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Abstract 

Background-Research question. Chronic Obstructive Pulmonary Disease (COPD) is a 

leading cause of mortality. Predicting mortality risk in COPD patients can be important for 

disease management strategies. Although scores for all-cause mortality have been developed 

previously, there is limited research on factors that may directly affect COPD-specific mortality.  

Study design-Methods. used probabilistic (causal) graphs to analyze clinical baseline 

COPDGene data, including demographics, spirometry, quantitative chest imaging, and symptom 

features, as well as gene expression data (from year-5).  

Results. We identified factors linked to all-cause and COPD-specific mortality. Although many 

were similar, there were differences in certain comorbidities (all-cause mortality model only) and 

forced vital capacity (COPD-specific mortality model only). Using our results, we developed 

VAPORED, a 7-variable COPD-specific mortality risk score, which we validated using the 

ECLIPSE 3-yr mortality data. We showed that the new model is more accurate than the existing 

ADO, BODE, and updated BODE indices. Additionally, we identified biological signatures linked 

to all-cause mortality, including a plasma cell mediated component. Finally, we developed a web 

page to help clinicians calculate mortality risk using VAPORED, ADO, and BODE indices. 

Interpretation. Given the importance of predicting COPD-specific and all-cause mortality risk in 

COPD patients, we showed that probabilistic graphs can identify the features most directly 

affecting them, and be used to build new, more accurate models of mortality risk. Novel 

biological features affecting mortality were also identified. This is an important step towards 

improving our identification of high-risk patients and potential biological mechanisms that drive 

COPD mortality. 

 

Keywords: COPD; graphical models. 

Abbreviations: MB Markov blanket; RF Random Forest. 
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Introduction 

Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of mortality worldwide1. 

Predictive models of mortality in COPD can be used to identify high-risk individuals who may 

benefit from earlier or targeted interventions. As such, predictive models have been developed 

to predict all-cause mortality risk in individuals with COPD. Examples include the BODE (BMI, 

airflow obstruction, dyspnea, exercise capacity) index2 and its updated3 or expanded variants4, 

the ADO (age, dyspnea, airflow obstruction) index3, and the DOSE (dyspnea, airflow 

obstruction, smoking status, exacerbation frequency) index5. Of these, the ADO and updated 

BODE indices were found to perform best in a large-scale meta-analysis in external validation 

cohorts6. In addition to these simple clinical predictors, more complex machine-learning 

approaches that incorporate clinical, demographic, and imaging features have demonstrated 

improved prediction of all-cause mortality7,8.  

These approaches have two key limitations which we seek to address. First, traditional machine 

learning methods, such as regression models9,10 and random survival forests (RFs)11, identify 

purely associative predictors and cannot provide insights into the possible causality of the 

observed interactions. In contrast, probabilistic graphs (also referred to as “causal graphs”)12 

seek to learn potential cause-effect relationships in observational datasets13, by considering and 

factoring out any confounders. In biomedical settings, such approaches have been applied to 

identify direct effectors of an outcome and to develop efficient predictors14,15 or predict effects of 

interventions16-18. Here, we use a recently developed algorithm (Supplementary Methods) to 

construct probabilistic graph models from multi-modal data (i.e., demographic, clinical, 

spirometry, chest CT scan, and biological features) to identify predictors that provide 

independent information for COPD-specific mortality. 
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Second, existing mortality predictors are trained, calibrated, and validated on all-cause rather 

than COPD-specific mortality of COPD patients. This introduces the possibility of incorrectly 

estimating the degree to which general risk factors contribute to COPD-specific mortality; or 

may introduce spurious associations due to the presence of comorbidities that act 

independently of the COPD-specific risk. Graph models, by construction, consider all 

confounder combinations and factor out the indirect effects and simple correlations. Here, we 

construct and compare separate graph models of all-cause and COPD-specific mortality. This 

allows us to disentangle features that are strongly independently informative to COPD-specific 

mortality from features informative of all-cause mortality. Furthermore, direct effectors identified 

by the graph models can be used to construct robust predictors of COPD-specific mortality risk. 

To further investigate blood-derived molecular signatures affecting mortality in COPD patients, 

we additionally construct graph models of all-cause mortality utilizing features derived from 

whole blood samples. 

