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Abstract 
 
We performed WES of 250 unique tumor tissues from 30 multiregion sampled pancreatic cancer research 

autopsies from patients diagnosed with advanced stage disease. We find that most genetic alterations in 

PDAC occur in a subclonal manner, and some genes occurred in a subclonal manner exclusively. 

Convergent evolution within the TGFβ pathway was also identified as a common feature of advanced 

stage disease, with SMAD4 inactivation more common among metastatic PDACs compared to 

inactivation of TGFβ surface receptors that was more common in locally advanced tumors. The mode of 

clinical management (radiation versus chemotherapy) contributed distinct mutational signatures yet these 

mutations are not predicted to have functional relevance to tumor progression. Overall, these findings 

provide a first definition of the genetic features that distinguish among patients with locally advanced 

versus metastatic PDAC. These findings may have clinical relevance in upfront clinical decision making 

for the optimal candidates for neoadjuvant therapy.  
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Introduction 
 
Pancreatic ductal adenocarcinoma (PDAC) is a complex disease with an aggressive clinical course1. The 

complexity of PDAC stems from multiple factors unique to this tumor type. First, PDAC arises through 

the accumulation of somatic alterations in potent and currently undruggable driver genes2. Second, 

genetic events are also linked to transcriptional subtypes, some of which abrogate the efficacy of standard 

of care management3. Third, the PDAC ecosystem contributes to aggressiveness through its combination 

of cancer associated fibroblasts that influence cancer cell behavior, the formation of abundant 

extracellular matrix that increases intratumoral pressure and reduces vascularization, and a highly 

immunosuppressed environment4. For these and other reasons most patients are diagnosed with advanced 

stage disease5. Advanced stage PDAC comprises patients diagnosed with locally advanced non-metastatic 

(LAPC, Stage III) or metastatic PDAC (mPDAC, Stage IV). Within these two groups there exists 

heterogeneity of responses to treatment, or of metastatic efficiency. For example, some patients with 

LAPC have tumors that are downstaged to resectable status following a course of neoadjuvant therapy6, 

whereas others with LAPC will develop metastatic failure in one or more organs within a year of 

completing chemoradiation. Among patients with mPDAC, the range of metastatic burden during clinical 

management can vary one log fold7,8.  

 

PDAC, like all forms of cancer, is an evolutionary process9. One goal of evolutionary cancer biology is to 

unveil the principles underlying cancer progression which remains the proximate cause of cancer related 

death10,11. At the genetic level, clonal driver mutations are regarded as the basis of tumor development 

while subclonal drivers are responsible for disease progression and treatment resistance11,12. Evolutionary 

and population genetic theories also propose that pre-existing resistant subclones expand under the 

selective pressure imposed by treatment and subsequently replace the predominant clones9,13,14. However, 

solid tumors that undergo neutral evolution are an exception to this notion in that few if any subclonal 

drivers accumulate that contribute to disease course in a meaningful way15. Collectively, the success of 

personalized cancer medicine requires proper characterization of mutations in the context of varying 

clinical presentations and treatments. Such characterizations should be considered in a tumor-type 

specific manner as well given different tumor types have different strategies for clinical management16. 

 

Several large-scale genomic studies of PDAC have been reported that have predominantly focused on 

resectable PDACs17,18. The goal of this study was to perform a similar type of analysis but for patients 

who are diagnosed at advanced stages of disease (Stage III and Stage IV); such patients represent the up 

to 85% of new diagnoses1. Unlike our prior study of treatment naïve Stage IV PDAC19, the patients of 
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interest in this study all received chemotherapy or combined chemotherapy and radiation. Our aim is to 

reveal how the genomic landscapes differ with respect to the stage of diagnosis and as a result of their 

corresponding standard of care therapies, as well as amongst chemotherapeutic agents that have different 

modes of action. To this end, we characterized the somatic mutation spectrum and the mutational 

signatures driving PDAC initiation and progression using next-generation sequencing-based cancer 

genome analysis. 

 

Results 
 
 
Clinical Features of Advanced Stage Patient Cohort 
 
We sequenced whole exomes of 240 distinct tissue samples obtained through multi-region sampling of 

the primary tumor (120 distinct samples), matched metastases (90 distinct samples) and one normal tissue 

from 30 patients who underwent a research autopsy (Supplemental Table 1 and 2). Twenty-three 

patients (77%) were female, and the average age was 66.2±14.2 years. Most patients (60%) were 

originally diagnosed with Stage IV (metastatic) PDAC. The remaining patients were all diagnosed with 

nonmetastatic disease, most commonly Stage III PDAC. Two patients were diagnosed with Stage II 

disease; one (PAM31) opted for nonsurgical management whereas the second (PAM18) was resected but 

declined adjuvant chemoradiation. 

  
Patients were categorized into three groups based on their treatment history (Figure 1a, b, Supplemental 

Table 1). Our rationale for this grouping is that the clinical management of each patient may reflect 

nuances of each patients’ disease not fully captured by clinical stage alone, i.e. if locoregional control was 

of primary concern in a patient with low burden oligometastatic disease. The first group of 13 patients, 

PAM19-PAM31, received chemoradiation for locoregional control of their primary tumor. Radiotherapy 

consisted of 50.4 Gy of radiation in 28 fractions with exception of one patient (PAM30) who received 

stereotactic body radiation therapy (SBRT, 33 Gy over five fractions). The concurrent systemic treatment 

in this group varied but most often consisted of 5-flourouracil or gemcitabine/oxaliplatin. A second group 

of 10 patients (PAM47-PAM56) received first line chemotherapy for de novo mPDAC, most often 

Gemcitabine with or without other agents. Finally, for comparison we included seven patients who never 

received systemic treatment, most often due to rapid disease progression or poor performance status at 

diagnosis. This group included patient PAM18.  

