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Abstract 
 
Objective: Assigning outcome labels to large observational data sets in a timely and accurate 
manner, particularly when outcomes are rare or not directly ascertainable, remains a significant 
challenge within biomedical informatics. We examined whether noisy labels generated from 
subject matter experts’ heuristics using heterogenous data types within a data programming 
paradigm could provide outcomes labels to a large, observational data set. We chose the 
clinical condition of opioid-induced respiratory depression for our use case because it is rare, 
has no administrative codes to easily identify the condition, and typically requires at least some 
unstructured text to ascertain its presence.  
 
Materials and Methods: Using de-identified electronic health records of 52,861 post-operative 
encounters, we applied a data programming paradigm (implemented in the Snorkel software) for 
the development of a machine learning classifier for opioid-induced respiratory depression. Our 
approach included subject matter experts creating 14 labeling functions that served as noisy 
labels for developing a probabilistic Generative model. We used probabilistic labels from the 
Generative model as outcome labels for training a Discriminative model on the source data. We 
evaluated performance of the Discriminative model with a hold-out test set of 599 
independently-reviewed patient records.  
 
Results: The final Discriminative classification model achieved an accuracy of 0.977, an F1 
score of 0.417, a sensitivity of 1.0, and an AUC of 0.988 in the hold-out test set with a 
prevalence of 0.83% (5/599).  
 
Discussion: All of the confirmed Cases were identified by the classifier. For rare outcomes, this 
finding is encouraging because it reduces the number of manual reviews needed by excluding 
visits/patients with low probabilities.  
 
Conclusion: Application of a data programming paradigm with expert-informed labeling functions 
might have utility for phenotyping clinical phenomena that are not easily ascertainable from 
highly-structured data.  
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Main Text 

1. INTRODUCTION 

Although researchers now have access to many large biomedical data sets for extracting 

meaningful insights, assigning outcome labels in a timely, accurate, and scalable manner 

remains challenging. Further, many outcomes are not directly ascertainable in a straightforward 

manner, such as those lacking administrative codes or standardized vocabulary mappings.[1,2] 

There is growing interest within the informatics community in more nuanced outcomes for 

clinical decision support, targeted risk model development, and other personalized prediction 

modalities, all of which require data from multiple sources (e.g., laboratory values, prescriptions) 

in diverse formats (e.g., structured billing codes, unstructured notes). Leveraging these rich 

resources for precision health requires a flexible design that permits multiple levels of validation, 

from spot-checking to validating development iterations to full systematic performance 

evaluation. 

Manual (human) review of records has traditionally been considered the gold-standard of 

phenotyping. Manual reviews are time-consuming and resource-intensive, particularly within 

extremely large data sets of patient records.[3,4] To overcome this challenge within electronic 

health records (EHRs), two broad approaches have been used: (a) condition-specific algorithms 

that leverage rule-based logic incorporating heterogenous data sources such as diagnostic 

billing codes, clinical notes, and laboratory values, among others,[5,6] and (b) high-throughput 

methods that assign thousands of phenotypes to the EHR data, such as PheCodes which are 

groupings of diagnostic billing codes.[6-9] Condition-specific algorithms are time-consuming to 

develop/validate, inflexible, and not easily generalizable. Drawbacks of high-throughput 

methods include: (a) available phenotypes might not include the specific phenotype identified a 

priori by an investigator, and (b) investigators could be interested in less well-defined 

phenotypes that lack diagnostic billing codes (e.g., adverse events) or where coding practices 

change for policy reasons (e.g., opioid use disorder-related diagnoses).  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.29.24301963doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.29.24301963


  

To expedite the labeling process, some have advocated for noisy labels where 

investigators train a machine learning model using a large data set with imperfect labels (i.e., 

some inaccuracies present). One accepts a less stable (i.e., noisy) measure as a tradeoff for the 

relatively higher expenditure of time and resources needed to procure clean (i.e., high 

confidence in accuracy) labels from smaller data sets.[10-12] Noisy labels can be derived: (a) 

from experts creating heuristics that generate an approximation of the ground truth label across 

all records, or (b) by using a readily-available proxy label that is correlated with the ground truth 

label. One approach that combines experts’ knowledge with the speed of data-driven 

approaches is anchor learning.[13] In anchor learning, an expert creates rules that serve as an 

imperfect (or noisy) label on which to build supervised models that can generalize beyond the 

specified anchors and yield the probability of a record having the label of interest. This 

framework has been applied to healthcare and standardized within the Observational Health 

Sciences and Informatics (OHDSI) network and as the Automated Phenotype Routine for 

Observational Definition, Identification, Training, and Evaluation (APHRODITE).[14] A related, 

newer, and less-evaluated framework is the data programming paradigm, introduced by Ratner 

et al. at Stanford University,[15] that involves specifying multiple imperfect labels developed by 

experts and has the benefit that phenotypes need not be well-established, universally agreed-

upon phenotypes. If we assume each label performs better than chance, one can think of each 

label as a weak learner that has the advantage of being computationally simple while also 

having the opportunity to be aggregated into an ensemble model that performs better than the 

sum of its parts.  