Methods 

Study Population and Features 

The discovery cohorts were derived from the COPD Genetic Epidemiology (COPDGene) Study, 

which recruited 10,198 current and former smokers, aged 45-80, from across US19. Various 

demographic, clinical, spirometry, and chest CT scan features were collected. Additionally, all-

cause and COPD-specific mortality were recorded. A death was attributed to COPD if its cause 

was adjudicated to be COPD-related by the COPDGene criteria20 adapted from the TORCH 

UCD21. The features included in our mortality graph model analyses are key demographics 

(e.g., age, sex, race), clinical measures (e.g., BMI, resting oxygen saturation (SaO2)), measures 
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of COPD-related physiology, and symptoms), and quantitative chest CT scan features (e.g., 

%emphysema of the lungs22, segmental airway wall thickness (AWT)22). Relevant medical 

history and comorbidities (smoking status, pneumonia, diabetes) were also included. Our final 

COPDGene Phase 1 study cohort consisted of the 8,610 participants who had no missing 

values in the set of selected baseline features and longitudinal follow up data for all-cause and 

COPD-specific mortality. 

COPDGene conducted a 5-yr follow-up study, during which, blood-derived biological features 

were measured (hemoglobin levels, platelet counts, white blood cell differential percentages, 

whole blood gene expression)23. To identify biological signatures linked to all-cause mortality in 

COPD, we constructed the COPDGene Phase 2 study cohort, that contains these blood-

derived features in addition to the Phase 1 COPDGene measurements. The RNA-seq data was 

processed using CIBERSORTx24 and the leukocyte signature matrix (LM22)25 to infer more 

detailed cell type proportions. VIPER26 was used to infer transcription factor activity. This 

resulted in 3,182 participants with longitudinal follow up data for all-cause mortality, RNA-seq 

gene expression profiles, and no missing values in the set of selected features.  

The ECLIPSE study27 was used for external validation of our findings. ECLIPSE has 2,312 

COPD subjects or smoker controls that have 3-year mortality data, and no missing values 

among our selected features. Table 1 presents the main characteristics of the cohorts, while 

Suppl Table S1 presents the differences in characteristics between the two COPDGene 

cohorts. 

Construction of Graph-based Predictive Models 

Directed probabilistic graph models (also referred to as “causal graph models”) for the 

COPDGene cohorts were constructed using the recently developed CausalCoxMGM method 
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(Supplementary Methods). This method uses a two-step procedure to learn directed graphs 

from observational data in the presence of latent confounders. The resulting graphs can provide 

insights into potential mechanisms, generate hypotheses, and select minimal sets of the most 

relevant predictors (the direct neighbors only or the Markov blanket-MB)28. By construction, the 

MB variables of an outcome provide independent information to it. 

We used both the direct neighbors and the full MB in the graphs to develop predictive Cox 

regression models9 of all-cause and COPD-specific mortality. These models were compared to 

the ADO and Updated BODE indices3, and to models learned with standard machine learning 

approaches: LASSO Cox Regression29 and RF11. Performance of these models was assessed 

through 5-fold cross-validation, with each model (except ADO and the updated BODE indices) 

trained on 80% of the data to predict the held-out 20% in each fold. Model performance was 

scored using the Harrell’s concordance index30, which represents the probability of a higher risk 

individual dying before a lower risk one. For models that perform feature selection (direct 

neighbors, MB, and LASSO Cox regression) we also compared the number of features each 

predictive model selected. For further details on causal graph discovery, model selection, and 

graph-based feature selection, see Supplementary Methods. 

Results 

Characteristics of Discovery and Validation Cohorts 

As the Phase 2 study comprised from a subset of the Phase 1 study participants, there are 

some expected significant changes to clinical covariates (Suppl Table S1), such as an 

approximately five-year increase in age (p<0.001) and a statistically significant reduction of 

patients in more severe GOLD categories (p<0.001). We also observe significant increases in 
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comorbidities’ incidence, such as cardiovascular disease (CVD; defined in 8) and diabetes 

(p<0.001). Among the standard mortality risk indices, there is a significant decrease in the 

BODE index2 and a significant increase in the ADO index3 of participants of Phase 2 compared 

to Phase 1 (p<0.001). Of particular interest is the distribution of all-cause mortality in the two 

phases. We see that there is not a statistically significant difference in the survival functions of 

the two phases, nor in the proportion of deaths at time points shared by both groups (3, 5, and 8 

years). This is important as it suggests that, despite the older participants in Phase 2 and the 

exclusion of individuals who died before the five-year follow up, the all-cause mortality does not 

differ significantly between the two phases. 