 
 
Genomic Features of Advanced Stage PDACs 
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We identified 64,544 high quality somatic variants in total across all 210 cancer tissues (Supplemental 

Table 3). Likely Functional Driver (LiFD) scores of all somatic mutations were then calculated to 

determine those most likely to be functionally deleterious (see Methods and Supplemental Figure 1). 

This filter resulted in 792 somatic mutations in 32 driver genes with an LiFD score of >0 in all samples, 

corresponding to 99 unique driver-like variants. An oncoprint of these driver genes reveals the expected 

high frequency of KRAS and TP53 mutations followed by CDKN2A and SMAD4 as the next two most 

commonly altered genes (Figure 1c). Recurrently altered genes that are seen at low frequencies in large 

cohorts were similarly identified that affected TGFβ signaling (i.e. TGFBR1/2), chromatin regulation via 

the SWI/SNF (i.e. ARID1A, SMARCA4) and COMPASS complexes (i.e. KMT2C, KMT2D), or RNA 

splicing (SF3B1, RBM10), among others. While the somatic alterations in this dataset are highly 

comparable to previously published findings in TCGA and ICGC, we note that for many genes the 

frequency is higher in this cohort (Figure 1d), likely due in part to more extensive sampling of each 

PDAC.  

 
For each somatic mutation we next determined the extent that they were identified in all samples analyzed 

for each PDAC. We find that somatic alterations in only four genes, KRAS, TP53, CDKN2A and RNF43, 

are ubiquitously present in all samples of the PDACs they were found in. This pattern alone does not 

conclusively inform if mutations in these genes are founder mutations, i.e. present in the original cell that 

gave rise to the invasive PDAC. For this reason, we calculated the Cancer Cell Fraction (CCF) of each 

somatic mutation in all tumor samples for each patient. When categorizing mutation patterns in this 

cohort based on both multiregion sampling and CCF values per sample we find that KRAS, TP53, 

CDKN2A and RNF43 are founder mutations in all of the PDACs in which these genes are mutated (see 

pie chart in Figure 1c and Supplemental Figure 1). By contrast, SMAD4 is a founder mutation in only 

50% of PDACs (5/10) in which it occurs. Nineteen additional driver genes that include TGFBR2, 

ARID1A/B, KMT2C/D and FBXW7 were also found to be subclonal in a subset of the PDACs they were 

mutated in, whereas genes such as ARID2 and SMARCB2 are exclusively subclonal (see ‘Clonality’ 

column in the Supplemental Table 3).  

 
Copy number alterations (CNAs) affecting these 32 genes were common events across the cohort and 

exhibited frequent intertumoral and intratumoral heterogeneity (Figure 1c,e). For example, in addition to 

activating mutations we find frequent allelic imbalance and/or amplification of KRAS. In patient PAM26 

amplification of wild type (WT) alleles was the sole mechanism identified for KRAS activation. More 

importantly, loss of heterozygosity (LOH) of the WT allele is highly prevalent in the select driver genes 

associated with PDAC evolution such as TP53, CDKN2A and SMAD4 (Figure 1e). Homozygous 
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deletions of these and other genes were also found. Haploinsufficiency was common for KDM6A and 

RBM10, irrespective of the presence of a coding somatic alteration, consistent with their location on the X 

chromosome. For genes such as MYC or GATA6, copy number alterations were the predominant 

mechanism of somatic alteration.   

 
 
Mutual Exclusivity of TGFβ Pathway alterations 
 
SMAD4 plays a critical role in canonical TGFβ signaling in epithelial tissues and is genetically inactivated 

in ~50% of PDAC xenografts by mutations coupled with allelic loss or by homozygous deletion20. We 

sought to better understand the clonal and subclonal features of SMAD4 inactivation in greater detail. 

SMAD4 inactivating mutations were found in two of seven untreated PDACs (29%), three of 13 PDACs 

treated with chemoradiation (23%), and five of 10 PDACs treated with chemotherapy alone (50%) (see 

Figure 1c). These mutations corresponded to both clonal (founder) and subclonal events, and in all 

patients were accompanied by loss of the WT allele. The adjusted CCFs of SMAD4 approximate 1 in most 

primary tumor samples and metastases in which it was found suggesting a relatively strong selective 

advantage for PDAC cells with these mutations (Figure 2a). Homozygous deletions were also noted in 6 

patients, all of which were subclonal. In 10 PDACs both somatic mutations with LOH and homozygous 

deletions were coexistent indicating convergence for loss of SMAD4 (see Figure 1c, e). 

