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Abstract 

Accurate segmentation of thalamic nuclei, crucial for understanding their role in healthy cognition 

and in pathologies, is challenging to achieve on standard T1-weighted (T1w) magnetic resonance 

imaging (MRI) due to poor image contrast. White-matter-nulled (WMn) MRI sequences improve 

intrathalamic contrast but are not part of clinical protocols or extant databases. In this study, we 

introduce histogram-based polynomial synthesis (HIPS), a fast preprocessing transform step that 

synthesizes WMn-like image contrast from standard T1w MRI using a polynomial approximation for 

intensity transformation. HIPS was incorporated into THalamus Optimized Multi-Atlas Segmentation 

(THOMAS) pipeline, a method developed and optimized for WMn MRI. HIPS-THOMAS was compared 

to a convolutional neural network (CNN)-based segmentation method and THOMAS modified for T1w 

images (T1w-THOMAS). The robustness and accuracy of the three methods were tested across 

different image contrasts (MPRAGE, SPGR, and MP2RAGE), scanner manufacturers (PHILIPS, GE, and 

Siemens), and field strengths (3T and 7T). HIPS-transformed images improved intra-thalamic contrast 

and thalamic boundaries, and HIPS-THOMAS yielded significantly higher mean Dice coefficients and 

reduced volume errors compared to both the CNN method and T1w-THOMAS. Finally, all three 

methods were compared using the frequently travelling human phantom MRI dataset for inter- and 

intra-scanner variability, with HIPS displaying the least inter-scanner variability and performing 

comparably with T1w-THOMAS for intra-scanner variability. In conclusion, our findings highlight the 

efficacy and robustness of HIPS in enhancing thalamic nuclei segmentation from standard T1w MRI.  

Keywords: Thalamus, thalamic nuclei segmentation, THOMAS, structural imaging   
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1.  Introduction 

The thalamus is a deep brain structure on either side of the third ventricle, comprised of multiple 

nuclei (Morel et al., 1997). Physiologically, these nuclei are often classified as first order nuclei (e.g. 

lateral and medial geniculate nuclei), relaying sensory or motor information to the cortex, higher order 

nuclei (e.g. pulvinar) involved in cognition through cortico-thalamo-cortical circuits (Sherman, 2007) 

and the thalamic reticular nucleus. Several neurodegenerative, neurological, and neuropsychiatric 

conditions involve the thalamic nuclei such as alcohol use disorder (Zahr et al., 2020), schizophrenia 

(Andreasen, 1997), Alzheimer’s disease (Braak & Braak., 1991), chronic pain syndrome (Gustin et al., 

2011), epilepsy (Fisher et al., 2010) and stroke (Danet et al., 2015). Thus, visualization and 

characterization of thalamic nuclei are crucial in understanding their function as well as their 

relationship in the healthy brain or in pathological conditions. This need is even more critical for 

pathologies where clinical care is based on accurate targeting of specific nuclei, such as deep brain 

stimulation (DBS) for the treatment of essential tremor (Koller et al., 2001), chronic pain syndrome 

(Owen et al., 2006) or drug-resistant epilepsy (Fisher et al., 2010). Other therapeutic approaches 

targeting specific thalamic nuclei include Magnetic Resonance Guided Focused Ultrasound 

thalamotomy (MRgFUS), gamma knife surgery, radio frequency surgery, and microsurgical resection 

(Benabid et al., 1997; Cinalli et al., 2018). 

Segmentation of thalamic nuclei is challenging due to their poor contrast on standard T1 and T2 

weighted (T1w, T2w) MRI, the most commonly used pulse sequences in routine neuroimaging 

protocols. To partly address this issue, atlases such as the Schaltenbrand-Warren and the Morel atlas 

(Morel et al., 1997; Schaltenbrand & Warren, 1977) have been employed. These atlases have been 

used for manual delineations of nuclei on MRI data as well as in neurosurgical targeting using 

stereotactic coordinates (Sanborn et al., 2009). Manual delineation of thalamic nuclei requires special 

expertise, is time consuming, and is therefore not ideal for analysis of large datasets. A three-

dimensional reconstruction of the Morel Atlas in MNI space has been developed to help automate the 

segmentation of thalamic nuclei (Jakab et al., 2012). However, such atlas-based approaches ignore 
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important inter-individual and inter-thalamic variability of the size, shape, and location of thalamic 

nuclei, leading to compromised accuracy. 

To address the issue of automated thalamic nuclei parcellation at a subject-level and exploit image 

contrast, several approaches have been explored. One of the earliest methods, proposed by Behrens 

et al. (2003), used probabilistic tractography from Diffusion Tensor Imaging (DTI) data, mapping 

structural connectivity between different thalamic regions and specific cortical regions based on white 

matter anisotropy (e.g. mediodorsal nucleus to prefrontal cortex, lateral geniculate nucleus to visual 

cortex and so on), resulting in 7 thalamic regions corresponding to the 7 seed regions. Other diffusion 

MRI based methods have used local information from the diffusion tensor at a voxel level to parcellate 

the thalamus. Mang et al. (2012) used k-means clustering of the dominant diffusion orientation while 

Battistella et al. (2017) used k-means clustering of the spherical harmonic coefficients of the 

orientation distribution function to parcellate the thalamus into 6 regions. Since the thalamus is mainly 

composed of isotropic grey matter, the direction information computed from the diffusion tensor 

tends to be noisy. Further, the spatial resolution limitations of the underlying echo planar imaging 

acquisition results in a small number of clusters rather than precise, anatomically defined nuclei. 

Functional MRI based segmentation approaches have also been proposed using the idea of functional 

connectivity to cortical ROIs employing seed-based (Zhang et al., 2008), or Independent Components 

Analysis (ICA) (Hale et al., 2015). These also resulted in 6 thalamic regions corresponding to structural 

connectivity results of Behrens et al. In contrast, to parcellate the thalamus into 15 clusters, Kumar et 

al. (2017) proposed an ICA based functional parcellation while Van Oort et al. (2018) used time courses 

of instantaneous connectivity. Other methods based on susceptibility weighted imaging or 

quantitative susceptibility mapping (Liu et al., 2020; Deoni et al., 2005) have typically relied upon 

manual segmentation and have been limited to targeting the VIM nucleus for DBS treatment of 

movement disorders. 

Images from structural (anatomic) MRI methods such as T1w Magnetization Prepared Rapid 

Gradient Echo (MPRAGE) have high spatial resolution (typically 1mm isotropic), minimal distortion, 
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and are commonly used for cortical segmentation but rarely used for thalamic nuclei segmentation 

due to poor intra-thalamic nuclear contrast. Iglesias et al. developed a probabilistic atlas that combined 

manual delineations from in vivo T1w MPRAGE data and ex-vivo histological data (Iglesias et al., 2018). 

The Bayesian segmentation algorithm that uses this atlas to segment T1w MRI is part of the Freesurfer 

package.  Variants of MPRAGE such as white-matter-nulled (WMn) (Tourdias et al., 2014), and grey-

matter-nulled (GMn) (Magnotta et al., 2000) MPRAGE imaging significantly improves intra-thalamic 

contrast and permit better delineation of thalamic nuclei. A multi-atlas method called THalamus 

Optimized Multi-Atlas Segmentation (THOMAS) (Su et al., 2019) has been proposed that uses 20 WMn-

MPRAGE prior datasets acquired at 7T and segmented manually using the Morel atlas as a guide 

combined with a joint-label fusion algorithm for thalamic nuclei parcellation of WMn-MPRAGE data. 