Respiratory failure is the most common adverse event among perioperative patients 

(9.13/1000 patients[16]) and costs up to $23.5 billion annually.[17] Surgical patients are 

particularly susceptible to respiratory depression due to opioid administration for postoperative 

analgesia. Opioid-induced respiratory depression (OIRD) has an incidence of 0.1-26.9%.[18,19]  

Operational definitions of OIRD have included naloxone administration, hypoventilation, 
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hypercarbia, and oxygen de-saturation.[18,20] The lack of a standardized definition makes 

large-scale, observational research challenging due to the difficulties in the assignment of 

outcome labels. In manual chart reviews, it can be difficult for a reviewer to determine if 

naloxone administration resulted in the intended benefit. It is not uncommon for naloxone to be 

administered in the setting of altered mental status to determine whether opioids are 

responsible. Simply because a patient is receiving opioids, however, does not mean OIRD is the 

etiology of their altered mental status. To our knowledge, there is no automated approach to 

identifying OIRD. The most similar criteria would be Patient Safety Indicator (PSI) 11 focused on 

all-cause post-operative respiratory failure from the Agency for Healthcare Research and 

Quality (AHRQ).[21,22]  

1.1. Study Objective 

To address these phenotyping challenges, this study examined whether noisy labels 

generated from subject matter experts’ heuristics using heterogenous data types within a data 

programming paradigm could be used to provide outcome labels for OIRD within a large, 

observational dataset.  

 

2. METHODS 

2.1. study design and setting 

We conducted a retrospective cohort study using data from the “Synthetic Derivative” 

database at Vanderbilt University Medical Center, which is a de-identified copy of the main 

hospital medical records created for research purposes. To perform phenotyping, we used a 

data programming paradigm (incorporated into the Snorkel software program developed by 

Ratner et al.[15]) that leverages labeling functions (LFs) as noisy labels to develop a Generative 

model. The Generative model yields the probability that a record contains the phenotype, which 

then serves as the outcome in a Discriminative model yielding final labels for the original data 

set (see Figure 1). We received IRB approval for all activities involving human subjects.  
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2.2. cohort selection 

We limited the cohort to surgical procedures included in the AHRQ Patient Safety 

Indicator-11 (Postoperative Respiratory Failure Rate) based on billing codes.[21,22] Criteria 

were expected to capture all post-operative OIRD events except for those where prevention is 

highly unlikely (e.g., those with increased risk for respiratory failure, people with degenerative 

neurological disorders). As a proxy for elective status (which was not available in our de-

identified database), we excluded encounters where the qualifying surgical procedure occurred 

on the same day as an Emergency Department visit.  

Our study cohort comprised 52,861 visits representing 44,999 patients, which we 

partitioned according to Table 1 (and Figure 2). We first created the Test Set from the visits of 

patients in the cohort with genetic data (n=2,189 patients), which will be used for a separate 

study. We included all visits that met AHRQ PSI-11 criteria (n=264, 0.50% of cohort) and 

randomly sampled 500 visits (0.95% of cohort) that did not meet criteria. Of the remaining 

52,097 visits, we excluded 285 visits because they were associated with patients who had visits 

already included in the Test Set. Then, we randomly selected 50 visits for the Validation Set and 

Development Set using 2:1 over-sampling with 2 AHRQ-defined cases per 1 AHRQ-defined 

control. We enriched the Validation and Development Sets throughout the study, as described 

in the next section.  

 
Table 1. Characteristics of data sub-sets for study.  
Data Set Sample Size 

(Visits) 
Purpose Selection Process 

Test 764 Final evaluation of 
Discriminative model 

Random from those with 
genetic data  

Validation 90 (originally 50) Discriminative model 
selection 

Random with oversampling 
from AHRQ criteria 

Development 90 (originally 50) LF development & 
Generative model validation 

Random with oversampling 
from AHRQ criteria 

Training 51,632 
(originally 
51,712) 

Generative model 
development 

Not in Test, Validation, or 
Development sets 
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2.3. generative model development and evaluation 

Developing the Generative model involved an iterative process of: (a) developing 

candidate LFs, (b) examining candidate LF performance in the Development Set, (c) using the 

Python-based Snorkel software to develop a candidate Generative model in the Training Set, 

and (d) evaluating performance of the candidate Generative model in the Development Set.  