 
In light of this finding, we expanded our review of all mutations in the TGFβ signaling pathway21,22 

(Figure 2b). Nine additional PDACs that were WT for SMAD4 had mutations in the membrane receptors 

TGFBR1, TGFBR2, ACVR1B and BMPR1B. In five of these PDACs the mutations were founder 

mutations; all five of these PDACs were also primarily managed by chemoradiation; four patients were 

diagnosed with LAPC and one with oligometastatic mPDAC. Unlike SMAD4, mutations in these four 

surface receptors were not consistently accompanied by LOH (see Figure 1e) suggesting phenotypic 

consequences of haploinsufficiency alone as has been demonstrated in murine models23,24. Collectively, 

these findings indicate three previously unrecognized features of PDAC. First, convergence for loss of 

TGFβ signaling is a pervasive feature of PDAC; second, loss of signaling due to mutations in membrane 

receptors appears a feature of PDACs specifically with locally aggressive growth; and three, convergence 

for inactivation of TGFβ signaling occurs in both clonal and subclonal manner. Based upon reviewing 

available data for 1,001 PDAC patients that underwent targeted sequencing with MSK-IMPACT (see 

Figure 2c), we found that SMAD4 and TFGBR2 are mutually exclusive with statistical significance (q-

value < 0.001 in a 2-sided Fisher exact test). 
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To understand the nature of subclonal driver gene mutations we generated sample phylogenies of patients 

in which this was observed (see Figure 2d). In patient PAM26 a single region of the primary tumor 

(Stage III at diagnosis) had a SMAD4 mutation with CCF of 22% (see Supplemental Table 3). In 

PAM49, a SMAD4 (p.H261Pfs*3) and a TGFBR2 (p.N70Qfs*9) mutation are all non-founder ones and 

also located in different branches from the evolutionary tree. In PAM50 two SMAD4 mutations were 

found (p.E49* and p.G352E) that were mutually exclusive from each other and present in clonal or 

subclonal CCFs amongst spatially distinct samples. This suggests that each mutation arose independently 

expanded and seeded different sites within the patient. Some sites shared both mutations suggesting 

polyclonal seeding.  

 
We further validated the mutual exclusivity between SMAD4 and TGFBR2 mutations in PAM49 using 

single cell genotyping assay, Tapestri® (Mission Bio).  To this end, we chose one primary (PAM49PT34; 

5,694 single cells) and one liver metastatic sample (PAM49PT8; 782 single cells) from the same patient 

for selected loci of known PDAC drivers based on our WES bulk-sequencing analysis (Figure 2e). First, 

the primary sample in PAM49 contained both SMAD4  and TGFBR2 mutations that are mutually 

exclusive as suggested based on the bulk WES data. Interestingly, this primary site contains different 

version of SMAD4 mutation (p.R445*), which was not detected in the bulk sequencing data, being largely 

mutually exclusive with other SMAD4 and TGFBR2 mutations while colocalizing with KRAS and TP53 

(see the colored rectangular boxes and arrows in Figure 2e). On the other hand, the liver metastatic 

sample contained only one type of SMAD4 (p.H261Pfs*3) but no TGFBR2 mutations with very good 

colocalization with the other founder mutations such as KRAS (p.G12V) and TP53 (p.G302Rfs*4), 

suggesting monoclonal seeding in the liver from the primary site. 

 
 
Treatment specific genetic alterations 
 
The above data indicates that some genes are founders and pre-date exposures to cytotoxic or DNA 

damaging therapies used in PDAC management. However, the extent that these treatments themselves 

cause somatic alterations with deleterious effects is unknown.  

 
We first compared the pattern of CCF estimates across different treatment plans in order to discriminate 

genetic alterations directly induced by each of treatments from the ones associated with PDAC initiation 

and progression (Figure 3a). The higher CCF a mutation possesses, the more likely it is to be a clonal 

mutation that occupies the majority of the cancer cell population25. We find that CCF estimates are 

positively correlated with LiFD scores (Figure 3a and Supplemental Figure 2) implying that a clonal 
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mutation tends to have more functional impact than a subclonal one in PDAC. We find that the treated 

patients’ tumors tend to have more significantly increased proportion of subclonal mutations (less than 

0.5 of CCF) than the naïve group while the clonal mutations having higher LiFD score are shared by all 

treatment groups (Figure 3a). Of note, a significantly larger number of subclonal mutations having LiFD 

> 0 exist in most treated patients unlike the non-treated ones (see the colored vertical bars on the x-axis in 

Figure 3a). 

 
Next, we identified the list of genes that are significantly amplified or deleted per treatment group by 

combining all tumor samples in each group and processing them together with the GISTIC2.0 (Figure 3b 

and Supplemental Table 4). We also highlighted driver-like genes that are found to frequently acquire 

non-synonymous SNPs in PDAC samples based on cBioPortal database (Figure 3c. see gene names in 

each Venn diagram). Overall, radiation clearly induced more frequent copy number gains and losses 

compared to PDACs that were not irradiated. The treatment naïve PDACs show almost no amplifications 

but significant number of deletions albeit to a lesser extent compared to the other groups. There are no 

single genes showing copy number gain commonly to the three patient cohorts. Many genes amplified 

only in chemo plus radio therapy group - TTN, MUC16, PLECT, SCN5A, and SETD2 - are also deleted 

out in some samples in other groups. Given that most amplified genes only in radiation group are not 

driver-like, we suggest that radiation might increase the chance of occurrence of random copy number 

gain events across all chromosomes possibly with no or marginal phenotypic consequences. On contrary, 

many of genes including SMAD4 were deleted out commonly in all three groups, representing that loss of 

function in SMAD4 is an early driver rather than being induced by therapy.   

 
Structural variants (SVs) are another type of mutational signatures contributing to tumorigenesis26,27. 

Using delly package28 with our bulk sequencing data, we defined four classes of somatic SVs: (1) large 

deletions (20+bp), (2) large duplications (20+bp), (3) balanced inversions and (4) translocations. First, we 

find that radiation treated group shows relatively large number of deletions and inversions (Figure 3d). 