This method (which we call WMn-THOMAS) divided the thalamus into 11 nuclei per hemisphere and 

was validated against manual segmentation. 

While WMn-THOMAS has been used in several studies examining the role of thalamic nuclei in 

alcohol use disorder and multiple sclerosis (Zahr et al., 2020; Su et al., 2020), WMn-MPRAGE sequences 

are neither part of commonly used clinical protocols nor available in existing data repositories like 

ADNI or OASIS. To segment conventional MPRAGE T1w data, THOMAS was recently modified to use 

mutual information (MI) instead of cross-correlation (CC) as the nonlinear registration metric 

(Bernstein et al., 2021; Pfefferbaum et al., 2023) and a majority voting algorithm for label fusion (which 

we call T1w-THOMAS). While this method achieved good accuracy compared to WMn-MPRAGE for 

larger nuclei such as the mediodorsal or pulvinar, it was less accurate for segmentation of the smaller 

centromedian and habenular nuclei. One reason for suboptimal performance of the modified T1w-

THOMAS method could be due to poor intrathalamic contrast and thalamic boundaries on standard 

T1w contrast images. To address this limitation, a novel deep learning-based method (Umapathy et 

al., 2021) was proposed, that first synthesized WMn-MPRAGE-like images from T1w data and then 

segmented the synthetic WMn-like data, using two separately trained convolutional neural networks 

(CNN). This CNN-based synthesis approach was shown to improve accuracy compared to direct 
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segmentation of T1w data (using a different CNN trained directly on 3T T1w data). However, the 

adoption of this method has been limited due to the necessity of training the CNNs on new types of 

data (e.g. different field strengths or scanner manufacturer). Furthermore, this CNN training process 

is time consuming and often not possible due to lack of T1w and WMn-MPRAGE data acquired 

concurrently on the same subjects.  

Inspired by the promising CNN-based WMn synthesis approach of Umapathy et al. (2021) and 

leveraging the contrast benefits of WMn-THOMAS, we introduce here a new pre-processing transform 

step, Histogram-based Polynomial Synthesis (HIPS), that enables robust and improved thalamic nuclei 

segmentation by synthesizing WMn-like images from T1w MRI using a simple polynomial function for 

intensity transformation. To test the performance of HIPS-THOMAS against T1w-THOMAS and CNN-

based segmentation, quantitative performance metrics including Dice, volume errors, and inter-

scanner/intra-scanner variability were used to assess performance across differing contrast (MPRAGE, 

SPGR, MP2RAGE), scanner manufacturers (Philips, GE, Siemens), and field strengths (1.5T, 3T, 7T).  

 

2. Methods 

2.1 Histogram-based polynomial synthesis (HIPS): motivation 

The main motivation of HIPS is to enable accurate thalamic nuclei segmentation from T1w 

images. As WMn-MPRAGE images were demonstrated to possess a higher intrathalamic contrast (Su 

et al., 2019) and generate more accurate segmentation (Umapathy et al. 2021) compared to T1w 

images, the goal was to generate WMn-like images from T1w data prior to THOMAS segmentation. 

Examining the two image contrasts revealed that the two images are nearly the "reverse" of each 

other with cerebrospinal fluid appearing dark in one and bright in another while the white matter 

appears bright in one and dark in the other. This suggested an intuitively simple “contrast reversal” 

scheme, which was implemented as a 1-x operation, with x corresponding to normalized image 

intensity values. The normalization procedure ensured that images from different subjects or 
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scanners could be transformed in a similar fashion, independent of scaling factors and overall 

intensity differences and is described in detail in the next section. This 1-x linear scheme was applied 

to T1w images to generate WMn-like images. However, plots of normalized T1w vs WMn image 

intensities revealed that a linear fit was suboptimal and further corroborated by the “darkened” 

appearance on the contrast reversed image (first column of Supplementary Figure 1). As a result, a 

polynomial function was used to better fit the nonlinear data as described below. 

 

2.2 HIPS methodology 

The main steps of HIPS preprocessing are as follows: 

a. Image preparation: Images were first cropped to focus on the bilateral thalami and avoid the 

skull or fat/skin tissue. Note that this cropping was done automatically using a cropped mask 

template warped from template space as described in Su et al. (2019) and is already part of the 

THOMAS pipeline.  

b. Image normalization: Image histograms were computed using a representative central axial slice 

of the cropped dataset, encompassing both thalami. To render the contrast transformation step 

independent of scanner type and subjects, T1-MPRAGE images were normalized using the WM 

signal and WMn-MPRAGE images were normalized using the CSF signal, both extracted from 

their respective image histograms, prior to fitting. To perform the normalization, the mode of 

the tissue of interest (WM in T1w, CSF in WMn-MPRAGE) was first computed from the histogram 

and the highest value shared by at least 1% of voxels exceeding the mode was used for the 

normalization (voxel value/normalizing value). This approach is like the WhiteStripe intensity 

normalization method (Shinohara et al., 2014) and is effective in removing the high intensity tail 

corresponding to artifacts and outlier intensities (Sun et al., 2015). Note that conventional 

contrast scaling based on maximum and minimum image intensity did not work due to noise and 

the presence of tissue other than WM/GM/CSF which caused variability in contrast (and hence, 

image appearance) across subjects or scanners.  
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c. Polynomial transformation: The desired contrast transformation is essentially estimating a 

function that optimally maps the normalized T1w space to normalized WMn space. The general 

form of the function was 1 + ax + bx2 + cx3 + dx4 with d = 0 for 3rd order, c and d = 0 for 2nd order, 

and a=-1, b, c, and d = 0 for linear. See Section 2.3 for details on determining optimal order and 

coefficients. 

d. Contrast stretching and rescaling: To further maximize the image contrast, a contrast stretching 

step which rescales intensities within the 2 and 98 percentile range of the input image values 

was performed. Finally, images are rescaled to the highest WM value (mode) computed in the 

Image normalization step to restore the image intensity ranges (corresponding to the original 

images prior to normalization). 

 

2.3 HIPS: parameter optimization and validation 

The optimal polynomial order and coefficients for HIPS were estimated using a training set of 

10 T1-MPRAGE and WMn-MPRAGE datasets acquired concurrently from the same subjects on a Philips 

3T scanner.  Following the cropping step to focus on the bilateral thalami, data from the two image 

contrasts were affinely registered using Advanced Normalization Tools (ANTS) (Avant, Tustison & Song, 

2009) with WMn-MPRAGE as fixed image and T1-MPRAGE as moving image. Polynomial functions of 

orders 1 (i.e. linear) to 4 (quartic) were tested using a curve fitting function (scipy.optimize.curve_fit, 

python 3.9). For each order, a single aggregate function derived from the 10 training subjects was 

applied to a test set of normalized T1w images (10 Philips 3T, 9 GE 3T, 10 Siemens 3T, and 8 Siemens 

7T datasets) to generate the corresponding synthetic WMn images. These WMn-like images were first 

visually evaluated against the corresponding native WMn-MPRAGE data using a kernel density 

estimation (KDE) plot (seaborn.kdeplot, python 3.9). The density plot approximates the underlying 

probability density function that generated the data but rather than using discrete bins like a 

histogram, it smooths the observations with a Gaussian kernel, producing a continuous density 

estimate for better visualization. A thin diagonal line on a density plot indicates an almost perfect 
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concordance between the two normalized intensities of images compared. The optimality of the 

transform functions was also assessed using two quantitative metrics- Structural Similarity Index (SSI) 

and Mean Square Error (MSE) and the best function was used for all subsequent processing. 

