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Reliable short term and long term forecasting of the number of COVID-19 in-

cidences is a task of clear importance. Numerous attempts for such forecasting

have been attempted historically since the onset of the pandemic. While many

successful short-term forecasting models have been put forward, predictions

for mid-range time intervals (few weeks) and long-range ones (few months to

half a year) appeared to be largely inaccurate.

In this paper we investigate systematically the question as to what extend such

predictions are even possible given the information available at the times when

the predictions are made. We demonstrate that predictions on the daily basis

is practically impossible beyond the horizon of 20+ days, and predictions on

the weekly basis is similarly impossible beyond the horizon of roughly half

a year. We arrive at this conclusion by computing information bottlenecks

arising in the dynamics of the COVID-19 pandemic. Such bottlenecks stem

from the ”memoryless” property of the stochastic dynamical systems describ-

ing COVID-19 evolution, specifically from the so-called mixing rate of the sys-

tem. The mixing rate is then used to gage the rate at which the information
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used at a time when predictions are made no longer impacts the actual out-

comes of the pandemic.

Introduction and the summary of the results

Efforts in forecasting COVID-19

Efforts to forecast the number of COVID-19 incidences as well as related metrics such as hos-

pitalization, severity and mortality began pretty much since the beginning of the pandemic in

Spring of 2020. Related work includes (1–56). The importance of such forecasts needs no justi-

fication: knowing the number of incidences can inform health care planners to provision health

care supply and treatment accordingly. The models used for predictions ranged widely from

some simple statistical estimations to very complex epidemic models based on a multitude of

parameters. In order to gage the success level of such predictions, a hub was created which com-

piled the forecasts put forward by various researchers and organizations https://covid19forecasthub.org.

While the models used by forecasters and reported in this hub incorporated a variety of types of

data inputs, the number of incidences of COVID-19, mortality and hospitalization were used al-

most invariably. A large number of models also employed the mobility data as a data input. The

hub contains predictions from over 90 research groups. Furthermore, a meta model was con-

structed which combined the predictions of individual models and a meta study was conducted

for evaluating the accuracy of these predictions (1).

One of the conclusions of this study, (which perhaps was hardly surprising), was that long

term predictions, specifically predictions of the number of incidences of COVID-19 beyond a

half a year horizon were quite inaccurate, and could be hardly distinguished from pure guessing.

Furthermore, for about one third of the competing research teams, their predictions were less

accurate than the so-called baseline model. The baseline model is a very simple model which

predicts the metric of interest based on the currently observed numbers. Thus failing to predict
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better than the baseline implies not even being able to predict whether the metric of interest

will increase or decrease over the time horizon of interest, let alone providing more refined

estimates.

Failure to provide accurate predictions for COVID-19 was also well documented in a paper

distinctively called ”Forecasting for COVID-19 has failed” (2). The paper lists a range of in-

stances where predictions put forward by many research teams vastly disagreed with actually

observed numbers, sometimes in fact by orders of magnitude.

Informational limits in long-term forecasting

The mixed success or even the outright failure to conduct accurate predictions of COVID-19

in the long term raises a question as to what extent such predictions are even feasible. In this

paper we propose an approach for understanding and estimating the limits of predictability of

COVID-19 incidences in the long term. Based on our approach we conclude that predicting the

number of incidences on the daily basis, namely predicting the number of COVID-19 incidences

to occur x days from the date when the prediction is being made, is nearly impossible when the

time horizon satisfies x ≥ 10 or x ≥ 20 (depending on the choice of the model). Similarly

predicting on the weekly basis, namely predicting number of incidences to occur during the x-

th week away from the time when the predictions are made, is nearly impossible when x ≥ 20

or x ≥ 30 (again depending on the choice of the model).

Our claims are based on two related methods. These methods are described below briefly,

and at a more detailed technical level in the next section. We also discuss why standard statis-

tical ”impossibility” results are not applicable in the setting of COVID-19 predictions, forcing

us to resort to models more fitting in capturing salient features of the pandemics.

Every data driven predictive method is based on constructing some way of mapping the data

available at a time when the prediction is being made, to the # occurrences of the observable of
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interest, which is predicted to occur. We denote this mapping generically as F (ST ) = OT+t,

where ST is the state (data) collected up to time period T , say fatalities and hospitalization data

up to date T , OT+t is the observable of interest which is being predicted at a future time T + t,

say the number of COVID-19 incidences, and t is the horizon for prediction, say t = 8 weeks

from the date T when the prediction was made.

The two models which we adopt for our study correspond to two types of mappings, which

we denote by FI and FII . Both models are intended to capture as much as possible of the

generality of the dynamics of COVID-19 pandemic, including its time dependent aspects as

well as its dependence on observable data. The main conclusion we arrive at in studying these

models as is follows: when the prediction horizon t is large, the dependence of the mapping on

data state ST is almost non-existent, in the sense that for every two hypothetical states S1 and

S2 describing two hypothetical data inputs feeding the model, the difference F (S1) − F (S2)

is practically indistinguishable from zero. Put it differently both models FI and FII of the

evolving dynamics of the pandemic have the property that the predictions being made for a long

term horizon will be nearly the same, regardless of the data used to populate the model. The

statistical properties of the observable O of interest for the time for which the predictions are

made are therefore almost entirely an artifact of noise, which accumulates between the time of

prediction and the time for which the prediction is made. This is an important conclusion which

explains the informational barriers for conducting meaningful long-term predictions. The data

incorporated into a predictive model is used to make the predictions as accurate as possible.