The ECLIPSE study27 differs significantly in its patient population compared to COPDGene 

(Table 1). It has significantly more male participants (p<0.001) and is less racially diverse 

(98.3% white). Additionally, ECLIPSE is enriched for more severe cases of COPD (GOLD 

Stages 2-4; p<0.001). This is also reflected in significant increases in the ADO, BODE, and 

updated BODE indices compared to COPDGene. Finally, likely due to the difference in COPD 

severity in the patient population, we see a significant difference in all-cause mortality between 

the two studies (p<0.001). This is also reflected in the number of deaths observed in the first 

three years, which is significantly higher in the ECLIPSE study (p<0.001). 

Comparison of All-Cause and COPD-specific Mortality Models 

Identifies Features Directly Linked to COPD Mortality 

The MB variables (see Supplementary Methods) of all-cause mortality and COPD-specific 

mortality overlap substantially in COPDGene Phase 1. Overlapping features include classical 

predictors of mortality in COPD, such as age, 6MWD, mMRC Dyspnea score, BMI, and forced 

expiratory volume in 1s (FEV1)/forced vital capacity (FVC) ratio3,31 (Figure 1, Supplementary 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.31.24301705doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.31.24301705


9 

Table S2). Additionally, prior diagnosis of pneumonia, participant’s resting SaO2, AWT, history 

of severe exacerbations, and high blood pressure were linked to both all-cause and COPD-

specific mortality. However, there were differences in the two models. FVC %predicted is 

strongly associated with COPD-specific mortality only, while FEV1 %predicted independently 

informs all-cause mortality only. Also, as expected, comorbidities such as CVD and diabetes 

were associated with all-cause mortality only; same applies to risk factors such as smoking 

status (at the visit), pack years, and gender. Finally, heart rate and the coughing up phlegm 

symptom are also linked to all-cause mortality only. 

Looking only at the direct neighbors of COPD-specific mortality provides some additional 

insights. BMI, although it provides some independent information for COPD-specific mortality, is 

not directly linked to it, suggesting that its association with mortality in COPD is through its 

interactions with FEV1/FVC, FVC %predicted, 6MWD, mMRC Dyspnea score, and resting 

SaO2 (Figure 1A, right). However, BMI is directly linked to all-cause mortality. Additionally, we 

observe a direct effect of FVC %predicted to COPD-specific but not to all-cause mortality. 

Figure 1B shows the relative importance (hazard ratios) of each direct neighbor to mortality in 

the two graphs, which are all independently significant.  

Predictive Models of COPD Mortality 

In addition to providing insights on direct interactions in observational datasets, graph models 

are useful tools for constructing robust, parsimonious, and powerful predictive models. We 

found that the graph-based predictive models (Neighbors, MB) significantly outperformed the 

ADO and updated BODE indices for both all-cause and COPD-specific mortality (Figure 2A). 

The models based on direct neighbors only (i.e., excluding “spouses” from the MB) performed 

similarly to models constructed from the full MB, LASSO Cox regression, and RF, but 

consistently selected significantly fewer features. The predictive models based on the full MB 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.31.24301705doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.31.24301705


10 

performed similarly to LASSO Cox regression and RF, while still being significantly more 

parsimonious than LASSO.  

To demonstrate the ability of our models to stratify patients better than the updated BODE 

index, we created four risk groups based on the updated BODE score as well as groups of 

equal size from our full MB model. The Kaplan-Meier survival probability estimates32 were 

plotted for these four risk groups for both all-cause (Figure 2B) and COPD-specific mortality 

(Figure 2C). The new full MB risk groups stratify patients into groups with significantly different 

survival curves for both all-cause and COPD-specific mortality. Additionally, COPD-specific 

mortality was considerably easier to predict compared to all-cause mortality (Figure 2BC). 