Supplementary Figure 1 shows the effects of contrast transformation on an example case using the 4 

orders.  

 

2.4 The HIPS-THOMAS segmentation pipeline 

HIPS-THOMAS is a variant of the THalamus Optimized Multi Atlas Segmentation (THOMAS) 

method (Su et al., 2019) and is shown in Figure 1. The input T1w image is first cropped to cover both 

thalami which removes outliers from the skull/subcutaneous fat. Following the cropping step, HIPS 

preprocessing is applied as described in detail in Section 2.2 comprising of image normalization, 

application of the optimized polynomial contrast transformation, and finally contrast-stretching and 

rescaling. This results in a WMn-like version of the cropped input T1w image. This HIPS transformed 

cropped image is then nonlinearly registered (”Warp R”) to a cropped average brain template from 20 

WMn-MPRAGE priors using the cross correlation metric (”CC” in blue, Fig. 1). This nonlinear warp is 

inverted (“R-1”, Fig.1) and combined with the 20 precomputed warps from priors to the template 

(“WpiT”, Fig. 1) to put the 20 manual segmentation labels in the input space. These 20 labels were then 

combined using a joint label fusion algorithm to generate the output’s final parcellation. The 

segmented thalamic nuclei include Anteroventral (AV), Ventral anterior (VA), Ventral lateral anterior 

(VLa), Ventral lateral posterior (VLp), Ventral posterolateral (VPL), Pulvinar (Pul), Lateral geniculate 

(LGN), Medial geniculate (MGN), Centromedian (CM), Mediodorsal-Parafascicular (MD-Pf) in addition 

to the Habenula (Hb) and the Mammillothalamic tract (MTT) and are shown in Table 1.  

The two notable differences between HIPS-THOMAS and T1w-THOMAS are the use of cross-

correlation metric (”CC” in blue, Fig.1) for ANTs nonlinear registration in calculating the Warp R instead 

of mutual information metric (“MI” in grey, Fig.1) and the use of joint label fusion instead of majority 

voting in the final label fusion step.  
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Fig. 1: The proposed HIPS-THOMAS pipeline.  HIPS pre-processing includes normalization of the 

cropped T1w input, application of a polynomial function to generate a WMn-like image, and a contrast 

stretching and a rescaling step. The WMn-like cropped input is fed into the THOMAS pipeline as 

opposed to the original cropped T1w image. Note that for HIPS-THOMAS, the nonlinear warp R uses a 

cross-correlation metric (CC in blue) and the label fusion step uses joint label fusion (in blue) as 

opposed to mutual information metric (MI in grey) and majority voting (in grey). NV: normalizing value.  
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Region Nucleus Abbreviation 

Anterior Anteroventral AV 

Ventral  Ventral anterior  VA 

 Ventral lateral anterior  VLa 

 Ventral lateral posterior  VLp 

 Ventral posterolateral  VPL 

Posterior Pulvinar  Pul 

 Lateral geniculate nucleus LGN 

 Medial geniculate nucleus MGN 

Medial Mediodorsal-Parafascicular MD-Pf 

 Centromedian CM 

Others Habenular Hb 

 Mammillothalamic tract MTT 

Table 1: List of thalamic nuclei segmented by THOMAS following the nomenclature of Morel 

 

2. 5 Convolutional Neural Network (CNN) based segmentation 

In addition to T1w-THOMAS and HIPS-THOMAS, the dual CNN method of Umapathy et al. (2021) 

was also used for segmentation of T1w data. This approach uses two cascaded 3D CNNs- WMn-

MPRAGE-like images are first synthesized from T1w images using a contrast synthesis CNN and these 

images are then processed using another CNN to yield thalamic nuclei parcellations. The synthesis 

network was trained using patches from registered pairs of T1w and WMn-MPRAGE images acquired 

from the same subjects on 3T GE and Siemens scanners as described in Umapathy et al (2021); the 

segmentation network was trained using WMn-THOMAS data.  
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2.6 Datasets and evaluation metrics  

The datasets used in the analysis comprised of 12 subjects acquired on a Siemens 3T scanner with 

T1w MPRAGE, 19 subjects acquired on a GE 3T scanner with 3D SPGR, and 18 subjects acquired on a 

Philips 3T scanner with T1w MPRAGE. WMn-MPRAGE acquired on each of these subjects were also 

available for comparisons. In addition, 8 datasets acquired on a Siemens 7T scanner using 

Magnetization-Prepared 2 Rapid Acquisition Gradient Echo (MP2RAGE) sequence were also analyzed. 

All experimental protocols including data acquisition were approved by institutional review board 

guidelines (University of Arizona for Siemens 3T data; Stanford and SRI International for GE 3T data; 

Comité de protection des personnes Ile-de-France IV for Philips 3T data; Commission cantonale d'éthique 

de la recherche sur l'être humain (CER-VD) for Siemens 7T data) and all data were acquired after obtaining 

prior written informed consent from the participants in accordance with the Declaration of Helsinki. 

Additional information about each sequence can be found in Supplementary Table 1. Segmentation 

performance of T1w-THOMAS, HIPS-THOMAS, and CNN were compared for different-  

i. T1w contrast (MPRAGE, SPGR, MP2RAGE) 

ii. scanner manufacturers (Siemens, GE, Philips) 

iii. field strengths (3T, 7T).  
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In the absence of “gold standard” manual segmentations, segmentations were compared to the 

“silver standard” WMn-THOMAS, using Dice coefficients which is commonly used to assess overlap of 

segmentations: 𝐷𝑖𝑐𝑒(𝑋, 𝑌) =  2 (
|𝑋∩𝑌|

|𝑋|+|𝑌|
) where |X| and |Y| are the cardinality of ground truth X and 

segmentation Y i.e. |X| + |Y| is the total number of voxels in each image X and Y while |X ∩ Y| is the 

cardinality of the intersection between ground truth X and segmentation Y i.e. the number of voxels 

that are present in both nuclei segmentations X and Y. Percentage volume error is also computed as 

(
|𝑉𝑂𝐿 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝑉𝑂𝐿 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|

𝑉𝑂𝐿 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
∗ 100) for each nucleus. Statistical significance was determined using t-

tests with a Bonferroni correction (p-value / total number of comparisons = 0.05/13) to correct the p-

values for multiple comparisons.  