Radiation-induced inversions are known to be frequently enriched in second malignancies regardless of 

cancer types29. We also confirm that inversions are the primary type of SVs induced by radiation 

compared to other types of SVs unlike other treatment regimens from our dataset. 

 
We then investigated whether each type of SVs potentially link to cancer-driverness by looking up LiFD 

scores of each gene disrupted at its exonic regions by any of breakpoints of each SVs. First, each of 

different SVs didn’t show any noticeably different distribution of LiFD scores across different treatment 

groups (Figure 3e). In addition, majority of inversions found in the radiation group tend to have no sign 

of functional consequences in well-known PDAC driver genes based on LiFD scores, ranging mostly 
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from 0 to 1. Of note, two radiation group patients - PAM20 and PAM26 - have massive number of 

inversions (up to 500) unlike the others in the same group which have around 10 inversions on average 

(Supplemental Figure 3). These patients also obtained much larger number of all types of somatic SVs 

possibly due to impairment in DNA repair mechanisms. It is unclear whether this hyper-mutated 

phenotype arose before or after radiation, but majority of these SVs might have no cancer-driving effects 

given their very low LiFD scores (Figure 3e). 

 
Mutational signature analysis is an effective way of identifying unique mutational processes associated 

with different treatment strategies30. To this end, we evaluated three different types of signatures: 1) 

Single Base Substitution (SBS), 2) Double Base Substitution (DBS) and 3) Insertion and Deletion (ID) 

based on COSMIC Mutational signatures version 331 using the R package ‘Palimpsest’32. There are 

eleven de novo signatures found in total: four de novo SBS, three de novo DBS and four de novo ID 

signatures (see Supplemental Figure 4). PCA analysis was performed at the sample and the patient level 

with the eleven signatures in order to correlate each unique treatment regime with the number of de novo 

signatures for each sample and patient (Figure 3f and Supplemental Figure 5). We find that 

radiotherapy treated samples differ from non-radiotherapy treated ones in terms of the number of total 

mutations for each of eleven de novo signatures, suggesting that radiation induces significantly increased 

mutational process within tumor tissues.  

 
From an evolutionary perspective, founder (or truncal) mutations in the phylogenetic tree are likely an 

early driver initiating tumorigenesis33 and thereby shared by most tumors across different patients while 

non-founder ones are possibly occurring as responses to a strong selective pressure induced by treatments. 

There is, however, limited knowledge about the differences in acquisition of non-founder mutations 

depending on the type of treatment. To study this, we first classified all the somatic mutations into 

founder versus non-founder ones (the latter including both private and branched mutations) based on the 

phylogenetic tree topology for each individual patient. We reclassify eleven de novo signatures into five 

representative ones based on the cosign similarity of each signatures (Supplemental Figure 6), and then 

assigned the highest ranked de novo mutational signature to each variant. Finally, odds ratio between the 

number of non-founder versus founder somatic variants in each representative de novo signature shows 

the existence of distinct adaptive evolution trajectory. We find de novo ID signature 1, 2, 3 & 4 was 

significantly over-represented in non-founder mutations compared to founder ones mainly in patients 

group treated with radiation (see green colored box plots in Figure 3g). Theses de novo ID signatures 

highly correlates with COSMIC ID8, a DNA repair of double strand breaks induced by radiation (see 

Supplemental Figure 5). We couldn’t find any other significantly altered mutational signatures in 

between founder vs non-founder classes under any other treatment regimes. 
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Phylogenetic and pathway analysis of PDAC tumors in different treatment groups 
 
We performed a sample level phylogenetic analysis of the multi-region samples sequenced for each 

patient with Treeomics34. In general, majority of driver mutations such as KRAS, TP53 and/or CDKN2A 

are located in the trunk of each evolutionary tree in all treatment groups, indicating that they are common 

founders in PDAC progression (Figure 4a). The topology of each tree is, however, differs between 

patient groups who did or did not receive any therapy (Figure 4b). Patient groups treated with both 

radiotherapy and chemotherapy show massively increased proportion of non-founder mutations - somatic 

variants uniquely found in each individual sample - along with highly elevated deviation in that number 

within different samples from the same patient compared to other groups. The similar pattern of increased 

proportions of non-founder variants is also seen in patients treated only with chemotherapy albeit to a 

much less extent while no dramatic deviation in that proportion across samples was observed. This 

implies that all types of treatments might induce more private mutations in general and that radiation 

elevates the rate of mutational occurrence in a random way at each tumor sites. 

 
We also figured out whether clinically defined biological pathways are associated with clonality and the 

treatment plans each patient experienced using RGD pathway database (https://rgd.mcw.edu/wg/ 

home/pathway2/)35 (Figure 4c). First, we selected driver-like genes acquiring at least one somatic 

alteration(s) with greater than 0 of LiFD score in any of three different treatment groups and assigned 

them to each of 41 molecular pathways selected from RGD database, which are top 3 hierarchical ones 

having at least 200 genes (Supplemental Table 5). A two-sided fisher-exact test was applied to calculate 

p-values based on a contingency table containing numbers of the associated vs the non-associated genes 

for a given pathway of interest and all other exclusive pathways. We finally determined five RGB 

pathways are significantly altered by splitting the list of mutated driver genes in each treatment groups 

into clonal versus subclonal ones, which is defined by CCF estimate using Palimpsest in R: (1) pancreatic 

cancer pathway, (2) chromatin modification/remodeling pathway, (3) protein kinase A (PKA) signaling 

pathway, (4) calcium/calcium-mediated signaling pathway, and (5) calcium transport pathway (Figure 

4c). 