External Validation: the ECLIPSE Study 

In our model, COPD-specific mortality has seven direct neighbors (Supplementary Table S2, 

bold), which are easily obtainable clinical measurements (no need for chest CT scans), and they 

are frequently measured across COPD studies. We trained a predictor model of COPD-specific 

mortality with these seven variables from COPDGene Phase 1 and constructed an index of 

COPD mortality risk as in 3 with the categories presented in Table 2. Our model, VAPORED 

(Vital capacity-FVC %predicted, Age, history of Pneumonia, Oxygen saturation, the FEV1/FVC 

Ratio, 6-min walk Exercise capacity, Dyspnea), was validated on the 3-year mortality data in the 

ECLIPSE study and compared to the standard ADO, BODE, and updated BODE indices. We 

used four measures to assess predictive power: concordance, the concordance probability 

estimate (CPE), the cumulative/dynamic (C/D) AUC at 3 years, and the integrated C/D AUC. 

Means and standard errors of these metrics were estimated over 2000 bootstrapped samples. 

While the ADO, BODE, and Updated BODE indices have similar predictive power across all 

metrics, VAPORED had consistently the highest predictive power by at least one standard error 

(Figure 3A) and significantly higher CPE than all other indices (p<0.05). All-cause mortality 
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survival functions for each VAPORED score interval were estimated by training a parametric 

Cox regression model with a Weibull baseline hazard on COPDGene Phase 1 data10 

(Supplementary Figure S1A; Supplementary Table S3). In Supplementary Figure S1B we 

see that the predictions of this model are not significantly different than the observed survival 

probabilities for each calibration plot in 1-year, 2-years and 3-years survival. Patients in the 

ECLIPSE dataset were also stratified into four risk groups according to the BODE score and 

four risk groups of equivalent size based on the VAPORED score (Figure 3B). The VAPORED 

score categories have significantly different survival probability in the ECLIPSE study and 

VAPORED shows greater separation amongst risk groups than the BODE score. 

Graph-based Model of All-Cause Mortality in COPD Reveals 

Biological Signatures of Mortality Risk 

In addition to the demographic, clinical, spirometry, and chest CT scan features, COPDGene 

Phase 2 Study also collected biological data, such as white blood cell differential percentages, 

hemoglobin levels, and whole blood gene expression. This provides a unique opportunity to 

investigate how informative the biological features are in the context of the clinical features and 

comorbidities. We applied our graph-modeling approach to identify features potentially affecting 

all-cause mortality in this dataset. We found eight of the 18 previously identified clinical features 

in the MB (age, gender, BMI, 6MWD, mMRC Dyspnea score, FEV1/FVC, heart rate, CVD; 

Supplementary Table S2). Additional variables linked to all-cause mortality include: a 

socioeconomic feature, Internet Access, which was not collected during Phase 1, and five 

biological features (platelets, hemoglobin, SPIB transcription factor activity, and CIBERSORTx 

inferred proportions of plasma cells and resting memory CD4+ T cells) (Figure 4AB). We used 

5-fold cross-validation (internally) to ensure that our graph modeling approach was learning 

robust sets of features of all-cause mortality. As above, the model based on the identified 
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predictors of all-cause mortality significantly outperformed the ADO and updated BODE indices 

in terms of concordance, while it is significantly more parsimonious than the other machine 

learning methods (LASSO Cox regression, RF) without a significant loss in predictive accuracy 

(Figure 4C). Finally, the COPDGene Phase 2 full MB predictive model can stratify individuals 

into significantly different mortality risk groups (Figure 4D). These results strengthen the claim 

that our method derives relevant direct interactions between features from this multi-modal and 

multi-scale dataset and all-cause mortality. 

Web-based tool for all-cause and COPD-specific mortality 

To help people further evaluate our VAPORED score predictor, we developed a web-based tool. 

The web tool allows the user to input the seven VAPORED key variables (FVC %predicted, age, 

history of pneumonia, SaO2, FEV1/FVC ratio, 6MWD, mMRC Dyspnea score) for an individual 

and outputs two mortality risk curves (all-cause, COPD-specific) for the next 10 years. In 

addition, if the user provides values for BMI and FEV1 %predicted, the web tool outputs similar 

curves for BODE and ADO risk scores (for comparison purposes). The tool is available as a 

Shiny app from: https://vapored.shinyapps.io/VAPORED/. Some example values have been 

pre-loaded. 