 

2.7 Analysis of the Frequently Traveling Human Phantom (FTHP) MRI dataset 

To assess the inter-scanner and intra-scanner variability of the different methods, we used a subset 

of the FTHP MRI dataset (Opfer et al., 2023). Briefly, this dataset comprises of T1w MRI from a single 

healthy male volunteer (age around 50 years old) scanned on 116 different MRI scanners. We used 3 

scanner manufacturers (Philips, Siemens, and GE), 2 field strengths (1.5T and 3T) and 4 different 

sites/scanner models for each manufacturer with 3 repeat scans at each site, resulting in a total of 72 

scans. Intra-scanner variability was assessed from volume residuals by subtracting the mean volume 

of the 3 repeat scans acquired from the same scanner from individual volumes as in Opfer et al. (2023)., 

resulting in a vector of length 72. Inter-scanner variability was similarly assessed by first averaging the 

volumes from the three repeat scans and then computing residuals on the resulting vector of length 

24.  
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3. Results 

3.1 HIPS parameter optimization 

For the four polynomial orders considered, 2nd and 3rd order functions performed the best, based 

on SSI and MSE metrics. The only exception was Siemens 7T where the linear function performed the 

best.  These results are summarized in Supplementary Table 2. The 3rd order polynomial equation was 

selected for use as we hypothesized more accuracy by considering the three tissues of interest (white 

matter, gray matter, cerebrospinal fluid). A plot of T1w vs. WMn-MPRAGE normalized image intensities 

(blue dots) for a representative Philips 3T subject is shown in Figure 2a with the best fit 3rd order curve 

shown in green. Individual best fit 3rd order curves for 10 Philips 3T subjects are shown in Figure 2b 

with the single curve aggregated from all 10 subjects shown overlaid in red. The optimal curves for 

each order are shown below: 

2nd order: f(x) = 1 + 0.4*x -1.39* x2 

3rd order: f(x) = 1 + 0.6*x -2.01* x2 + 0.45* x3 

4th order: f(x) = 1 + 0.04*x +1.15* x2 – 4.97* x3+ 2.9* x4 

 

Since this function was derived from normalized data, it was applicable across all subjects from 

different scanners and field strengths. Density plots between native cropped central slice WMn-

MPRAGE and WMn-like synthesized images obtained through the application of the aggregated 

function on an example case from each of the 4 scanner types are shown in Figures 2c-f. The linearity 

of the density plots attests to the quality and robustness of the synthesis, with the Siemens 7T showing 

the most concordance (minimal dispersion from the unity line). To confirm the ability of this Philips 

data-based 3rd order function to be optimal for all scanner-types, we compared this function to a 

function derived from mixed data (10 Philips 3T MPRAGE, 9 GE 3T SPGR, 10 Siemens 3T MPRAGE and 

8 Siemens 7T MP2RAGE cases) and found no significant differences in SSI or MSE (Supplementary Table 
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3). This is further confirmed by the similarity of transformations between resulting WMn-like images 

after the application of the Philips equation vs. mixed equation on T1w-MRI (Supplementary Figure 2). 

Fig. 2: HIPS formulation and performance. (a) Normalized intensity plot between WMn-MPRAGE and 

T1-MPRAGE data from a Philips 3T subject (blue dots) and a 3rd order polynomial fit (green line). (b) 

The 10 curves resulting from the individual fitting on 10 Philips data cases (dashed gray) and the 

resulting aggregated function (red line in a, b). Density plots between normalized WMn-MPRAGE and 

synthesized WMn-MPRAGE data using the same aggregated function on an example subject from 

Philips 3T (c), Siemens 3T (d), GE 3T (e), and Siemens 7T (f). The black dashed unity line represents 

perfect concordance between images. Both axes show normalized voxel intensities.  

 

3.2 Qualitative comparisons 

Figure 3 shows acquired T1w and WMn-MPRAGE images as well as HIPS and CNN-synthesized 

WMn-like images for a Siemens 3T subject (a-d) and a GE 3T subject (e-h). The corresponding thalamic 

nuclei segmentations for the left side are also shown overlaid. Both the CNN and HIPS synthesized 

WMn images show improved intra-thalamic contrast (brighter signal in MD and pulvinar nuclei) and 

thalamic boundaries (white arrows) compared to T1w images. The CNN-synthesized images look less 
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noisy with even better contrast compared to HIPS (d, h). T1w and WMn-MPRAGE images as well as 

HIPS and CNN-synthesized WMn-like images for a Philips 3T subject (i-l) and a Siemens 7T subject (m-

p) are also shown in Figure 3. Note that the CNN was trained only using GE and Siemens 3T data as 

described earlier and the Philips and 7T represent a different scan manufacturer and field strength, 

respectively, as a test of robustness. HIPS-synthesized images look very similar to WMn-MPRAGE 

images and produce segmentations comparable to those of WMn-THOMAS for both Philips 3T and 

Siemens 7T subjects. The CNN method failed on more than a third of the Philips cases (Fig. 3l) and on 

all Siemens 7T cases (Fig. 3p) due to failures in the synthesis step, leading to poor performance of the 

subsequent segmentation CNN.  

 

 

Fig. 3: An axial slice from acquired T1w and WMn-MPRAGE as well as HIPS and CNN-synthesized WMn 

images for a Siemens 3T MPRAGE (a-d), GE 3T SPGR (e-h), Philips 3T MPRAGE (i-l) or Siemens 7T 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.30.24301606doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.30.24301606


17 
 

MP2RAGE (m-p) subject with the corresponding nuclei segmentations overlaid on the left thalamus. 

Note the improved intrathalamic contrast and thalamic boundaries (white arrows on c and g) in the 

synthesized WMn-like images produced by HIPS-THOMAS compared to the native T1w images. The 

failure of CNN synthesis can clearly be seen in panels l and p along with the failed or missing (white 

arrows in l) segmentations. Labels: Table 1 

 

3. 3 Quantitative assessments 

For quantitative comparisons, mean Dice coefficients from Siemens 3T MPRAGE (n=12) and GE 

3T SPGR (n=19) datasets were compared between T1w-THOMAS, HIPS-THOMAS, and CNN using 

THOMAS segmentation from WMn-MPRAGE as a silver-standard and the % improvement over T1w-

THOMAS was computed. HIPS-THOMAS showed significantly improved Dice compared to T1w-

THOMAS for 7/11 nuclei and the whole thalamus on both Siemens 3T and GE data (Figures 4-5). The 

raw data are tabulated in Supplementary Tables 4 and 5 for the Siemens 3T MPRAGE and the GE 3T 

SPGR datasets respectively. For HIPS-THOMAS, more than 10% increase in Dice for the VA, VLp, VPL, 

and LGN nuclei was observed on Siemens 3T MPRAGE and more than 15% increase in Dice for the VA, 

VLp, VPL, LGN, and CM nuclei was observed on GE 3T SPGR data. By contrast, the CNN performed 

better than T1w-THOMAS on 1/11 nuclei on Siemens 3T data and 6/11 on GE 3T data (“¤” in Fig. 4 and 

Fig. 5) with decreased Dice for several nuclei significant only for the MTT (Supp. Tab. 5). Notably, HIPS-

THOMAS outperformed the CNN, with a higher mean and lower standard deviation, for many nuclei, 

especially the VLp and the MTT for both GE and Siemens data but also the VA, VPL, Pul, MGN, and MD 

on GE 3T data. Like the performance on GE and Siemens 3T, HIPS-THOMAS significantly improved Dice 

compared to T1w-THOMAS for 8/11 nuclei and the whole thalamus on Philips 3T data (Fig. 6) and 9/11 

nuclei and the whole thalamus on Siemens 7T data (Fig. 7) with the corresponding data tabulated in 

Supplementary Table 6. More than 15% increase in Dice for the VA, VLp, MD nuclei was observed on 

Philips 3T data and more than 30% increase for the AV, VA, VLa, VLp, VPL, CM, MD nuclei on the 

Siemens 7T data. Only the Hb nucleus showed decreased Dice using HIPS-THOMAS compared to T1w-
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THOMAS on SIEMENS 7T (not statistically significant). Subjects who were scanned on 7T were also 

scanned on 3T and this data is reported in Supplementary Table 6. HIPS-THOMAS at 7T is substantially 

better (>15%) than at 3T on the VLa, LGN, and CM nuclei as well as the MTT. 