Naturally then it is paramount that the predictions depends on the data input in a significant

way, since otherwise, the overall predictive power of the data is negligible.
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Two models of the evolution of the pandemics

The first of the two aforementioned models giving rise to the mappings FI is a Markov chain

model, which is a canonical choice for modeling uncertain quantities evolving in time in some

stochastically dependent way. We use historical data to estimate the transition rates of the

Markov chain. From the estimated transition rates of the chain we obtain an estimation of the

associated spectral gap λ2 < 1 of the chain (see the next section for details). Standard theory

of Markov chains postulates that λ2 is rate of the memory loss of a chain (the so-called mixing

rate), meaning that the state of the chain at time 0 impacts the state of the chain at time t by

magnitude which is at most order λt2. In particular, the impact degrades at a geometric rate

as a function of t. This loss of memory property of Markov chains (one of its most basic and

celebrated properties) thus creates a sort of information bottleneck in our ability to predict the

state of the chain at time T + t given the current state at time T , when the value of λt2 is

very small. Based on our estimations we discover that the values of λt2 for the time periods

t corresponding to long term predictions, are indeed very close to zero, and thus the Markov

chain describing the dynamics of the pandemic indeed exhibits of almost entire loss of memory.

The spectral gap based reasoning is just an indirect indication of the memory loss. We have

also computed it directly as follows. We have computed the impact of the current states XT

on the probability tails, namely, how much the state of the chain at the time of observation (for

example the currently observed rates of incidences, hospitalization, etc) impacts the likelihood

that the number of incidences t days in future will be at least say x. Consistently with the

spectral gap based estimations, we have found that the state valuesXT at the time of observation

hardly impact the probability tails beyond the time horizon for predictions. In summary, the

Markov chain based model of the evolution of the pandemic exhibits a memory loss making

statistical predictions beyond a certain time horizon impossible.

While we believe that Markov chain based model of the evolution of the COVID-19 pan-
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demics is justifiable (more on this in the next section), it suffers from one important limitation:

the time homogeneity of the underlying chains. Namely, in our assumptions, the likelihood

(probability) of moving from state Xt = s to state Xt+1 = s′ in one step of the chain’s tran-

sition depends on the state s, but not on the time t. This is admittedly objectionable, since

presumably the dynamics of the pandemics may be influenced strongly by additional factors

not incorporated by states and which are time dependent. These might include season and

season related factors such as school times, holidays, temperature, etc.

Our second model addresses these limitations. We consider a non-stationary Markov chain

for which the transition rates are possibly time dependent (with the idea that the unobserved la-

tent factors impact transition rates at each time t). Non-stationarity presents a serious parameter

estimation challenge. For each time period t we have only one observed transition Xt → Xt+1

rendering statistical estimation of transition likelihoods for each time period impossible, unless

some additional structural and regularization assumptions on the chain are adopted, and this

is what we do. Specifically, we adopt the assumption that our Markov chain is a linear time

dependent (aka inhomogeneous) auto-regressive process regularized by the assumption that the

parameters of the process evolve in some controlled way. We elaborate on this in the next

section. We estimate the parameters of this process using the least squares method. The esti-

mated parameters are then used to populate the second model FII . The statistical soundness

of this approach based on the computational learning theory, specifically the theory of Vapnik-

Chervonenkis dimension, can be found in (57). We then use our model to assess the sensitivity

of FII on its argument ST . Once again we discover that the sensitivity of FII on its initial data

condition is very minimal and degrades rapidly as a function of t. The future values of observ-

ables OT+t = FII(ST ) depend very minimally on the current state ST , namely the data used to

produce the forecasts.
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Generalizations and alternative methods for establishing limits of predictabil-
ity

There exists a rich plethora of statistical/information theory based methods for establishing

limits for data driven statistical predictability. The methods roughly evolve around two related

concepts called mini-max theory in the field of statistics (58) and Fano’s inequality in the in-

formation theory (59). Both methods however are premised on data exhibiting independent and

identical distribution (i.i.d.), the property which profoundly is not the case in our setting. The

data used in the predictive models discussed in (1) as well as in our setting, such as incidence,

hospitalization, mortality and mobility, all exhibit auto-correlations. Arguably, one then could

try to use time series type models to study non-predictability, such as auto-regressive processes

– a standard model in the field of econometrics, which exhibits auto-correlation. The problem

with standard auto-regressive models is the time homogeneity of the parameters, which we wish

to avoid. Thus we allowed for our second model to exhibit the time dependence of the param-

eters, but in a regularized way, effectively giving a rise to an inhomogeneous auto-regressive

process. This is essentially our model FII discussed above.