 

Discussion 

In this study, we applied a probabilistic graph modeling approach to distinguish features directly 

linked to COPD-specific and all-cause mortality from simple correlates. We analyzed 

demographic, clinical, spirometry, and chest CT scan features from baseline COPDGene 
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measurements. The graphical models, by construction, are considering all possible 

combinations of covariates and filter out the indirect effects. 

Key results – Interpretation. We found known risk factors of all-cause mortality in COPD to 

inform both models. These include age, mMRC Dyspnea score, 6MWD, and BMI, which are 

used in BODE and ADO indices. Interestingly, these features remained informative of all-cause 

mortality even after biological data were added to the model (from COPDGene Phase 2). Other 

common features of the all-cause and COPD-specific mortality baseline models (history of 

pneumonia, and resting SaO2) did not appear in the Phase 2 model, probably because their 

information is superseded by the biological variables of this model (Platelets, Resting Memory 

CD4+ T Cells, SPIB Activity, and Plasma Cells). Further investigation is needed to determine 

potential long-term biological effects of pneumonia to COPD patients. 

The all-cause and COPD-specific mortality models have some unique characteristics, despite 

their substantial overlap. FVC %predicted appeared only in the COPD-specific model. This 

might indicate the effect of hyperinflation (i.e., residual volume) in COPD mortality, which was 

recently shown to be better represented by FVC %predicted and FEV1/FVC rather than FEV1 

%predicted33. Further, hyperinflation is more strongly linked to mortality than FEV134,35.  

FEV1/FVC ratio, which is independent on race specific reference equations, is a better 

discriminator of mortality than FEV1 %predicted36. Not surprisingly, certain comorbidities are 

informative for the all-cause mortality only: diabetes, CVD, heart rate. Pack years, which affects 

multiple systems, is informative for the all-cause mortality, but not the COPD-specific mortality. 

This is probably because direct measurement of impacted lung variables has incorporated the 

smoking information. Finally, the important contribution of pneumonia to our COPD specific 

model is unique, although not unexpected given the established relationship between 

pneumonia and mortality in patients with COPD and the potential that pneumonia may cause 

impairment in lung immunity not reflected in the other metrics37,38. 
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The graph models enabled us to develop a new, parsimonious but informative, 7-feature risk 

score for COPD-specific mortality consisting of easily obtainable characteristics (age, 6MWD, 

FEV1/FVC, FVC %predicted, mMRC Dyspnea score, history of pneumonia, resting SaO2). We 

validated this new model in the ECLIPSE 3-year all-cause mortality data, as ECLIPSE has not 

recorded COPD-specific mortality. Our score consistently outperformed the ADO, BODE, and 

updated BODE indices across multiple metrics and had a significantly higher mortality CPE. 

We also took advantage of COPDGene 5-year follow-up data, which additionally included 

socioeconomic factors and biological measurements. Our graph approach identified potentially 

important clinical and biological factors of all-cause mortality in current and former smokers with 

or at high risk of developing COPD. Age, BMI, FEV1/FVC, mMRC, 6MWD were still connected 

to all-cause mortality, as well as comorbidities CVD and heart rate. In addition, Internet Access 

was directly linked to all-cause mortality. Further investigation is needed to determine whether 

this is a surrogate for income or rural vs urban population characteristics.  

Five biological features were linked to all-cause mortality in the Phase 2 model: hemoglobin 

levels, platelet counts, SPIB transcription factor activity, plasma cell proportions, and resting 

memory CD4+ T cell proportions. Low hemoglobin levels were associated with an increased risk 

of all-cause mortality, as has been previously observed in a population-based study of 

individuals with COPD39 and in patients who were admitted to hospital for COPD40. Platelets 

have also been previously associated with all-cause mortality in COPD, and antiplatelet 

therapies have been shown to reduce all-cause mortality in individuals with COPD41,42. This 

contradicts the hazard ratio learned by our model, which suggests that low platelet levels are 

associated with increased all-cause mortality. However, previous analysis has found a U-

shaped association of platelet counts with all-cause mortality in COPD43. This indicates that 

both high and low platelet counts are associated with a higher risk of all-cause mortality, and the 

hazard ratio observed in our model is likely due to limitations of our modeling assumptions, 
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which expect such associations to be monotonic. Even so, our graph discovery algorithm has 

correctly identified a biological signature that has been previously identified as having a likely 

causal effect on all-cause mortality in COPD patients41,42. 