 

 

Fig.4: Box plots of T1w-THOMAS (T1w), HIPS-THOMAS (HIPS), and CNN segmentation’s Dice 

coefficients (compared against WMn-THOMAS segmentations) for 3T Siemens MPRAGE data (n=12). 

HIPS-THOMAS significantly improves Dice in whole thalamus and 7 nuclei compared to 1 nucleus for 

CNN. T-test between the Dice coefficients of the T1w-THOMAS vs. HIPS-THOMAS: P-values *<0.00385 

(Bonferonni correction for multiple comparisons, 0.05/13) **<0.001 ***<0.0001. T1w-THOMAS vs. 

CNN: ¤ p<0.00385 (Bonferonni correction for multiple comparisons, 0.05/13), ¤¤ p<0.001, ¤¤¤ 

p<0.0001. Labels: cf. Table 1. 
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Fig.5: Box plots of T1w-THOMAS (T1w), HIPS-THOMAS (HIPS), and CNN segmentation’s Dice 

coefficients (compared against WMn-THOMAS segmentations) for GE 3T SPGR data (n=19). HIPS-

THOMAS significantly improves Dice in whole thalamus and 7 nuclei compared to 6 nuclei for CNN. T-

test between the Dice coefficients of the T1w-THOMAS vs. HIPS-THOMAS: P-values *<0.00385 

(Bonferonni correction for multiple comparisons, 0.05/13) **<0.001 ***<0.0001. T1w-THOMAS vs. 

CNN: ¤ p<0.00385 (Bonferonni correction for multiple comparisons, 0.05/13), ¤¤ p<0.001, ¤¤¤ 

p<0.0001. Labels: cf. Table 1. 
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Fig.6: Box plots of T1w-THOMAS (T1w) and HIPS-THOMAS (HIPS) Dice coefficients (compared against 

WMn-THOMAS segmentations) for Philips 3T MPRAGE data (n=18). HIPS-THOMAS significantly 

improves Dice in whole thalamus and 8 nuclei. T-test between the DICE coefficients of the T1w-

THOMAS VS HIPS-THOMAS: P-values *<0.00385 (Bonferonni correction for multiple comparisons, 

0.05/13) **<0.001 ***<0.0001.  Labels: cf. Table 1. 
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Fig.7: Box plots of T1w-THOMAS (T1w) and HIPS-THOMAS (HIPS) Dice coefficients (compared against 

WMn-THOMAS segmentations) for Siemens 7T MP2RAGE data (n=8). HIPS-THOMAS improves Dice in 

whole thalamus and 9 nuclei. T-test between the Dice coefficients of the T1w-THOMAS VS HIPS-

THOMAS: P-values *<0.00385 (Bonferonni correction for multiple comparisons, 0.05/13) **<0.001 

***<0.0001.  Labels: cf. Table 1. 

 

Mean volume errors (expressed as percentage) of T1w-THOMAS, HIPS-THOMAS, and CNN 

segmentations compared to WMn-THOMAS segmentation are shown in Figure 8 for Siemens 3T (a), 

GE 3T (b), Philips 3T (c), and Siemens 7T (d) datasets. HIPS-THOMAS had the lowest error in 9 nuclei 

and the MTT and highest error in 2 nuclei for Siemens 3T data. A similar trend was also observed for 

the GE 3T data. T1w-THOMAS displayed the highest errors in 8 nuclei on Siemens 3T data and 7 nuclei 

on GE 3T data. CNN performance was either comparable to or slightly worse than HIPS except in the 

MTT and the AV nucleus on Siemens data, where it was substantially worse (higher error) and the AV 

nucleus on GE data, where it was substantially better (lower error). HIPS-THOMAS had lower mean 

errors on all nuclei for Philips 3T data and all except the Hb nucleus for Siemens 7T data. 
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Fig.8: Mean volume error (%) of T1w-THOMAS, HIPS-THOMAS, and CNN segmentations, compared to 

WMn-THOMAS segmentations for Siemens 3T MPRAGE (a, n=12) and GE 3T SPGR (b, n=19) Philips 3T 

MPRAGE 3T (c, n=18) and Siemens 7T MP2RAGE (d, n=8) data. The general trend of HIPS < CNN < T1w 

THOMAS was observed for most nuclei at 3T. HIPS-THOMAS errors were lower than T1w-THOMAS for 

all nuclei but Hb for Siemens 7T data. Labels: cf. Table 1. 

 

Figure 9 visually summarizes the improvements in Dice (%) and reduction in volume error % for 

HIPS-THOMAS compared to T1w-THOMAS for the 4 scanners (GE 3T, Siemens 3T, Philips 3T, and 

Siemens 7T). While 7T HIPS-THOMAS displayed the largest increase in Dice coefficients and reduction 

in volume errors, 3T showed at least 15% increase in Dice in ventral nuclei such as the VA and VPL 

across all scanners. Volume errors were also reduced for HIPS-THOMAS for all the scanners except for 

the VPL and Hb nuclei on GE 3T data and the Hb nucleus on Siemens 7T data (white regions).  
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Fig.9: Graphical summary of improvement of mean Dice coefficients (%) (top row) and reduction of % 

volume error (bottom row) for each thalamic nucleus from Siemens 3T, GE 3T, PHILIPS 3T and Siemens 

7T data using HIPS-THOMAS compared to T1w-THOMAS. Labels: cf. Method 2.2.  

 

3. 4 Inter- and intra-scanner variability 

Figure 10 shows inter-scanner and intra-scanner variability for the whole thalamus (Thal), a small 

nucleus (AV) and a large nucleus (VLp). The results for all the thalamic nuclei are reported in 

Supplementary Table 7. The standard deviation of the residuals is reported on the top of each panel. 

HIPS-THOMAS had the least inter-scanner variability for the whole thalamus and 8/11 nuclei. It also 

had the least intra-scanner variability for the whole thalamus and 4/11 nuclei. In contrast, T1w-

THOMAS had the least inter-scanner variability for 4/11 nuclei and least intra-scanner variability for 

8/11 nuclei. CNN had the worst inter- and intra-scanner variability for the whole thalamus and all 

nuclei. 
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Fig.10:  Inter-scanner and intra-scanner variability for the Frequently Traveling Human Phantom MRI 

dataset (in units of mm3) for T1w-THOMAS, HIPS-THOMAS, and CNN segmentation of the whole 

thalamus (Thal), AV and VLp nuclei. For this analysis, 24 different scanners covering 3 manufacturers, 

2 field strengths and 4 sites each with 3 repeat scans per site were used, resulting in a dataset of 72 

scans. Standard deviations (SD) for each method is shown above each plot.  

 

4. Discussion 

We have significantly improved the THOMAS pipeline which was developed for 7T WMn-MPRAGE 

data to allow thalamic nuclei segmentation from standard 3T T1w images, by employing a 

computationally efficient polynomial synthesis transform to generate WMn-like images prior to 

segmentation. Robustness of segmentations using HIPS-THOMAS and a single cubic function estimated 

from aggregating 10 3T datasets was demonstrated from data across differing T1 image contrasts (i.e. 

SPGR, MPRAGE, MP2RAGE), scanner manufacturers (i.e. Siemens, GE, Philips), and field strengths (i.e. 