It is entirely possible that more general models can be used for establishing the limits of

predictability, such as, for example, models based on latent (hidden) variables, aka Hidden

Markov Model and related models. Even broader, one could try to elicit the help of general

dynamical systems and using chaos type properties to study the limits of predictability. Such

limits are well-known for example in the context of weather prediction models based on Loren-

zian dynamics. The relevance of these and related models for predictability of COVID-19 is an

interesting question for further research.
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Data Mean Median Std Max Min
Incident Cases 108180.3 59551.0 148230.9 1383795 4236
Incident Deaths 1324.1 1046.0 962.9 4431 8

Incident Hospitalizations 6474.6 5276.0 5164.3 23479 0
Mobility Rate 7..7 7.0 4.7 27 -2

Table 1: Statistics of Daily Data

Data Mean Median Std Max Min
Incident Cases 757261.8 460875.0 952651.2 5654028 81687
Incident Deaths 9268.5 7981.5 5315.7 23447 1583

Incident Hospitalizations 45322.5 36283.0 35971.1 154002 16
Mobility Rate 8.24 7.8 3.7 20.2 4.0

Table 2: Statistics of Weekly Data

Methods and models

We now turn to the detailed description of our two models FI and FII as well as the data we use

to populate the parameters of these models. We begin with the data description.

Data

Consistently with the majority of models analyzed in (1) we use four types of data: Incidence,

Mortality, Hospitalization and Mobility. This data was retrieved from the same source COVID-

19 Forecast Hub as was used in (1). The data spans time period beginning with March 29, 2020

and ending April 9, 2022, with a total of 742 days (i.e. 106 weeks). A summary statistics of the

data on daily and weekly basis is provided in Table 1-2.

Number of incidents and mortality

During the COVID-19 pandemic in the US, data on cases and deaths were collected by state

and local governmental health agencies and aggregated into standardized, sharable formats by

third-party data tracking systems. Early in the pandemic, the Johns Hopkins Center for Systems
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Figure 1: Time Series of Daily Incident Cases

Science and Engineering (CSSE) developed a publicly available data tracking system and dash-

board. CSSE collected daily data on cumulative reported cases at the county, state, territorial,

and national levels and made these data available in a standardized format. Daily incident cases

and mortality were inferred from this time-series as the difference in successive reports of cu-

mulative cases, see Figures 1-4. Weekly values are defined and aggregated based on daily totals

from Sunday through Saturday, according to the standard definition of epidemiological weeks

used by the CDC, see Figures 25-28 in Supplementary materials.

Hospitalizations

CDC records daily hospitalization data through COVID Tracking Project. The dataset indicates

the number of newly-admitted COVID-19 patients across the US each day. The patients include

both adult and pediatric patients. see Figures 29-32 in Supplementary materials.
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Figure 2: Distribution of Daily Incident Cases

Figure 3: Time Series of Daily Incident Deaths
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Figure 4: Distribution of Daily Incident Deaths

Mobility

During the pandemic, Google collected mobility information from its app users. The daily

mobility rate reports how much the length of stay at residential area each day changes compared

to a baseline. The baseline is the median value, for the corresponding day of the week, during

the 5-week period Jan 3 - Feb 6, 2020. The data represent the percentage of change compared

to the baseline. The weekly mobility rate is defined as the daily average mobility rate within a

week. See Figures 33-36 in Supplementary materials.

We denote by It, Dt, Ht,Mt the number of incidences, mortality, hospitalization and mobil-

ity rate observed on day t, respectively, as described above. Day t = 0 corresponds to March

29, 2020 and the last day t = T corresponds to April 9, 2022. Thus T = 742. We use a similar

notation for data on weekly basis. That is, for example It, t ∈ [0, T ] is the number of incidences

which occurred on week t of the pandemic, where T is now 106.
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Models

We now turn to description of the two models under the discussion.

Model I. Homogeneous Markov chain

The first model FI is based on a Markov chain description of the processes It, Dt, Ht,Mt, t ∈

[0, T ] where each individual process is postulated to be a Markov chain. We illustrate the

idea only for the incidences process It. The treatment of the remaining three processes is

similar. We perform a discretization of the observable It in order to have a non-trivial number

of observations per transition in our chain. This is done as follows. Let Imin = mint∈[0,T ] It and

Imax = maxt∈[0,T ] It denote the smallest and the largest values of incidences per day observed

historically in the described period. As it turns out Imin = 4236 and Imax = 138795, see Table 1.

We fix a parameter n which describes the discretization level (which we will vary), and split

the interval [Imin, Imax] into n equal size subintervals J1, J2, . . . , Jn, so that Ji = [Imin + (i −

1)(Imax − Imin)/n, Imin + i(Imax − Imin)/n] for I = 1, . . . , n. We declare It to be in state i at

time t if It belongs to the interval Ji at time t. We consider a Markov chain Īt on the state space

1, 2, . . . , n. This Markov chain postulates the dynamics of the stochastic process (It, t ∈ [0, T ])

or the process (Īt, t ∈ [0, T ]) to be exact. The transition matrix P = (Pij, 1 ≤ i, j ≤ n) is

estimated from the data in a straightforward way: the value Pij is estimated as a fraction of

days t ∈ [0, T ] such that It ∈ Ji (i.e. Īt = i) and It+1 ∈ Jj (i.e. Īt+1 = j). Namely, it is the

number of days such that on this day the number of incidences was in the interval Ii and the

number of incidence on the next day was in the interval Ij .