 
We find that all treated groups show any of significant subclonal pathway alterations (yellow circle in 

Figure 4c) whereas treatment naïve group didn’t. Such subclonal evolution in treated groups is less 

prevalent in metastatic samples compared to primary ones, consistent with the fact that metastasis in solid 

tumors develops through an evolutionary bottleneck induced by a stringent therapeutic selective 

pressure36. Our data demonstrates that pancreatic cancer pathways is significantly altered for clonal group 
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of mutated genes such as KRAS, TP53, SMAD4, CDKN2A and others in all treatment groups as expected. 

Interestingly, the chemotherapy only treated group showed highly likely subclonal enrichment for those 

cancer-related pathways only for primary samples but not metastatic ones. However, no subclonal cancer-

related pathways are shown in either cases where additional radiotherapy was applied, or no treatment 

was given (see Figure 4c and Supplemental Table 5).  

 

 
Discussion 
 
While the recurrent genetic alterations of PDAC have been well described 2,11,12, the extent to which these 

genes occur in a subclonal manner or signify convergent evolution has not. These data now clarify the 

extent of convergent evolution of key signaling pathways in PDAC. For example, we find that virtually 

all genetic targets in PDAC occur in a subclonal manner in at least one PDAC; some genes such as 

ARID2 were exclusively found in a subclonal manner whereas others were exclusively clonal (founders). 

Given the size of this cohort the extent that these frequencies can be extrapolated to early-stage disease 

are unknown.  

 
A second major finding of this work is that the TGFβ signaling pathway, a known and common genetic 

target in PDAC, is subject to pervasive convergent evolution at both the intertumoral and intratumoral 

levels.  SMAD4 remains the most common genetic target and in this cohort its inactivation segregated 

with PDACs with high metastatic efficiency. However, our data further show that SMAD4 WT PDACs 

are enriched for genetic inactivation of TGFβ surface receptors, most often TGFBR2, followed by 

ACVR1B, BMPR1B and TGFBR1. We also noted that mutations in TGFβ surface receptors were enriched 

within PDACs diagnosed at Stage III, i.e. locally advanced non-metastatic disease. This finding suggests 

that there is a genetic basis to the locally advanced phenotype, specifically the cellular level at which 

TGFβ signaling is disrupted. SMAD4 inactivation results in loss of intracellular signaling from activated 

TGFβ receptors to the nucleus that is mediated by SMAD2/3 in complex with SMAD4, whereas loss of 

TGFβ surface receptors leads to loss of activation of the pathway from autocrine or paracrine signals. In 

light of the finding that the greatest source of TGFβ ligand is within the desmoplastic stroma, these 

findings suggest that stromal features serve as a selective pressure for PDACs cells with loss of TGFβ 

signaling.   

 
The Cancer Cell Fraction (CCF) of somatic mutations represents the order of mutational occurrence: the 

higher CCFs a mutation possess, the earlier it might have occurred during cancer evolution37,38. Our 

analysis shows that CCFs of many well-known PDAC drivers in metastatic samples are highly 
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comparable to the ones of primary sites from the sample patient regardless of types of treatments, 

suggesting that metastatic seeding rapidly occurred before treatments (early seeding)36. PAM50 patient in 

this study is an example of revealing the clonal seeding patterns or the timing of metastasis using CCF 

estimates with bulk sequencing data. There are two different SMAD4 mutations (p.E49* and p.G352E) 

with varying CCF values in different organs in this patient (see Supplemental Figure 7 and 

Supplemental Table 3). First, one primary (PT4) has no SMAD4 mutations. On the other hand, p.E49* 

mutation is clonal in two primaries (PT2 and PT3) with 100% of CCFs while p.G352E is subclonal in the 

same samples only with 15-20% of CCFs. This indicates that primary clones in this patient are a mixture 

of different competing SMAD4 alleles - WT, p.E49* and p.G352E. More interestingly, p.E49* is found 

only in lymph node met (PT1) but not in other metastatic sites including peritoneum, large bowel, and 

omentum while p.G352E is found only in such abdominal sites at ~100% of CCFs. Presumably, a minor 

clone bearing p.G352E in the primary metastasized only to the organs in the abdominal cavity while 

p.E49* clone metastasized only to the lymph node (an example of monoclonal seeding). Metastatic 

seeding to the lymph node might have occurred earlier than seeding to the abdominal cavity given that 

p.E49* is a major allele in the primaries and therefore a possibly an earlier driver during the course of 

tumor development. 

 
The distribution of CCF estimates might also represent the evolutionary trajectories shaped by different 

selective pressures. We find that the clonal mutations having higher LiFD score are common regardless of 

the type of treatments each patient experiences. However, the treated patients’ tumors tend to have more 

significantly increased proportion of subclonal mutations (less than 0.5 of CCF) than the naïve group 

(Figure 2c). We find a significantly large number of subclonal mutations having LiFD > 0 exist in most 

treated patients compared to the non-treated ones (see the colored vertical bars in Figure 2c). Such a 

subclonal variant could potentially be a resistance mutation conferring selective advantage against each 

treatment rather than a random genetic alteration directly caused by each drugs or radiations. 