Regarding mechanistic insights, our model suggests that the plasma cell proportion and SPIB 

transcription factor activity are affecting mortality. The two likely interact (our model supports 

that), as the SPIB transcription factor is a negative regulator of plasma cell differentiation and 

immunoglobulin production44,45. Previous studies have linked B cell activity and the humoral 

immune response with COPD progression46. The formation of lymphoid follicles in the lung46,47 

and larger numbers of infiltrating B cells, memory B cells, and plasma cells are associated with 

COPD severity46. Our model provides support for this mechanism of COPD progression, as 

elevated plasma cells and reduced SPIB transcription factor activity are found to be associated 

with an increased risk of all-cause mortality. 

Our graph model also suggests that lower resting memory CD4+ T cells directly affect increase 

in all-cause mortality, independently of age or sex. Interestingly, circulating memory CD4+ T 

cells are known to increase with age48, and smoking49,50, and have been linked to an increase in 

IL-22 secretion, which has been previously implicated in COPD pathogenesis51. However, 

independently of these known risk factors for all-cause mortality in COPD, our results suggest 

that memory CD4+ T cells play a protective role in patients with COPD. A previous study in 

patients with COPD found that CD4+ T cell cytokine production in response to stimulus is 

restricted almost entirely to memory CD4+ T cells52. In healthy populations, memory CD4+ T 

cell populations can respond faster and more efficiently to previously experienced infections48,53. 

In both healthy individuals and those with COPD, circulating and tissue resident memory CD4+ 

T cells that respond to common viral respiratory pathogens were found, without any significant 

defects between the COPD and control subjects54. The association of low levels of resting 

memory CD4+ T cells with an elevated risk of all-cause mortality observed in our analysis may 
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reflect the importance of memory CD4+ T cell populations in the response to respiratory 

infections in subjects with COPD. 

Limitations. The observational nature of both cohorts makes difficult to establish true causal 

relationships. Additionally, the COPDGene Study contains older individuals with extensive 

smoking histories, so the VAPORED score reflects this. Thus, its application should be limited to 

individuals who have or are at high risk of developing COPD. Finally, the modeling assumptions 

of our probabilistic graph models (additive monotonic relationships, Markov faithfulness) place 

limitations on the interactions our models can recover. Despite these limitations, our approach 

had similar predictive power compared to standard indices or common machine learning 

methods for mortality prediction. 

Conclusions. Our graph-based models can go beyond simple correlates and identify direct 

effectors of outcomes. It is also important to distinguish COPD-specific from all-cause mortality, 

a subject that has been understudied in the past. We developed a new COPD-specific mortality 

risk score (VAPORED), which is significantly better than established risk scores, and we 

validated our findings in an external cohort. Furthermore, we identified socioeconomic and 

biological factors that contribute to all-cause mortality in COPD patients. In the future, we plan to 

extend this study to additional modalities, such as genetic information, blood proteomics or 

methylomics, and develop truly comprehensive mortality risk scores. Accurate risk stratification 

of COPD patients can aid in the identification of high-risk individuals who may benefit most from 

targeted interventions. 
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TABLES 

Table 1: Clinical characteristics of the COPDGene Phase1 and Phase 2 studies used for the 
construction of graphical models of all-cause and COPD-specific mortality; , and the ECLIPSE 
3-year all-cause mortality cohort, used for external validation. 
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Table 2: Scoring criteria for VAPORED mortality score, constructed from the direct neighbors of 
COPD-specific mortality in the graphical model. 