We a consider the same model on a weekly basis. Here It corresponds to the number of in-

cidences which occurred in week t starting from the pandemic (the first week being the week of

March 29, 2020 and last week being April 9, 2022). The advantage of analyzing the weekly data

is the absence of the day of the week (weekday vs weekend) heterogeneity. The disadvantage
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is the reduced data size (106 vs 742).

There is a natural statistical trade-off of making n too small vs too large. For smaller values

of n the approximation implied by the rounding the values to the end points of each interval can

be potentially significant. The upside though is a larger number of observations per each pair of

states i, j. Conversely, for large n, the interval approximation is more granular, but the number

of observations per each pair i, j might not be significant enough. For the daily incidences

process we vary n in the range n = 2, 3, . . . , 10 and for the weekly incidences we vary n in the

range n = 2, . . . , 5. We observe a fair amount of insensitivity of our results to the choice of the

discretization level n, as we report in the next section.

Once our n × n matrix transition matrix P is estimated, we compute its spectral radius

λ2(P ) < 1 which is the second largest eigenvalue. The values of λ2(P ) for daily and weekly

data for processes It, Dt, Ht,Mt and their implications are reported in the next section.

The spectral radius λ2 provides an upper bound on the memory loss, specifically the rate

of convergence to stationarity. More specifically, denote by π the (unique) stationary distribu-

tion of our chain P , that is the unique probability vector solving πTP = πT . The uniqueness

was verified directly by computing π itself which is straightforward to do. Standard theory of

Markov chain postulates that the so-called total variation distance from the transient distribu-

tion to the stationary distribution is upper bounded in terms of λ2 is follows. In general, given

two discrete probability distributions µi, νi supported on the set i = 1, 2, . . . , N the total vari-

ation distance between them is defined as
∑

i |µi − νi| (here we drop a factor 1/2 commonly

used in this definition for convenience). Let Īt be the Markov chain P on state space 1, . . . , n

constructed above. Then, for some problem independent constant C, the following holds for

the total variation distance between the transient distribution and the stationary distribution π:

max1≤i≤n
∑

1≤k≤n |Prob(Īt = k|Ī0 = i) − πk| ≤ Cλt2. Here Prob(A|B) denotes the proba-

bility of the event A conditioned on the event B. Namely, the maximum over total variation
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distances is upper bounded by Cλt2 where the maximum is taken over all possible initial states

i. We denote this maximum total variation value by TV (t) (step t maximum total variation dis-

tance). In light of the fact that the chain P was explicitly constructed from which the stationary

vector π was easy to compute, we also computed TV (t) directly for various time horizons t.

Additionally, we have computed directly the following metric

TV2(t) = max1≤i,j≤n
∑

1≤k≤n |Prob(Īt = k|Ī0 = i) − Prob(Īt = k|Ī0 = j)|. This measure

is trivially at most twice TV (t), but is somewhat more meaningful in our context. Indeed, this

metric TV2 measures directly the following memory sensitivity property. Prob(Īt = k|Ī0 = i)

is the likelihood that the chain is in state k at time t, given the information that it is in state i

now (time zero). The Metric TV2 then measures the sensitivity of this likelihood to the initial

information (current state). If TV2 is small it implies that the current state has a very small

impact on this likelihood, and thus has a very limited predictive power. We report TV2(t) for a

range of values of t in the next section as well. As we will see, this value drops to very small

values when the time horizon t is large, specifically less than 1% for t at least 40 days and 40

weeks, (depending on whether It corresponds to daily or weekly observations).

Finally, we compute and report estimation of the tail events and in particular the sensitivity

of the tail events to the information available at the time when the forecasting is being made.

Given a threshold value θ we consider the probability Prob(Īt ≥ θ|Ī0 = i). Namely, the

likelihood of observing at least θ incidences of COVID-19 during the time period t, when

the current incidence level is Ī0 = i. To measure the sensitivity, we introduce TV (t, θ) =

max1≤i,j≤n |Prob(Īt ≥ θ|Ī0 = i)− Prob(Īt ≥ θ|Ī0 = j)|. We estimate this sensitivity measure

for threshold θ corresponding to a fraction of the largest historically observed numbers, namely

θ = ρMax(I) where Max(I) is the largest observed incidences (per day or per week) over

the entire period [0, T ], and ρ is a fixed percentile level (such as say ρ = 0.7 or ρ = 0.8). In

other words, TV (t, θ) measures the extent to which the likelihood of observing a spike in the
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incidences (at least ρ-fraction of maximum) depends on the current level of incidences. We

estimate this measures both for incidences It and mortality Dt. In this case the rate of the

information loss is even stronger. The value less than 1% is achieved within 10 to 25 days and

weeks (for both aggregation levels).