3T, 7T). HIPS-THOMAS had higher Dice coefficients, lower volume errors, and lower inter-scanner 

variability compared to T1w-THOMAS and CNN for most of the nuclei.  
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Segmentations of T1w data using HIPS-THOMAS are closer than T1w-THOMAS to THOMAS 

segmentations using WMn-MPRAGE images, resulting in improved volume accuracy and Dice 

coefficients for most of the nuclei. Dice was most improved for ventral nuclei (VA, VLp, VPL) where the 

improved contrast in WMn-like images T1wbetter delineates external boundaries. The HIPS-THOMAS 

Dice improvement reaches its highest performance at 7T, likely due to the more accurate synthesis of 

WMn-like images at 7T using MP2RAGE T1 maps. Only the Hb nucleus has a decreased Dice index using 

HIPS-THOMAS on Siemens 7T data compared to the use of T1w-THOMAS (although not statistically 

significant), which may be explained by a higher variability of segmentations for this nucleus and a 

small effective in this dataset. These results are analogous to the results of Umapathy et al. (2021) 

where the synthesis-segmentation CNN displayed better accuracy compared to a segmentation 

network trained directly on T1w images, which showed spurious VPL atrophy. Results from the FTHP 

MRI dataset indicate that HIPS-THOMAS showed the least inter-scanner variability for the whole-

thalamus and most nuclei. T1w-THOMAS, however, had lower intra-scanner variability for more nuclei 

than HIPS-THOMAS. This could be because the FTHP dataset included 1.5T MRI data which may not be 

optimal for HIPS or CNN. The standard deviation for intra-scanner variability for the whole thalamus 

using HIPS-THOMAS is comparable to the values reported in Opfer et al. (2023) using their custom CNN 

method (which only segments the whole thalamus and not nuclei) and FastSurfer (48 mm3 HIPS vs. 40 

mm3 Opfer CNN, 45 mm3 FastSurfer). The standard deviation for inter-scanner variability for the whole 

thalamus using HIPS-THOMAS is significantly lower than the values reported in Opfer et al. (2023) (110 

mm3 HIPS vs. 140 mm3 Opfer CNN, 310 mm3 FastSurfer). 

 

This work used data from 3T Philips subjects to compute an aggregate 3rd order function that was 

used for all subjects. The use of just Philips data is perhaps a limitation and linked to the non-availability 

of concurrent WMn-T1 data from other scanners at the commencement of this project. However, a 

comparison of this Philips-derived function to a function derived from multiple scanners found no 

significant differences in accuracy as discussed in Results (Supp. Tab. 3, Supp. Fig. 2). At 7T, the 
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MP2RAGE sequence produces significantly higher contrast images than MPRAGE, resulting in 

synthesized WMn-like images that very closely match the WMn-MPRAGE images as seen by the near 

perfect linear density plot with minimal spread in Figure 2F. The 3rd order polynomial performed 

optimally at 3T. However, at 7T, the linear function performed better, and this is reflected by the 

almost perfect unity line of the joint distribution plots in Figure 2F as well as better metrics and 

synthesized WMn-like images (Supp. Tab. 3 and Supp. Fig. 2). Given that 3T is the most common field 

strength used for neuroimaging and that the Dice improvements using the 3rd order function was still 

very significant at 7T, we made the 3rd order function as default in HIPS-THOMAS. (Note that HIPS-

THOMAS can be run with a user-specified polynomial order and 7T data should be run with linear mode 

to get the best results). Future work will examine if use of functions optimized for each scanner and 

field strength is more beneficial as the exact nature of the curve depends on the parameters of the T1-

MPRAGE sequence used, even though our normalization process helps reduce some of that variability.  

The significant contribution of HIPS to the THOMAS pipeline is to create images with similar contrast 

profiles as WMn-MPRAGE images, allowing the use of CC metric for nonlinear registration to the WMn 

template, which is more accurate than the MI metric used in T1w-THOMAS (Andronache et al., 2008). 

The joint fusion algorithm used in HIPS-THOMAS (cf. majority voting in T1w-THOMAS), also likely 

contributed to increased label accuracy (Bernstein et al., 2021; Pfefferbaum et al., 2023). HIPS is 

computationally efficient, does not add much complexity to the image analysis pipeline of THOMAS, 

and does not require separate training for the different scenarios of scanner manufacturers and field 

strengths, as required by CNN-based methods.  

 

The CNN-synthesized images have less noise and slightly enhanced contrast compared to HIPS 

images (Fig. 3) due to denoising inherent in the synthesis CNN. In contrast, the use of polynomial 

functions in HIPS could result in noise amplification. Future work could address this using denoising 

methods. CNN performs comparably to HIPS-THOMAS on sequences on which it was trained (i.e. 

Siemens 3T MPRAGE) or on similar contrast images (SPGR), but HIPS-THOMAS is considerably better 
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than the CNN for Philips 3T and Siemens 7T data, where the CNN failed on most cases due to lack of 

adequate training. While HIPS-THOMAS can yield higher Dice coefficients, it may paradoxically have 

higher volume errors than the CNN for certain nuclei on Siemens 3T (e.g. VPL) and GE 3T data (e.g. AV, 

LGN), as illustrated in Figure 8. This discrepancy may be due to the denoising present in CNNs, which 

allows for more precise delimitation. In summary, HIPS-THOMAS is more flexible and generalizable, as 

it can be applied easily to T1w images from different scanners without requiring training, a big 

advantage considering public databases like ADNI and OASIS contain data from a mix of manufacturers 

and field strengths.  

 

Our work had some limitations. The T1w segmentations were evaluated against segmentations from 

THOMAS applied to WMn-MPRAGE images, which is not ideal. THOMAS has been thoroughly validated 

against manual segmentation at 3T (Su et al, ISMRM abstract) (Su et al., 2016) and 7T (Su et al., 2019) 

and was adopted as a “silver” standard, substituting for the “gold” standard manual segmentation, 

which is very time consuming and requires specific domain expertise. Another gold standard validation 

could be to use postmortem scanning in conjunction with histology to compare cytoarchitectonic 

features from histological staining to image contrasts from MRI. This however is very challenging due 

to many reasons including altered image contrasts due to the use of fixing agents post mortem and 

challenges of accurate registration between histology and MRI but would be very desirable for future 

validation work. The performance of the CNN method could also be enhanced by training the synthesis 

and segmentation networks with data from Philips and 7T scanners but was beyond the scope of this 

work. In the future, more sophisticated image and histogram normalization like that proposed in Nyul 

et al. (1999) or more complex exemplar-based synthesis approaches such as MIMECS (MR image 

example-based contrast synthesis) (Roy et al., 2011), could replace the simpler 3rd order polynomial 

approach taken here, which could further improve HIPS performance and reduce noise amplification.  

This could also be useful for pipelines for analyzing whole brain images (as opposed to cropped images 

like in our current pipeline) where artifacts from scalp and other sources can impair HIPS performance. 
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HIPS showed Dice improvements in several nuclei, but the Hb and VLa nuclei consistently showed < 

0.7 Dice across all 3T scanners. While the poor habenula Dice could be attributed to its small size, the 

reasons for suboptimal VLa Dice compared to other ventral nuclei like the VA warrants further 

investigation.  

 

5. Conclusion 

WMn-like images synthesized using the computationally efficient HIPS significantly improved the 

robustness as well as the accuracy of THOMAS compared to direct THOMAS or CNN-based methods 

for segmentation of T1w data.  