2.3.1. Labeling Function Creation 

In the data programming paradigm, a developer writes labeling functions (LF) that serve as 

noisy labels based on heuristics, patterns, or external information. Each LF processes input 

data and returns a vote of a Yes (1), No (0), and/or Abstain (-1). LFs can be overlapping such 

that multiple LFs use the same input data. LFs can be conflicting such that the same record 

yields different votes (e.g., one LF yields a Yes vote while another LF yields No vote on the 

same record). While LFs could potentially return any of the three vote options, each LF only 

needs to return 2 of the 3 vote options (e.g., Yes versus Abstain, Yes versus No). LFs produce 

an m x n label matrix with m examples and n LFs. Without any ground-truth data, we can use 

the label matrix to model accuracies and correlations between LFs to optimize a Generative 

model that yields probabilistic labels. We abandoned the suggested context hierarchy[15] in 

favor of treating an entire visit as a single record/exemplar, which resulted in individual LF 

performance improvement. 

The lead subject matter expert, a dually trained biomedical informaticist and critical care 

nurse (ADJ), conducted chart reviews of Development Set visits to create candidate LFs and 

determine whether each visit had evidence of OIRD. LFs comprised data from medication 

information, clinical note text (using regular expressions for words and phrases), and 

administrative diagnostic and procedure codes.  

Elements guiding LF creation and modification included: (a) coverage – the proportion of 

visits in which the LF could yield a vote, (b) conflicts – whether another LF yielded a different 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.29.24301963doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.29.24301963


  

vote, and (c) empirical accuracy – the proportion of visits correctly labeled, excluding Abstain 

votes, based on the single reviewer’s determination. 

2.3.2. Iterative Model Development 

We used Snorkel to generate a probability of whether a visit included an OIRD event. 

Due to the low number of positive Cases in the initial Development Set (2/50, 4%), we applied 

this iterative process to enrich the Development Set and Validation Set by extracting visits with 

the top 20 probability values from the Training Set and dividing those equally among the 

Development Set and Validation Set. After Round 4, the primary LF developer facilitated a focus 

group with clinicians and biomedical informaticists to discuss face validity of the current LFs and 

solicit additional heuristics for additional LFs (Table 2).  

We conducted hyper-parameter tuning of the Generative Model’s neural networks using 

learned LF weights in the Training Set and empirical accuracy in the Development Set (except 

in the final round where we combined the Training Set and Development Set and used 

Validation Set to assess empirical accuracy). We proposed a new method for Generative model 

hyper-parameter tuning by emphasizing the learned weights of the LFs rather than focusing on 

empirical accuracy, a modification which makes theoretical sense but should be examined more 

robustly in future studies. We selected hyper-parameters that yielded higher LF weights for 

clinically important rules, which were determined by two clinicians on the research team (a 

nurse practitioner and a physician). For example, an LF that used information about naloxone 

administration (i.e., a specific treatment for OIRD reversal) should be more important than an LF 

that assessed for altered mental status, which is less specific to OIRD. 

 
Table 2. Labeling function (LF) development process with Training and Development Sets.  
Review Round Number of 

Visits 
Reviewed 

Number of 
Visits with 
OIRD 

Post-Review Round Actions 

1. Review Development Set 
visits 

50 2 -Draft LFs.  
-Extract top 20 from Training Set, sending 10 to 
Development Set & 10 to Validation Set 

2. Review additional 10 6 -Modify LFs & Add LFs 
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Development Set visits -Repeat top 20 extraction  
3. Review additional 
Development Set visits 

10 1 -Modify LFs & Add LFs to correct for overfitting 
-Repeat top 20 extraction 

4. Review additional 
Development Set visits 

10 9 -Solicit feedback from clinicians & biomedical 
informaticists on LFs 
-Modify LFs & Add LFs 

5. Review additional 
Development Set visits 

10 9 -Create final Generative model in the combined 
Training & Development Sets 

 
 

2.4. discriminative model development and evaluation 

We used the final Generative model’s probabilistic labels as outcome labels for a 

Discriminative model. Unlike the Generative model that makes predictions using the output from 

LFs, the Discriminative model uses features directly from the source data. This step confers the 

added benefit of increased generalizability. A Discriminative model can be used by external 

stakeholders or with future unlabeled data without needing the Snorkel software, LFs, or access 

to the same input data used for the Generative model. Additional benefits of a Discriminative 

model are: (a) the ability to include the labels from manually-reviewed records to improve the 

model’s performance and (b) the option to use a noise-aware model to account for uncertainty 

within the probabilistic Generative labels. 