Model II. Heterogeneous regularized auto-regressive process

As discussed earlier, the Model I suffers from important modeling limitations. First, it pos-

tulates the dynamics of the four observables as a homogeneous Markov chain, thus ignoring

potential heterogeneity associated with various time dependent events, such as seasonality, gov-

ernment intervention, etc. The second source of limitation is that each of the processes Īt, D̄t

is considered in isolation. Thus for example the value of mortality D̄0 at the observation time

t = 0 has no impact on predicting the incidence level Īt at a future time t, and vice verse. As

such, our conclusions about the loss of information and the ensuing forecasting limitations are

no more than indicative of those.

We now turn to a far richer model which fixes both of these isssues. We call our model het-

erogeneous regularized auto-regressive process. Introducing a shorthand notation for the four

dimensional observable Xt = (It, Dt, Ht,Mt), t ∈ [0, T ], we now postulate the dynamics un-

derlying the stochastic law of the process Xt. First, since the processes I,D,H,M evolve on a

different scale, and, furthermore, the units of these four observables are not identical, we intro-

duce a unit free version of this process, by considering instead the processes It/Ī,Dt/D̄,Ht/H̄

and Mt/M̄ , where for each observable Ot, Ō denotes simply the average of this observable

over the entire time period T . We then define Xt to be instead the unit free version of the same

process: Xt = (It/Ī,Dt/D̄,Ht/H̄,Mt/M̄), t ∈ [0, T ]. We postulate that the dynamics of this

process Xt is described by a probabilistic law Xt+1 = Ft(Xt) + εt, where Ft is an (importantly)

time-dependent law which translates the observables at time t to the observables at time t + 1
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and εt is a zero mean idiosyncratic noise. We specifically postulate a linear model of the form

Xt+1 = AtXt + βt + εt. Here At is a time dependent 4 × 4 matrix and βt is a time dependent

4-dimensional vector.

Building a meaningful model of this form is impossible without any regularization assump-

tions on At and βt as we have only one observation of X per each time instance t. We postulate

a very natural restriction on possible values of At, βt, which state that Ft(x) and Ft+1(x) should

not differ drastically on the same input x. This represents a very simple principle that the mech-

anism At, βt driving the dynamics of the pandemic should not be fluctuate widely on the day to

day and week to week basis.

Thus we fix two parameters τA and τβ , and postulate that for each t we have a bound

|At(m,n)− At+1(m,n)| ≤ τA, |βt(n)− βt+1(n)| ≤ τβ, m, n = 1, 2, 3, 4. (1)

The parameters τA, τβ will be estimated from the data as described below. First for any fixed

values τA, τβ and for our historical data series Xt, t ∈ [0, T ], we obtain At, βt by solving the

squared loss constrained minimization problem

min
At,βt

ei =
T−1∑
t=0

(Xt+1(i)− At(i)Xt − βt(i))2, i = 1, 2, 3, 4, (2)

subject to the constraints (1). Here Xt+1(i) and βt(i) denotes the i-th element of Xt+1 and βt,

respectively. In addition, At(i) denotes the i-th row of At. Note that e1, e2, e3, e4 denote the

errors of incidences, mortality, hospitalization and mobility processes respectively. In this opti-

mization problem At, βt are viewed as variable. Solving this optimization problem is straight-

forward due to convexity of the objective function. Further, to obtain the best adjustment of

the parameters τA, τβ , we conduct a search over the choices of those which provide the smallest

value of the objective function, thus providing the best fit. More precisely, if O(τA, τβ) denotes

the value of the objective function (2) as a function of τA and τβ , we conduct a search of the
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values of τ and β which give the smallest value of O(τ, β). This is done in straightforward

by going the all choices of these parameters with some small discretization steps. The opti-

mal values of τ ∗ and β∗ are reported in the next section. This approach is adopted for both

for daily and weekly data, and also across various states US, along with US data as a whole.

The associated optimal values of sequences At, βt, t ∈ [0, T ] are denoted by A∗t , β
∗
t . Along

with τ ∗A, τ
∗
β they represent the best fit dynamical system representation of the pandemics evo-

lution. For any two times instances t0, t1 ∈ [0, T ] and any data configuration Xt0 at time t0

we can compute the implied prediction X̂t1 of the actual observable Xt1 at time t1 by iterations

X̂s+1 = A∗sX̂s + β∗s , s = t0, t0 + 1, . . . , t1 − 1. We note that each of these is a function of the

observable Xt0 at time t0 and write X̂t1(Xt0) in order to emphasize this.