 

6. Data availability statement 

The datasets analyzed during the current study are available from the corresponding author on 

reasonable request. 

 

7. Code availability 

The code used in the current study for generating the polynomial fits as well as the HIPS 

transformation and the integrated HIPS-THOMAS pipeline is available at 

https://github.com/thalamicseg/hipsthomasdocker.  
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Supplementary Figure 1: Plot of normalized T1w intensity vs. normalized WMn intensity along with 

polynomial fits overlaid (in red) for orders 1, 2, 3, and 4 (top row) for an example case. The higher order 

polynomials fit the data much better than the simple linear 1st order. The corresponding transformed 

image (labeled WMn-like) is shown in the middle row for each order. Note the dark appearance of the 
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transformed image for order 1. The density plots are shown in the bottom row comparing true WMn 

with WMn-like images generated by polynomial transformation of T1w.  

 

 

 Philips GE SIEMENS (1) SIEMENS (2) 

Data source [1] [2] [3] [4] 

N 18 19 12 9 

Field strength 3T 3T 3T 7T 

Sequence MPRAGE SPGR MPRAGE MP2RAGE* 

T1w 

Voxel 

size 
(mm) 

0.9x0.9x1 0.9x0.9x1 1x1x1 
0.8x0.8x0.8 or 

0.6x0.6x0.6 

Flip 
angle (°) 

8 9 12 7 or 5 

TR/TE 8.2/3.7 6.008/1.952 2000/2.52 6000/2.64 or 2.05 

Slice 
number 

170 120 192 176 or 320 

Matrix 256x256 200x200 256x256 
240x256 or 

256x320 

WMn 

Voxel 

size 
(mm) 

0.68x0.68x0.7 0.9x0.9x1.3 1x1x1 

* 

Flip 
angle (°) 

8 7 7 

TR/TE 9.7/4.7 11/5 4000/3.75 

Slice 
number 

120 210 160 

Matrix 336x336 200x200 256x256 

 

Supplementary Table 1: Details of sequence parameters for MRI datasets used. *Images were 

synthesized using the inversion recovery equation (1- 2 exp(-TI/T1) with TI=670ms and T1w images are 

generated using the T1 maps produced from MP2RAGE acquisition.  
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  Linear 2
nd

 order 3
rd

 order 4
th

 order 

PHILIPS 3T 
SSI 0.53 0.66 0.66 0.64 

MSE 0.06 0.02 0.02 0.02 

GE 3T 
SSI 0.53 0.71 0.71 0.65 

MSE 0.08 0.02 0.02 0.03 

SIEMENS 3T 
SSI 0.48 0.63 0.63 0.57 

MSE 0.09 0.04 0.04 0.05 

SIEMENS 7T 
SSI 0.79 0.72 0.71 0.69 

MSE 0.02 0.04 0.04 0.04 

 

Supplementary Table 2: Mean SSI (structural similarity index) and MSE (mean square error) between 

the synthesized WMn image and the original WMn image of the same subject by applying a linear (1-

x), 2nd order, 3rd order, and 4th order function on its T1w image. This was applied on 10 Philips 3T 

MPRAGE, 9 GE 3T SPGR, 10 Siemens 3T MPRAGE and 8 Siemens 7T MP2RAGE cases. The aggregated 

function is computed by fitting the equation on 10 Philips cases, allowing more generalization on other 

data. The optimal functions for each order are listed in the HIPS parameter optimization section of 

Results.  
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Supplementary Figure 2: An axial slice from native WMn-MPRAGE compared with WMn-like images 

resulting from the application of the Philips averaged function, mixed dataset function (see 

Supplementary Table 7 for details), or linear (1-x) function on an example GE 3T SPGR (a-d), Philips 3T 

MPRAGE (e-h), Siemens 3T MPRAGE (i-l) or Siemens 7T MP2RAGE (m-p) subject. Note the similarity of 

the transformation when applying the mixed (b, f, j, n) and Philips (c, g, k, o) function on native T1w-

images. Note also the optimality of the linear function for Siemens 7T data (p).  

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.30.24301606doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.30.24301606


36 
 

  Mixed 

2
nd

 order 
Mixed 

3
rd

 order 
Philips  

2
nd

 order 
Philips  

3
rd

 order 

PHILIPS 3T 
SSI 0.66 0.67 0.66 0.66 

MSE 0.02 0.04 0.02 0.02 

GE 3T 
SSI 0.69 0.70 0.71 0.71 

MSE 0.02 0.02 0.02 0.02 

SIEMENS 3T 
SSI 0.61 0.61 0.63 0.63 

MSE 0.03 0.03 0.04 0.04 

SIEMENS 7T 
SSI 0.75 0.77 0.72 0.71 

MSE 0.03 0.03 0.04 0.04 
 

Supplementary Table 3: Mean Structural Similarity Index (SSI) and Mean Square Error (MSE) measures 

when comparing an axial slice native WMn and synthesized WMn images after applying a quadratic 

and cubic functions estimated from a mixed dataset comprising of 10 Philips 3T MPRAGE, 9 GE 3T 

SPGR, 10 Siemens 3T MPRAGE and 8 Siemens 7T MP2RAGE cases. The aggregated function is computed 

by fitting the equation on mixed data. For comparison, the SSI and MSE from using just 2nd and 3rd 

order Philips 3T cases is shown. The two functions perform comparably.    
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SIEMENS 3T 

 T1w-THOMAS HIPS-THOMAS Impr.         CNN Impr. 

THAL 0.91 +/- 0.01 *** 0.93 +/- 0.01 2% 0.91 +/- 0.04 1% 

AV 0.67 +/- 0.10 ** 0.73 +/- 0.07 7% 0.71 +/- 0.18 6% 

VA 0.69 +/- 0.03 ** 0.77 +/- 0.05 12% 0.72 +/- 0.09 3% 

VLa 0.61 +/- 0.06 0.64 +/- 0.07 5% 0.61 +/- 0.12 0% 

VLP 0.76 +/- 0.04 *** 0.86 +/- 0.02 13% 0.81 +/- 0.06 6% 

VPL 0.52 +/- 0.15 ** 0.76 +/- 0.03 46% * 0.70 +/- 0.11 33% 

Pul 0.85 +/- 0.03 *** 0.88 +/- 0.02 4% 0.86 +/- 0.05 2% 

LGN 0.69 +/- 0.08 *** 0.77 +/- 0.05 12% 0.67 +/- 0.17 -2% 

MGN 0.76 +/- 0.04 0.78 +/- 0.03 3% 0.70 +/- 0.20 -8% 

CM 0.72 +/- 0.05 0.76 +/- 0.03 6% 0.71 +/- 0.14 -2% 

MD-Pf 0.83 +/- 0.05 * 0.88 +/- 0.03 6% 0.85 +/- 0.08 3% 

Hb 0.66 +/- 0.04 0.66 +/- 0.06 0% 0.60 +/- 0.20 -9% 

MTT 0.50 +/- 0.08 * 0.63 +/- 0.05 24% *** 0.29 +/- 0.11 -42% 

 

Supplementary Table 4: Mean Dice +/- SD of T1w-THOMAS, HIPS-THOMAS, and CNN segmentations 

along with % improvement for HIPS-THOMAS and CNN compared to T1w-THOMAS for 3T Siemens 

MPRAGE (n=12) data. HIPS-THOMAS improves Dice by >10% in 4 nuclei and MTT compared to 1 

nucleus for CNN. P-values *<0.00385 (Bonferonni correction for multiple comparisons, 0.05/13) 

**<0.001 ***<0.0001.   
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GE 3T  

 T1w-THOMAS HIPS-THOMAS Impr.           CNN Impr. 