VAPORED Risk Score 

Feature Category Score 

Age (years) < 50 0 

[50, 60) 1 

[60, 70) 3 

[70, 80) 5 

≥ 80 6 

6-min Walk Distance (m) ≥ 550 0 

[350, 550) 2 

[250, 350) 4 

[150, 250) 5 

< 150 7 

FEV1/FVC Ratio (%) ≥ 80 0 

[65, 80) 3 

[50, 65) 5 

[35, 50) 6 

< 35 8 

FVC% Predicted (%) ≥ 100 0 

[80, 100) 1 

[60, 80) 3 

[45, 60) 4 

< 45 5 

mMRC Dyspnea score [0, 1] 0 

2 1 

[3, 4] 2 

Pneumonia No / Unknown 0 

Yes 1 

Resting SaO2 (%) ≥ 93 0 

[85, 93) 2 

< 85 3 
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FIGURE LEGENDS 

Figure 1: Graph models of all-cause (A, left) and COPD-specific (A, right) mortality in the 
COPDGene Phase 1 study. Only the Markov blanket (MB) mortality features are shown. Node 
boundaries are colored to represent whether a feature is present in the MB of all-cause mortality 
(yellow), COPD-specific mortality (red), or both (orange). Adjacencies in the graphical model 
represent a direct interaction between two variables, while edge orientations represent the type 
of interaction inferred by CausalCoxMGM. Undirected edges (X --- Y) represent a direct 
interaction between X and Y, while bidirected edges (X <-> Y) mean that some unobserved 
confounder affects X and Y. Edge color designates whether higher values of this MB variable 
represent lower (blue) or (red) higher mortality risk. The standardized hazard ratios of the direct 
neighbors all-cause (B, left) and COPD-specific mortality (B, right) display the direction, relative 
effect size, and significance of each covariates’ association with mortality. Hazard ratios for 
numeric features represent the change in hazard for a 1 SD increase. Although all depicted MB 
variables contribute independent information to each mortality variable, we observed no 
significant decrease in prediction accuracy in models with only the direct neighbors. 

 

Figure 2: Performance of predictive models of all-cause and COPD-specific models assessed 
through 5-fold cross-validation (A). Models constructed using the direct neighbors of mortality 
(Neighbors) and all Markov blanket variables (full MB) were compared against the ADO and 
updated BODE indices, as well as LASSO Cox regression and random survival forests (RF) 
models trained on the same cross-validation splits. Model performance was assessed via 
Harrell’s concordance. The number of features for models where feature selection was 
performed (Neighbors, full MB, LASSO Cox) was also assessed. Error bars denote the 95% 
confidence intervals of the cross-validation estimates. To demonstrate the ability of the full MB 
models to stratify patients by risk of all-cause (B) and COPD-specific (C) mortality compared to 
the updated BODE index, we stratify individuals into four risk groups using the updated BODE 
index (left) as well as four risk groups of equal size predicted by the full MB models (right). 
Confidence bands represent the 95% confidence interval. 
 

Figure 3: Performance of the VAPORED risk score in the ECLIPSE 3-year all-cause mortality 
external validation cohort.  The concordance, concordance probability estimate (CPE), 3-year 
C/D AUC, and integrated C/D AUC for the VAPORED, ADO, BODE, and updated BODE scores 
(A). Error bars denote the 95% confidence intervals of the bootstrapped estimates. To 
demonstrate the ability of the VAPORED risk score to stratify patients by risk of all-cause 
mortality in the ECLIPSE study compared to the updated BODE index (B), we stratify individuals 
into four risk groups using the BODE index (left) as well as four risk groups of approximately 
equal size by VAPORED risk score (right). Confidence bands represent the 95% confidence 
interval. 
 