Our next step is similar to the one before: we investigate to what extend the dynamics is

sensitive to the observations Xt0 . If the data analyst is currently positioned in time t0, she uses

the observable Xt0 to make predictions X̂t1 = (Ît1 , D̂t1 , Ĥt1 , M̂t1) for the observables at time

t1. If the sensitivity (to be defined now) is very small, it means that most of the information

embedded in the dataXt0 is ”lost” and most of the future realizationXt1 of the observable is due

to the accumulation of the idiosyncratic noise values εs, s ∈ [t0, t1]. The sensitivity for the ob-

servable corresponding to the number of incidences is defined as maxX,Y |Ît1(X)/Ī− Ît1(Y )/Ī|

where X and Y vary over all possible choices of four dimensional vectors with coordinates in

[Imin, Imax], [Dmin, Dmax], [Hmin, Hmax], [Mmin,Mmax] respectively. Here we recall that min and

max values correspond to the smallest and largest values of the four observables observed over

the entire period [0, T ]. We denote this maximum value by TV dynamic
t0,t1 . This is similar to the to-

tal variation and related measures of distances discussed earlier in the context of homogeneous

Markov chains. We report its values in the following section. In particular, we find indeed that

the value is very small when compared to the average Ī , once the forecasting horizon (t0, t1) is

more than a couple of weeks for the daily observations and more than six to several months for
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weekly observations. This indicates that indeed the loss of information imbedded in the data

Xt0 used for prediction is very significant to the point that it hardly provides any forecasting

value.

We stress one very important point here. The values A∗s, β
∗
s for s ≥ t0 are not in fact

available to the data analyst at time t0, as those depend on the future realizations Xs, s ≥ t0 of

the observables. So in fact, while the series As, βs represents the best prediction of the future as

a function of the current observableXt0 , this cannot be implemented in real life. What we show,

however, is that such predictions would be rendered useless beyond certain time horizons even

if the values A∗s, β
∗
s were given to the predictor in the hindsight, that is even for the predictor

who is equipped with the clairvoyante power of having the access to the future values of As and

βs.

Results

Homogeneous Markov chain based estimations

We now turn to the results of our computations based on the data and models described in the

section Methods and models. Recall that our first metric of interest is the spectral radius λ2(P )

of the associated Markov chain. We have computed it for the Markov chain process It corre-

sponding the dynamics of the incidences, daily and weekly, at different discretization levels n.

The spectral radius values associated with the process of incidences is reported on Figure 5 with

discretization value n ranging from 2 to 10 for daily observations and the discretization value n

ranging from 2 to 5 for weekly observations. Finer discretization becomes problematic due to

insufficiency of data per chain transition observations (though finer discretization were achiev-

able for mortality estimations). The largest, namely the most conservative value of the gap is

λ2(P ) = 0.868 when n = 10. While it is possible that the value can increase as n increases,

we anticipate based on the plot that it will increase only marginally. With value λ2 = 0.868
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Figure 5: Spectral radius for incidences

as our estimation of the correct spectral radius, the rate of information decay (mixing) is then

0.868t per t transitions of the chain. This is of course just a crude quantitative assessment of

the rate of the information loss. In order to assess the actual loss of information, we report the

metrics TV2(t), which we recall is the total sensitivity metric, and TV (t, ρMax(I)), namely the

tail sensitivity metric. The values of TV2(t) for daily incident processes are report on Figure 6

for discretization levels n = 4, . . . , 10. We see that the value drops below 0.01 when t is in

the range from 30 to 50 days. This means that the predictive power of the information of the

number of incidences observed on day X loses 99% of its value for predicting beyond X + 30

to X + 50 days ahead. The results on a weekly basis are similar and reported on Figure 7: 99%

information is lost within 30 to 40 weeks. While 40 weeks appears excessively long prediction

period and has not been attempted, to the best of our knowledge, in the same plot we see that

90% of information is lost already within 15 to 25 weeks which is very much within ranges for

which forecasting were produced in the past.

The results are even more compelling when we look at the metric TV (t, ρMax(I)) which is
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Figure 6: TV2(t) for daily incidences

Figure 7: TV2(t) for weekly incidences

20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.24302003doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.30.24302003
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8: TV (t, 0.7Max(I)) for daily incidences

reported for value ρ = 0.7 on Figure 8 and ρ = 0.8 on Figure 9 for daily incidences, and on Fig-

ures 10 and 11 for weekly incidences for the same choices of ρ. Recall that TV (t, ρMax(I))

measures the power of the observable I on day X to predict the likelihood of seeing ρ-percent

historically high incidences on day X + t. For daily incidences the value of this metric drops

below 0.01 within 15 to 25 days based on ρ = 0.7, and within 10 to 20 days based on ρ = 0.8.

Namely, the information embedded in I on day X amounts to at most 1% of the outcome of I

on dayX+ t. Recall that, as we have explained earlier, this means that any amount of change in

I on day X will result in change of I on day X + t which is at most 0.01 times the probability

of an outcome. For the weekly data the results are similar: the value drops below 0.01 within

20 to 25 weeks for ρ = 0.7 and ρ = 0.8.