THAL 0.91 +/- 0.01 *** 0.93 +/- 0.01 2% 0.92 +/- 0.01 1% 

AV 0.68 +/- 0.09 0.69 +/- 0.12 2% 0.70 +/- 0.08 4% 

VA 0.70 +/- 0.06 *** 0.81 +/- 0.02 15% * 0.76 +/- 0.03 12% 

VLa 0.64 +/- 0.08 0.66 +/- 0.06 4% 0.62 +/- 0.08 -2% 

VLP 0.74 +/- 0.08 *** 0.85 +/- 0.03 16% *** 0.81 +/- 0.04 12% 

VPL 0.56 +/- 0.14 *** 0.78 +/- 0.06 40% *** 0.72 +/- 0.07 40% 

Pul 0.85 +/- 0.03 *** 0.89 +/- 0.02 5% 0.87 +/- 0.02 2% 

LGN 0.67 +/- 0.04 *** 0.78 +/- 0.04 17% *** 0.75 +/- 0.04 13% 

MGN 0.78 +/- 0.04 0.82 +/- 0.04 5% 0.69 +/- 0.10 -9% 

CM 0.67 +/- 0.09 *** 0.77 +/- 0.06 15% * 0.75 +/- 0.03 11% 

MD-Pf 0.81 +/- 0.05 *** 0.88 +/- 0.02 8% * 0.86 +/- 0.02 6% 

Hb 0.66 +/- 0.07 0.70 +/- 0.04 6% 0.67 +/- 0.12 3% 

MTT 0.47 +/- 0.10 *** 0.63 +/- 0.05 32% ** 0.31 +/- 0.08 -34% 

 

Supplementary Table 5: Mean Dice +/- SD of T1w-THOMAS, HIPS-THOMAS, and CNN segmentations 

along with % improvement for HIPS-THOMAS and CNN compared to T1w-THOMAS for GE 3T SPGR 

data (n=19). HIPS-THOMAS improves Dice by >15% in 5 nuclei and MTT compared to 1 nucleus for 

CNN. P-values *<0.00385 (Bonferonni correction for multiple comparisons, 0.05/13) **<0.001 

***<0.0001.   
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PHILIPS 3T 

 

SIEMENS 7T  SIEMENS 3T 

 T1w-THOMAS HIPS-THOMAS Impr.  T1w-THOMAS HIPS-THOMAS Impr.  HIPS-THOMAS 

THAL 0.92 +/- 0.01 *** 0.94 +/- 0.00 2%  0.92 +/- 0.02 ** 0.96 +/- 0.02 5%  *** 0.93 +/- 0.01 

AV 0.72 +/- 0.06 *** 0.80 +/- 0.03 11%  0.64 +/- 0.16 * 0.84 +/- 0.08 32%  0.73 +/- 0.10 

VA 0.71 +/- 0.07 *** 0.82 +/- 0.02 16%  0.63 +/- 0.15 * 0.85 +/- 0.06 35%  0.80 +/- 0.05 

VLa 0.58 +/- 0.12 0.64 +/- 0.07 10%  0.48 +/- 0.12 ** 0.81 +/- 0.14 69%  * 0.52 +/- 0.15 

VLP 0.76 +/- 0.19 0.88 +/- 0.01 16%  0.70 +/- 0.10 ** 0.92 +/- 0.04 32%  * 0.87 +/- 0.02 

VPL 0.73 +/- 0.07 *** 0.81 +/- 0.02 11%  0.68 +/- 0.10 ** 0.90 +/- 0.05 33%  * 0.80 +/- 0.03 

Pul 0.87 +/- 0.02 ** 0.89 +/- 0.02 2%  0.88 +/- 0.03 * 0.93 +/- 0.03 5%  * 0.88 +/- 0.02 

LGN 0.74 +/- 0.04 *** 0.79 +/- 0.03 8%  0.77 +/- 0.05 ** 0.88 +/- 0.06 14%  *** 0.76 +/- 0.02 

MGN 0.77 +/- 0.04 ** 0.80 +/- 0.03 3%  0.79 +/- 0.08 0.86 +/- 0.08 9%  0.75 +/- 0.05 

CM 0.70 +/- 0.08 *** 0.79 +/- 0.04 13%  0.51 +/- 0.20 ** 0.88 +/- 0.06 73%  * 0.74 +/- 0.08 

MD-Pf 0.76 +/- 0.07 *** 0.89 +/- 0.01 17%  0.59 +/- 0.20 * 0.92 +/- 0.03 58%  ** 0.86 +/- 0.03 

Hb 0.58 +/- 0.08 0.59 +/- 0.04 1%  0.69 +/- 0.12 0.63 +/- 0.15 -10%  0.64 +/- 0.07 

MTT 0.48 +/- 0.08 *** 0.66 +/- 0.03 38%  0.54 +/- 0.16 * 0.78 +/- 0.10 46%  ** 0.58 +/- 0.07 

 

Supplementary Table 6:  Mean Dice coefficient +/- SD of T1w-THOMAS and HIPS-THOMAS 

segmentations along with % improvement for HIPS-THOMAS compared to T1w-THOMAS for Philips 3T 

MPRAGE (n=18) and Siemens 7T MP2RAGE (n=8) data. HIPS-THOMAS improves Dice by >10% in 6 

nuclei and MTT on Philips 3T data and by >30% in 7 nuclei and MTT on Siemens 7T data. The rightmost 

column shows Dice results for Siemens 3T MPRAGE data obtained on the same 8 subjects scanned on 

Siemens 7T. P-values *<0.00385 (Bonferonni correction for multiple comparisons, 0.05/13) **<0.001 

***<0.0001.   
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Thal AV VA Vla VLp VPL Pul LGN MGN CM MD Hb MTT 

INTRA 
(mm3) 

T1w 53.8 6.0 8.8 5.6 20.8 12.2 25.4 3.7 3.2 5.2 16.0 2.1 2.8 

HIPS 48.3 7.9 8.8 4.2 19.1 13.4 29.7 6.8 3.1 9.0 24.2 2.6 2.9 

CNN 61.8 9.0 10.6 5.7 24.9 12.5 31.4 5.7 4.0 8.5 17.9 2.5 2.7 

INTER 
(mm3) 

T1w 187.2 7.7 18.0 8.2 43.6 26.5 84.1 6.6 6.2 8.9 48.6 3.2 3.3 

HIPS 110.0 13.4 13.4 4.6 37.0 20.7 62.6 11.0 4.3 9.1 30.7 3.7 4.3 

CNN 158.3 28.1 20.8 13.0 58.5 28.7 96.9 13.5 7.8 15.6 51.4 4.1 5.1 
 

Supplementary Table 7: Intra-scanner and inter-scanner variability methods for the Frequently 

Traveling Human Phantom MRI dataset [5] reported as standard deviation (in units of mm3) for T1w-

THOMAS, HIPS-THOMAS, and CNN segmentation. For this analysis, 24 different scanners covering 3 

manufacturers, 2 field strengths and 4 sites each with 3 repeat scans per site were used, resulting in a 

dataset comprised of 72 scans.   
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