 
By calculating CCFs with combination of bulk and targeted deep-sequencing data, we identified several 

cases where subclonal KRAS mutations co-exist with a clonal allele at the range of 10-90% of CCFs (See 

Supplemental Table 3). This was found from all type of treatment groups: PAM17 (a treatment naïve 

group), PAM22 (a radio plus chemotherapy group), PAM50 and PAM53 (a chemotherapy only group). 

All of these secondary KRAS alleles are not only subclonal in each sample but also non-founders given 

that they are found only in a subset of selected tumor samples for the same patient. This demonstrates that 

the early drivers like KRAS are competing even at the terminal end of tumor evolution and that it is 
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critical to determine the relative fitness of various KRAS alleles in different microenvironment in the 

future study. 

 

Other subclonal mutations found in this study are possibly associated with altered functions in various 

metabolic and signaling pathways for PDAC patients. Among such subclonal variants there could be a 

resistance mutation conferring selective advantage against each treatment rather than a random genetic 

alterations. For example, chromatin modification/remodeling pathway is well known for its impacts on 

tumorigenesis across a broad range of tumor types and has been considered a potential therapeutic 

target39–41. Interestingly, our data shows that this pathway is significantly altered only in metastatic 

samples treated with chemotherapy (see Figure 4c  and Supplemental Table 5) and that most of related 

alterations are subclonal as reported in a previous pan-cancer genome-based gene set analysis42. This 

possibly indicates that the subclonal alterations in chromatin modification complexes occur after 

chemotherapeutic treatment and result in intra-tumor heterogeneity (ITH) and/or drug resistance. 
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Methods 
 

Ethics statment 

Use of all human samples in this study was approved by the Institutional Review Board(IRB) at 

Memorial Sloan Kettering Cancer Center (under protocols #15-149, #15-021) and Johns Hopkins 

Medicine. All  the case IDs used in this study (PAM12-PAM56) does not reveal the identity of each study 

subject. 

 

Patient selection and tissue processing 

A cohort of 30 patients from the Gastrointestinal Cancer Rapid Medical Donation Program at the Johns 

Hopkins Hospital was used for this study. Tumor samples were cut from frozen sections and reviewed 

from microdissection and H&E staining in order to select ones with high cellularity (at least ~ 20%). 

DNA extraction was done using DNeasy Blood & Tissue Kits for frozen samples following the 

manufacturer’s guideline. 

 

Whole Exome Sequencing and custom targeted re-sequencing 

Extracted DNAs were processed on an Illumina HiSeq 2500 in a 100x100 paired end mode using the 

Agilent SureSelect V4 chemistry in the Integrated Genomics Operation (IGO) at Memorial Sloan 

Kettering Cancer Center (New York, NY). Our target read coverage for tumor and matched normal 

samples were ~300X and ~100X, respectively. Raw FASTQ files were aligned to ‘hg19’ human reference 

genome using bwa 0.7.1743 to generate BAM files for each sample. Picard Tools v2.26.0 was used to 

post-process the BAM files by removing soft-clipping reads, tagging duplicated reads, and sorting all 

reads by coordinate (http://broadinstitute.github.io/picard/). Then, Mutect2 in GATK2 package44 was used 

to identify somatic mutations by comparing each tumor sample with a matched normal sample in each 

patient. All options in Mutect2 were set as default except that ‘normal-lod’ was lowered to 1 instead of 

2.2 in order to minimize false negative calls due to shallow read coverage in normal samples. We selected 

mutations that have at least one read per each strand in paired end sequencing and that are located within 

500 bps from each exon. To validate the mutations found from WES, the same samples were additionally 

sequenced in much deeper coverage (500x-1000x) using a custom targeted panel based on the list of all 

unique somatic mutations from the original WES and an Illumina HiSeq 2500 in a 100x100 paired end 

mode, and then processed via the same bioinformatics pipeline as WES. The allele frequencies of somatic 

mutations from targeted re-sequencing data were multiplied to the read coverage number from WES data 

in order to get adjusted mutant allele counts and rescue somatic mutations that were missed in WES due 

to their low read coverage. Ensembl Variant Effector Predictor (VEP) v10545 and MSKCC’s Variant-

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.24301554doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.30.24301554


PostProcess pipeline v3 (https://github.com/soccin/Variant-PostProcess) were used to determine the effect 

of the finally selected somatic mutations. We then additionally recued mutations that are filtered out by 

any of the filtering steps only in subset of samples in each patient since they might be a false negative 

simply due to their low read coverage (generally less than 10). Raw sequencing data for both WES and 

targeted re-sequencing have been deposited as a BAM file format in the European Genome-Phenome 

Archive (EGA) under accession number EGAS00001007379. 

 

Cancer Cell Fraction (CCF) estimation and mutational signature analysis 

First, allele specific copy number of each somatic mutation was determined by FACETS46. Then sample 

purity of each tumor sample was calculated using FACETS (copy number based) and Ccube47 (snp-

based), individually and then averaged as one. We filtered out somatic mutations with low quality by 

setting up the minimum coverage as 0.1X of the median read coverage of all mutations in an individual 

sample, the minimum tumor allele count as 2 and the minimum variant allele frequency as 0.5%. 