We conducted similar computations with incidences (I) replaced by mortality (D). We

found that spectral gaps can be estimated based on somewhat finer discretization and in fact

the estimations appear to settle when when the discretization is about n = 10 both for daily

and weekly mortality, see Figure 12. We found that metrics TV2 and TV settle to values less
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Figure 9: TV (t, 0.8Max(I)) for daily incidences

Figure 10: TV (t, 0.7Max(I)) for weekly incidences
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Figure 11: TV (t, 0.8Max(I)) for weekly incidences

Figure 12: Spectral radius for mortality
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Figure 13: TV2(t) for daily mortality

than 0.01 within about 10 days, Figures 13-15. For weekly observables, however, the values

are significantly higher and by roughly 30 weeks they only drop to 0.1, signifying a loss of

90% (as opposed to 99% for daily observations), see Figure 16-18. This is also consistent with

estimations of the spectral radius, which settles to value approximately 0.75 for daily mortality

observation, but a pretty high value of approximately 0.95 for weekly mortality observations.

Whether this suggests that mortality observed on a weekly basis can be predicted more ac-

curately than incidences observed on a weekly basis, is an interesting question for a future

research.

Estimations based on heterogeneous regularized auto-regressive process

Next we turn to reporting our results based on the second Model II, namely inhomogeneous

regularized auto-regressive processes.

First we describe the process of estimation of parameters τA and τβ . The simplest approach

for estimating them would be to find values of these parameters which make the value of the
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Figure 14: TV (t, 0.7Max(D)) for daily mortality

Figure 15: TV (t, 0.8Max(D)) for daily death
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Figure 16: TV2(t) for weekly mortality

Figure 17: TV (t, 0.7Max(D)) for weekly mortality
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Figure 18: TV (t, 0.8Max(D)) for weekly death

optimization problem (2) the smallest. But this would correspond to the in-training data sub-

ject to the overfitting issue. Rather, instead we split the entire data series (per day and per

weekly) into two equal parts, the first corresponding to the even days (weeks) and the second

corresponding to the odd days (weeks). The first (even) data set is used for training, and the

second (odd) data set is used for testing. Note that if τA, τβ are too large, the training data

can be perfectly fitted with At, βt, and the training error will be 0. Such cases correspond to

overfitting. Thus, we set an upper bound on τA, τβ , i.e. (τA, τβ) ∈ [0, 10]2. Our experiment

shows that when going beyond this upper bound, the resulting training error is always zero,

which is very suboptimal. Moreover, we require the optimal τA, τβ to have training error at least

10−10. For each choice of τA, τβ within [0, 10], we solve the optimization problem (2) using

the training data. This is done by grid search, that is a finite subset of points in [0, 10]2 which

covers all points within a distance 0.01. For incidences process, we solve for (τ 1
A, τ

1
β) with the

smallest testing error e1. For mortality and hospitalization process, we solve for (τ 2
A, τ

2
β) and

(τ 3
A, τ

3
β) with the smallest testing error e2 and e3, respectively. We found the optimal values
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to be (τ 1
A, τ

1
β) = (0.02, 0), (τ 2

A, τ
2
β) = (0.01, 0.13), (τ 3

A, τ
3
β) = (0, 0.15) for daily observa-

tions and (τ 1
A, τ

1
β) = (0.21, 0.21), (τ 2

A, τ
2
β) = (0.02, 0.01), (τ 3

A, τ
3
β) = (0.05, 0.09) for weekly

observations.

Next we compute the point forecast sensitivity metric TV dynamics
t0,t0+∆ which we have described

in the Subsection ”Model II. Heterogeneous regularized auto-regressive process”. We do this

for time lags of ∆ = 1, 3, 5, 10, 20 and 30 days and report the values of this metric for all times

t0 within the entire range t0 ∈ [0, 742]. Figures 19 and 20 report our results for the normalized

Incidences metric Īt on daily and weekly basis respectively. The horizontal dashed lines corre-

spond to medians of the respecting curves across the entire range. For daily observations we see

the drop to below roughly 0.01 value with ∆ = 10 days lookahead. As before, this means that

less than 1% of information about the number of incidences 10 days ahead of predicting time is

explained by the data used for the prediction, and the remaining 99% is due to the noise which

accumulates within these 10 days. We stress again that this is the case even when the predictor

is equipped with the foresight power of knowing the actual drivers At, βt of the dynamics for

these future 10 days of the predicting horizon.

For the weekly observations, the loss of information is not as dramatic, but it is still signifi-

cant. We find that the metric TV dynamics
t0,t0+∆ drops to the value below roughly 0.03 within ∆ = 30

weeks period. Whether this means that predicting the number of weekly incidences for the hori-

zon of t < 30 weeks ahead is feasible, is yet to be seen. But based on our result we conclude

that predicting beyond 30 weeks does not appear possible.

Our estimation of information loss for predicting mortality is similar (reported on Figures 21

and 22): 99% information loss within 10 days for daily observations and about 97% information

loss within 30 weeks. The results for hospitalizations are similar and reported on Figures 23-24.

We have also conducted a similar analysis for several individual states. While, the results

paint a more mixed picture, likely reflecting smaller amounts of aggregated data per states as
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Figure 19: TV dynamic for daily cases

Figure 20: TV dynamic for weekly cases

Figure 21: TV dynamic for daily mortality
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Figure 22: TV dynamic for weekly mortality

Figure 23: TV dynamic for daily hospitalizations

Figure 24: TV dynamic for weekly hospitalizations
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opposed to national data, the general trend is similar: the information loss is clear beyond

certain horizon level which depends on the level of aggregation (daily vs weekly).