Figure 4: Graph models of all-cause mortality in the COPDGene Phase 2 study (A). Only the 
Markov blanket (MB) of all-cause mortality is shown. Adjacencies in the graphical model have 
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the same notation as in Figure 1. The standardized hazard ratios of the direct neighbors all-
cause mortality (B) display the direction, relative effect size, and significance of each covariates’ 
association with mortality. Hazard ratios for numeric features represent the change in hazard for 
a 1 SD increase. The performance of predictive models of all-cause and COPD-specific models 
assessed through 5-fold cross-validation (C). Models constructed using the direct neighbors of 
mortality (Neighbors) and Markov blanket of mortality (full MB) were compared against the ADO 
and updated BODE indices, as well as LASSO Cox regression and random survival forests (RF) 
models trained on the same cross-validation splits. Model performance was assessed via 
Harrell’s concordance and the number of features for models where feature selection was 
performed (Neighbors, full MB, LASSO Cox). Error bars denote the 95% confidence intervals of 
the cross-validation estimates. To demonstrate the ability of the full MB model to stratify patients 
by risk of all-cause mortality compared to the updated BODE index (D), we stratify individuals 
into four risk groups using the updated BODE index (left) as well as four risk groups of equal 
size using full MB model predictions (right). Confidence bands represent the 95% confidence 
interval. 
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Figure 1: Graph models of all-cause (A, left) and COPD-specific (A, right) mortality in the COPDGene Phase 1 study. Only the 
Markov blanket (MB) mortality features are shown. Node boundaries are colored to represent whether a feature is present in the 
MB of all-cause mortality (yellow), COPD-specific mortality (red), or both (orange). Adjacencies in the graphical model represent a 
direct interaction between two variables, while edge orientations represent the type of interaction inferred by CausalCoxMGM. 
Undirected edges (X --- Y) represent a direct interaction between X and Y, while bidirected edges (X <-> Y) mean that some 
unobserved confounder affects X and Y. Edge color designates whether higher values of this MB variable represent lower (blue)
or (red) higher mortality risk.  The standardized hazard ratios of the direct neighbors all-cause (B, left) and COPD-specific 
mortality (B, right) display the direction, relative effect size, and significance of each covariates’ association with mortality. Hazard
ratios for numeric features represent the change in hazard for a 1 SD increase. Although all depicted MB variables contribute
independent information to each mortality variable, we observed no significant decrease in prediction accuracy in models with
only the direct neighbors.
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Figure 2: Performance of predictive models of all-cause and COPD-specific models assessed through 5-fold cross-validation (A). 
Models constructed using the direct neighbors of mortality (Neighbors ) and all Markov blanket variables (full MB) were compared 
against the ADO and updated BODE indices, as well as LASSO Cox regression and random survival forests (RF) models trained on 
the same cross-validation splits. Model performance was assessed via Harrell’s concordance. The number of features for models 
where feature selection was performed (Neighbors, full MB, LASSO Cox) was also assessed. Error bars denote the 95% confidence
intervals of the cross-validation estimates. To demonstrate the ability of the full MB models to stratify patients by risk of all-cause (B) 
and COPD-specific (C) mortality compared to the updated BODE index, we stratify individuals into four risk groups using the 
updated BODE index (left) as well as four risk groups of equal size predicted by the full MB models (right). Confidence bands
represent the 95% confidence interval.
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Figure 3: Performance of the VAPORED risk score in the ECLIPSE 3-year all-cause mortality external validation cohort.  The 
concordance, concordance probability estimate (CPE), 3-year C/D AUC, and integrated C/D AUC for the VAPORED, ADO, BODE, 
and updated BODE scores (A). Error bars denote the 95% confidence intervals of the bootstrapped estimates. To demonstrate the 
ability of the VAPORED risk score to stratify patients by risk of all-cause mortality in the ECLIPSE study compared to the updated 
BODE index (B), we stratify individuals into four risk groups using the BODE index (left) as well as four risk groups of 
approximately equal size by VAPORED risk score (right). Confidence bands represent the 95% confidence interval.
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Figure 4: Graph models of all-cause mortality in the COPDGene Phase 2 study (A). Only the Markov blanket (MB) of all-cause 
mortality is shown. Adjacencies in the graphical model have the same notation as in Figure 1. The standardized hazard ratios of 
the direct neighbors all-cause mortality (B) display the direction, relative effect size, and significance of each covariates’ 
association with mortality. Hazard ratios for numeric features represent the change in hazard for a 1 SD increase. The 
performance of predictive models of all-cause and COPD-specific models assessed through 5-fold cross-validation (C). Models 
constructed using the direct neighbors of mortality (Neighbors) and Markov blanket of mortality (full MB) were compared against 
the ADO and updated BODE indices, as well as LASSO Cox regression and random survival forests (RF) models trained on the 
same cross-validation splits. Model performance was assessed via Harrell’s concordance and the number of features for models 
where feature selection was performed (Neighbors, full MB, LASSO Cox). Error bars denote the 95% confidence intervals of the 
cross-validation estimates. To demonstrate the ability of the full MB model to stratify patients by risk of all-cause mortality 
compared to the updated BODE index (D), we stratify individuals into four risk groups using the updated BODE index (left) as well 
as four risk groups of equal size using full MB model predictions (right). Confidence bands represent the 95% confidence interval.
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