Palimpsest v2.0 32 in R package was used to estimate CCF of each somatic mutation in an individual 

sample by feeding in the inferred allele specific copy number and the sample purity for the selected list of 

somatic mutations. Then, clonality of each mutation in each sample was calculated using default settings 

in the package. We also inferred de novo Single Base Substitution(SBS), Double Base Substitution(DBS) 

and Indel(ID) level mutational signatures for each variant at individual sample level using the same 

Palimpsest package. Formalin-Fixed Paraffin-Embedded (FFPE) tumor samples (such as PAM17T3,4) 

were excluded as a technical artifact since it induces distinct signature patterns as a result of DNA 

crosslinking. Specifically, ‘brunet’ method, one of Nonnegative Matrix Factorization (NMF) algorithm, 

was used to infer SBS and ID level signatures while ‘nsNMF (non-smooth NMF)’ algorithm was used for 

DBS level signatures estimation. The number of runs for each algorithm was set to 50. Final VAFs, 

clonality and de novo signature information of all somatic mutations are listed in the Supplemental 

Table 3. 

 

Cancer driverness estimation 

Likely functional driverness specific to PDAC was predicted using LiFD package48,49, which is a two-

phase algorithm that integrates multiple information from public cancer databases such as OncoKB, CGI 

and COSMIC and bioinformatic methods including CHASMplus, FATHMM, CanDrA+, CGI and VEP 

(https://github.com/johannesreiter/LiFD). Input file was ‘VCF’ formatted list of mutations and all settings 

used in the package were default. ‘LiFD_support’ score ranging 0 to 5 was selected as the final 

determinant of driverness of each mutation. Less than 1 of LiFD_support score is regarded as non-driver 

gene while higher score represents a more likely driver. 
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Analysis of significantly perturbed copy number regions specific to each treatment plans 

GISTIC2.050 was used to infer the significantly amplified or deleted arm-level and focal copy number 

regions for each treatment group. First, we used FACETS to calculate chromosomal segment information 

of all somatic copy number variants by comparing each tumor’s WES data and its matched normal. The 

minimum and the maximum depth of normal sample were set as 35 and 4000, respectively. The minimum 

and the maximum critical value used for segmentation were set 25 and 150, respectively. All individual 

sample level segmentation files were combined for each treatment group and fed into GISTIC2.0 package 

as an input. The reference genome used was hg19, which is the same as the one used for WES data 

analysis. All other settings in GISTIC2.0 were default, and the cutoff of q-value was 0.25 to determine 

significantly perturbed copy number regions. We then extracted the list of all genes included in the 

significant copy number altered regions that are specific to each treatment plan.  

 

Analysis of Structural Variants (SVs) specific to each treatment group 

We inferred individual tumor sample level SVs including large deletions / duplications, balanced 

inversions and translocations using ‘sv-callers’ workflow 

(https://github.com/GooglingTheCancerGenome/sv-callers), which utilizes multiple SV inferring 

packages such as Manta, Delly, Lumpy and GRIDSS simultaneously. Matched normal mode was selected 

and all other settings were default. We included only results from Delly28 since it outputs SVs with 

‘PASS’ tag for our WES dataset while others didn’t. The minimum read coverage was set to 30 for final 

filtering. We further investigated which genes are disrupted by any given SV within exon and intron of 

the gene by looking up the SV’s coordinate. 

 

Analysis of significantly perturbed pathways specific to each treatment group 

First, 142 human pathway annotation terms having at least one annotated gene under six top2-level 

pathways – classic metabolic pathway(PW:0000002), disease pathway(PW:0000013), drug 

pathway(PW:0000754), regulatory pathway(PW:0000004), and signaling pathway(PW:0000003) – are 

collected from RGD database35 (https://rgd.mcw.edu/wg/home/pathway2) (see Supplemental Table 4).  

We then split the list of somatic mutations for each treatment group into two classes: clonal vs subclonal 

one based on the column ‘clonality’ in the Supplemental Table 3, filtered out pathways having less than 

200 genes in it and then separately applied Fischer Exact test based on a 2x2 contingency table as shown 

below to calculate statistical significance. The null hypothesis is that a chosen pathway is NOT different 

from other pathways for the number of genes in it for each given class (clonal or subclonal).  
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Phylogenetic analysis of multi-region sampled tumors in each patient 

Treeomics package34 was run to reconstruct the tumor patient’s phylogeny for the cases where the

minimum number of tumor samples is 3 after excluding samples with less than 10% of computationally

estimated tumor purity. For this reason, PAM12 and PAM15 were excluded for this analysis. Since the

maximum number of tumor samples for this analysis is limited due to its high resource intensity, we

selected only up to 12 tumor samples for each patient that are as much unique as possible compared to

other tumors in the same patient by looking up Pearson correlation coefficient (PCC) of allele frequencies

of all somatic mutations in each pair of tumor samples. The number of best solutions explored by ILP

solver to assess the support of the inferred branches was set to 5,000 (default 1,000) and the maximum

variant allele frequency for an absent variant before considering the estimated purity was set to 1%

(default 5%). We only selected the best scored tree for each patient and visualized the total number of all

mutations and the driver-like gene names according to the list of TCGA consensus driver genes51 at each

branch line in black and orange color, respectively. 

  

 

he 

lly 

he 

we 

 to 

ies 

LP 

m 

% 

all 

ch 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.24301554doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.30.24301554


Figure and Table legends 

 

Figure 1a. Summary of clinical information and treatment plans for all PDAC patients in this 

study.  

 

Figure 1b. Summary statistics of samples in each patient and read coverage for WES sequencing 

data. 

 

Figure 1c. Oncoprint of all major driver genes in this cohort. 

 

Figure 1d. Comparison of frequencies of altered driver genes between this study and public 

databases including ICGC and TCGA. 

