 266/506 
variants had severe loss of function (Z < -4, Figure 1E, Supplemental Table 3) with good 
concordance between MAVE and APC datasets, including across “hot spot domains” 
(Figure 1F-G; Supplemental Figure 2). We derived ClinGen-recommended assay 
calibration and Z-score thresholds using the same set of variant controls for the MAVE 
dataset as our previously described KCNH2 APC assay12,13 (Supplemental Figure 3 and 
Supplemental Table 4). This calibration showed that the MAVE data may prospectively 
apply strong pathogenic functional criteria and moderate benign functional criteria. Most 
variants studied in both assays were concordantly annotated with an abnormal 
threshold of an assay Z-score less than -2 (365/420; Figures 1F and Supplemental 
Figure 4). 23 variants had normal trafficking but abnormal current density, suggesting 
abnormalities in gating or ion permeability. 

We next collected clinical data on 1150 patients recruited from five tertiary 
arrhythmia clinics in Japan (N=289), Italy (N=275), the USA (N=261), France (N=259), 
and New Zealand (N=66) heterozygous for 317 unique KCNH2 missense or in-frame 
insertion/deletion variants. LQTS was diagnosed based on Schwartz score >3.5 or 
repeated Corrected QT intervals (QTc) >480 ms without secondary causes (see 
methods for full details)14. Events were either ventricular tachycardia, ventricular 
fibrillation, sudden cardiac death, appropriate ICD shocks, and/or syncope; severe 
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events did not include syncope unless while on beta blockers. QTc intervals were higher 
among probands than family members (N = 503/1150; mean 504±55 vs 472±69 ms, 
respectively; Figure 2A), females than males (N = 606/1150; mean 494±52 vs 477±77 
ms; Figure 2B), and individuals experiencing cardiac events (N = 323/1150, mean 
515±59 vs 474±64 ms, respectively; Figure 2C).  

Clinical risk stratification of LQTS-cardiac events currently relies on patient-
specific features such as sex and QTc15. We hypothesized that including variant-specific 
data (e.g., variant functional, in silico, and structural properties) alongside patient-
specific data could improve prognosis of adverse events. In a risk model using patient-
specific QTc and sex, both functional datasets were significantly associated with event 
risk (Figure 2D-E). We integrated prospectively available MAVE data from the current 
study into our previously described Bayesian prospective LQTS penetrance tool 
(referenced here as ‘Penetrance’; data hosted at variantbrowser.org for community 
use)16. Among 1117 patients with sex, QTc, and a LQTS penetrance estimate, we 
observed 296 cardiac events through the age of 40. To build a more comprehensive 
model, we tested the inclusion of additional variant predictive features. We reduced 
model complexity to the most significant covariates using multiple approaches detailed 
in the Supplemental Methods and Supplemental Figures 5-7. Using a Royston-Parmar 
time-to-event model, we observed optimal prognostic value incorporating MAVE 
functional into our LQTS penetrance prediction feature (Figure 2F)17,18. Interestingly, we 
observed in Figure 2F that MAVE data not integrated into this model became 
significantly protective when both APC and MAVE were included in the same model. 
This may be explained by greater phenotype resiliency against disrupted trafficking 
versus disrupted gating (consistent with possible dominant negative vs 
haploinsufficiency mechanisms)19. These findings show that prospectively available 
MAVE data provide near equivalent functional evidence strength for variant 
classification (diagnosis); however, APC data collected after variant ascertainment can 
provide additional data for event risk stratification (prognosis). 

We next built a risk stratification model combining the significant predictors and 
demonstrated excellent performance in stratifying event risk (Figure 2G). We then 
compared model accuracy using an ROC/AUC approach (Figure 2H and 2I). We found 
that prospective (patient-specific features + LQTS penetrance estimate conditioned by 
MAVE data) and a model including prospective and APC data both significantly 
improved upon prognosis from patient-specific features alone. Lastly, we provide sex-
stratified nomograms of our risk prediction model of events at 20 years for variants with 
prospectively available LQTS penetrance estimate (Supplemental Figure 8).  

We present the first comprehensive high-throughput functional studies of a 
ClinGen definitive evidence LQTS-associated gene2. We demonstrate that integrating 
continuous and quantitative, variant-specific features with detailed clinical phenotyping 
improves risk assessment for a ‘monogenic’ genotype-phenotype relationship. We 
propose that similar approaches involving continuous variant-specific features, such as 
high-throughput functional studies and quantitative penetrance estimates, will further 
improve risk stratification in other gene-disease pairs.  
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Online Methods 

Full methods are described in the online appendix. All clinical data used in this analysis 
received IRB/REC approval. The research reported in this paper adhered to guidelines 
included in the Helsinki Declaration as revised in 2013. All code used to analyze these 
data may be found on GitHub at https://github.com/kroncke-lab.  
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Figure 1. Implementation of KCNH2 MAVE and APC Assays.  
A) Schematic of MAVE assay. We employed a barcode abundance-based MAVE of cell-
surface KCNH2 variant expression to quantify variant trafficking, the primary mechanism 
of KCNH2 variant loss-of-function.  
B) Distribution of WT-normalized variant trafficking scores among missense, 
synonymous, and nonsense variants.  
C) Heatmap depicting trafficking scores across the coding region of KCNH2. Dark 
orange indicated less than WT trafficking, white similar trafficking to WT, and blue 
increased trafficking. Missing data are depicted in gray.  
D) Example APC peak tail currents recorded at -50 mV showing different levels of 
function. Y-axis is 500 pA and X-axis is 500ms. 
E) KCNH2 peak-tail current densities for 506 variants (n=36,565 recordings) across 6 
domains of the protein observed in our clinical cohort, gnomAD11, and previous literature 
reports20. Benign variant controls from gnomAD are shown as white circles. Blue range 
depicts variants with ‘normal function’, as defined by a ±2 Z-score window from the 
mean current density for B/LB variants12. 
F) Matrix of Z-score determined normal and abnormal variants studied by both 
functional assays. 
G) Visual correlation of functional assays by residue position.  
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Figure 2. Clinical Characteristics of KCNH2 Missense Heterozygotes.  
A-C) Distribution of QTc among A) probands and families, B) females and males, C) 
events and no events (all p < 0.01; two-sided t-test). 
D-E) Hazard ratios for first cardiac event with boot strapped confidence intervals using 
patient-specific (QTc and sex) features and D) MAVE functional data and E) APC 
functional data. 
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F) Hazard ratios for first cardiac event with model of additional variant-specific (MAVE + 
APC, in silico, ClinVar, and structural data) and patient-specific (QTc, sex) features 
using Royston-Parmar model.  
G) Risk stratification of cardiac events at or before 40 using prospectively available tools 
(930 patients, 333 with at least one event). 
H-I) ROCs/AUCs for three models with different covariates for all cardiac events and 
serious cardiac events, respectively, through 20 years of age.   
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