Conclusions

The following question was investigated in the present paper: to what extend the future rates

of COVID-19 incidences can be accurately forecasted? While the existing empirical studied

showed a very limited success in forecasting beyond certain time horizons, and put forward

forecasts which turned out to be orders of magnitude incorrect, to the best of our knowledge

there are no studies devoted to understanding barriers for long term forecasting. Our paper is

thus the first one of this kind. Our main conclusion is that predicting the number of incidences

on daily basis given the information available at the time when the prediction is being made, is

impossible beyond roughly 20 or so days horizon, and on weekly basis beyond 30 or so weeks

horizon.

While the results we have reported applied exclusively to COVID-19 dynamics, we believe

that the methods we have introduced in this paper are broad enough to understand limits of

predictability in many other fields were predictions are routinely conducted, including areas of

economics, finance and health care. The shortage of methods establishing limits of predictabil-

ity is partially explained by the fact that these limits are usually tied with concrete predictive

methodologies. Across statistical and machine learning applications pretty much every predic-

tive methods comes with an understanding of its limitations in certain stylized setting usually

involving independent identically distributed data. In our work we depart from this setting and

conduct a study which is not tied to some particular predictive methodology, and instead ap-

plies to a broader class of methods. Specifically, we stress that the heterogeneous regularized

autoregressive process we have adopted in our paper, which was our main framework to un-

derstand barriers for forecasting, is not a predictive methodology since it is based on affine
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process drivers At, bt which are not estimable at the time when the predictions are made. We

believe that the general the theory of understanding limits of predictability should be based on

considering widest possible model classes, in particular beyond those which are known to suc-

ceed in predicting for short term horizons, as this makes our limitation arguments even more

compelling.
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Figure 25: Time Series of Weekly Incident Cases
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Figure 26: Distribution of Weekly Incident Cases

Figure 27: Time Series of Weekly Incident Deaths
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Figure 28: Distribution of Weekly Incident Deaths

Figure 29: Time Series of Daily Incident Hospitalizations
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Figure 30: Distribution of Daily Incident Hospitalizations

Figure 31: Time Series of Weekly Incident Hospitalizations
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Figure 32: Distribution of Weekly Incident Hospitalizations

Figure 33: Time Series of Daily Mobility Rate
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Figure 34: Distribution of Daily Mobility Rate

Figure 35: Time Series of Weekly Mobility Rate
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Figure 36: Distribution of Weekly Mobility Rate

Results for individual states
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Figure 37: TV dynamic for daily cases (NY)

Figure 38: TV dynamic for weekly cases (NY)

Figure 39: TV dynamic for daily mortality (NY)
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Figure 40: TV dynamic for weekly mortality (NY)

Figure 41: TV dynamic for daily hospitalizations (NY)

Figure 42: TV dynamic for weekly hospitalizations (NY)
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Figure 43: TV dynamic for daily cases (CA)

Figure 44: TV dynamic for weekly cases (CA)

Figure 45: TV dynamic for daily mortality (CA)
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Figure 46: TV dynamic for weekly mortality (CA)

Figure 47: TV dynamic for daily hospitalizations (CA)

Figure 48: TV dynamic for weekly hospitalizations (CA)
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Figure 49: TV dynamic for daily cases (WI)

Figure 50: TV dynamic for weekly cases (WI)

Figure 51: TV dynamic for daily mortality (WI)
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Figure 52: TV dynamic for weekly mortality (WI)

Figure 53: TV dynamic for daily hospitalizations (WI)

Figure 54: TV dynamic for weekly hospitalizations (WI)
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Figure 55: TV dynamic for daily cases (AZ)

Figure 56: TV dynamic for weekly cases (AZ)

Figure 57: TV dynamic for daily mortality (AZ)
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Figure 58: TV dynamic for weekly mortality (AZ)

Figure 59: TV dynamic for daily hospitalizations (AZ)

Figure 60: TV dynamic for weekly hospitalizations (AZ)
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Figure 61: TV dynamic for daily cases (OK)

Figure 62: TV dynamic for weekly cases (OK)

Figure 63: TV dynamic for daily mortality (OK)
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Figure 64: TV dynamic for weekly mortality (OK)

Figure 65: TV dynamic for daily hospitalizations (OK)

Figure 66: TV dynamic for weekly hospitalizations (OK)
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Figure 67: TV dynamic for daily cases (US excluding mobility data)

Figure 68: TV dynamic for weekly cases (US excluding mobility data)

Figure 69: TV dynamic for daily mortality (US excluding mobility data)
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Figure 70: TV dynamic for weekly mortality (US excluding mobility data)

Figure 71: TV dynamic for daily hospitalizations (US excluding mobility data)

Figure 72: TV dynamic for weekly hospitalizations (US excluding mobility data)
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