 

Figure 1e. Pattern of Loss of Heterozygosity (LOH) in each PDAC driver genes based on this study. 

 

Figure 2a. Frequency distribution of estimated CCF values for four top PDAC driver genes (see 

Supplemental Figure 2 for all major driver genes) 

 

Figure 2b. A brief overview of TGFβ signaling pathway in PDAC. 

 

Figure 2c. Statistical testing of mutual exclusivity between SMAD4 and TGFBR2 mutations based 

on MSK-IMPACT targeted-seq data for selected 1,001 PDAC patients. 

 

Figure 2d. Examples of phylogenetic tree of multi-region samples of selected patients (PAM26, 

PAM49 and PAM50) which have unique subclonal driver mutations in SMAD4 and/or TGFBR2. 

 

Figure 2e. Single cell genotyping maps of two samples from PAM49 as an example showing mutual 

exclusivity between SMAD4 and TGFBR2 in PDAC. 

 

Figure 3a. The distribution of CCF estimates at the patient level. Only samples with greater than 0.3 

of purity were considered for reliable CCF estimates. The number in the parenthesis represents the 

number of samples in each patient included for this plotting. Bottom vertical bars represent the values of 

CCF and LiFD.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.30.24301554doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.30.24301554


Figure 3b. Original GISTIC2.0 results for each group. Treatment naïve group includes 25 samples 

from 7 patients, chemotherapy only group includes 103 samples from 10 patients, and radiation plus 

chemotherapy group includes 83 samples from 12 patients. X- and y-axes represent q-value and 

chromosome, and the vertical green bar denotes the cutoff for significant peaks in gistic2 analysis. See 

Supplemental Figure 4 for selected genes of importance in PDAC, MYC, chromatin modifier and DNA 

repair pathways.  

 

Figure 3c. Comparison of the number and type of genes located in significantly amplified and 

deleted copy number regions in three treatment groups (left panel: amplified genes, right panel: 

deleted genes). All the listed genes are ones that frequently acquire non-synonymous SNPs in PDACs 

based on cBioPortal (minimum number of sample occurrence is 20 for these genes). Genes with (*) 

denotes highly likely cancer driver genes additionally defined in OncoKB database. Some genes with 

underline mark(_) are amplified in some samples but deleted out in other samples within the same 

treatment group. 

 

Figure 3d. The number of different types of Structural Variants found in three treatment groups. 

Each dot represents a single sample in each patient and treatment group. A box plot is drawn for entire 

samples in each group. (DEL : large deletions, DUP : large duplications, INV : inversions, TRA: 

translocations). Mutation count in the Y- axis is limited to 15 for simplicity. 

 

Figure 3e. Distribution of LiFD scores for selected genes that are disrupted by the breakpoints of 

any SVs.  

 

Figure 3f. PCA analysis for mutational signatures at the patient level for three different treatment 

plans. The average numbers of mutations corresponding to each signature was used for patient level 

analysis. Only mutations within exon or at 3’ / 5’ UTR are included. See Supplemental Figure 5 for 

PCA analysis result at the level of all samples including FFPE kept ones (PAM17PT3/PT4) and 

sequencing artifact ones (PAM55PT3/PT4) 

 

Figure 3g. Odds ratio between the proportions of subclonal versus clonal mutations. We excluded 

samples that acquired less than 20 mutations both in founder and non-founder categories for each 

signature in this analysis in order to minimize over-representation of odds ratios. 

 

Figure 4a. Representative phylogenetic trees of each treatment plan. 
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Figure 4b. Ratios between the numbers of non-founder vs founder mutations in primary and 

metastatic samples per patient and treatment plan. 

 

Figure 4c. Statistical significance of altered pathways in different treatment groups. 

 

Supplemental Figure 1. Frequency distribution of estimated CCF values for all major driver genes 
selected in this study. 
 
Supplemental Figure 2. Positive correlation between CCFs and the level of LiFD scores (Level 1 : 0 
<= LiFD <1 / Level 2: 1 <= LiFD <2 / Level 3: 2 <= LiFD <3 / Level 4 : LiFD >= 3).  
 
Supplemental Figure 3. Frequency of somatic SVs for each patient. PAM20 and PAM26 showing a 
dramatically increased number of SVs, especially for inversions. These patients also have increased 
number of all types of SVs compared to other treatment groups. 
 
Supplemental Figure 4. Original de novo mutational signatures found from our bulk WES data.   
 
Supplemental Figure 5. PCA plot of all individual samples including FFPEs and sequencing 
artifacts with de novo mutational signatures.  
 
Supplemental Figure 6. Cosine similarity between de novo and already known signatures. De novo 
ID signatures correlates with ID8, which is strongly related with repair of DNA double stand breaks 
principally induced by radiation. COSMIC Mutational Signature Version 3 was used 
(https://cancer.sanger.ac.uk/signatures ) 
 
Supplemental Figure 7. Co-existence of two distinct SMAD4 mutations in PAM50 suggests complex 
metastatic seeding patterns from PDAC.  
 
Supplemental Table 1. Patient information with treatment plan. 
 
Supplemental Table 2. Sample information and sequencing statistics. 
 
Supplemental Table 3. List of all somatic mutations along with mutational signature and CCF 
estimates. 
 
Supplemental Table 4. List of significantly amplified or deleted genes for each type of treatment 
plan based on GISTIC2.0. 
 
Supplemental Table 5. Significantly altered molecular pathways for each type of treatment plan. 
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