2.4.1. Candidate Variables 

We selected age, gender, binary indicators related to administrative codes and naloxone 

administration, and frequency of keywords/phrases in clinical notes to serve as predictors. 

Administrative codes included diagnostic and procedure codes related to respiratory 

failure/disease, prolonged mechanical ventilation, sepsis, cardiovascular disease, and 

cerebrovascular accidents. Based on input from clinical subject matter experts on the research 

team as well as focus group members (see 2.3.2.), we developed keywords and phrases related 

to naloxone administration and its effectiveness, narcotic overdose, absence of pain 

medications, decreasing or holding opioids, presence of acute events, altered mental status, 

pinpoint pupils, and hypoxia. Other predictors included number of notes from respiratory 
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therapists and rapid response team mentions.  

2.4.2. Model Development 

We began Discriminative model development with off-the-shelf[23] machine learning 

algorithms from Python’s scikit-learn to identify the most promising algorithms for hyper-

parameter tuning. Classification algorithms comprised logistic regression, linear discriminant 

analysis, k-nearest neighbors, decision trees, random forest, Naïve Bayes, and a multilayer 

perceptron (i.e., neural network).[23] Regression algorithms comprised linear regression, 

random forest, and a multilayer perceptron.[23] Based on F1-scores, AUC, and mean squared 

error,[24,25] we chose the random forest and multilayer perceptron algorithms for hyper-

parameter tuning[23] in both the classification and regression tasks.  

 

2.4.3. Internal Model Validation 

 . To estimate the model’s future performance in an unbiased manner, we performed 

nested cross-validation with a manual grid search on the combined Training/Development Set 

using 3 inner folds and 10 outer folds. The nested cross-validation suggested F1 scores will 

range 0.6-0.8 for classifiers and 0.4-0.7 for regressors, AUCs will range 0.75-0.9 for classifiers 

and 0.6-0.8 for regressors, and mean squared errors will range 0.005-0.008 for classifiers and 

0.005-0.01 for regressors. The classification algorithms outperformed the regression algorithms, 

and the random forest classifiers (weighted and unweighted) outperformed the multilayer 

perceptron classifier. Given some overlapping performance (dependent on hyper-parameter 

choices), we trained each of the 5 models using the hyper-parameters that most frequently had 

the highest performance on the outer folds to serve as our best candidate models and evaluated 

their performance in the Validation Set. The weighted random forest classifier performed best 

and was designated the final Discriminative model.  

2.4.4. Reference Standard Validation 

We compared our final model with the hold-out Test Set that was manually adjudicated 
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the Vanderbilt University Medical Center’s Crowdsourcing Core services. The Crowdsourcing 

Core assists investigators in describing desired outcomes for clinical chart reviews, recruiting 

and compensating qualified reviewers (known as “workers”), displaying complex clinical data for 

review, and ensuring sufficient numbers of reviews to make a determination.[26] Workers 

completed the review in a two tasks, which were completely independent of the investigative 

team’s activities. In the first task, workers evaluated whether the visit included an elective 

surgery. Visits without an elective surgery were excluded from further review. In the second 

task, workers evaluated whether respiratory depression occurred and whether it was likely due 

to opioid administration.  

2.4.5. Sensitivity Analyses 

After final assessment of model performance with all a priori decisions, we conducted a 

post-hoc sensitivity analysis to measure the influence of some choices made during the final 

Discriminative model development. We specified the outcome label from the Generative model’s 

predicted probability for the 51,712 records in the Training Set; however, for the additional 90 

records in the Development Set, we specified the outcome label based on the manually 

adjudicated determination. Additionally, we weighted samples during model fitting based on the 

absolute value of the Generative model probability’s distance from 0.5. Values closer to 0 

represented low certainty (i.e., a random guess) while values closer to 0.5 represented greater 

certainty. These weights were used to determine the penalty of misclassifications (i.e., mis-

classified predictions where the probabilistic outcome label was closer to 0.5 were penalized 

less than those closer to 0 or 1).  

 

3. RESULTS 

3.1. labeling functions in training and development sets 

We finalized our Generative model with 14 LFs (Table 3).   
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Table 3. Final LFs for identifying OIRD in the Generative model. 
 Yes No 
Received naloxone (Narcan)? CASE, if nearby keywords suggested 

naloxone administration was effective (e.g., 
improved, well, alert) in reversing OIRD 
or 
CONTROL, if nearby keywords suggested 
naloxone administration was ineffective 
(e.g., no response, lack, without) in 
reversing OIRD 

CONTROL 

The count of keywords 
suggesting naloxone 
ineffectiveness was greater than 
the count of keywords suggesting 
naloxone effectiveness?   

CONTROL CASE, if 
count > 0 
or 
ABSTAIN, 
if no 
keywords 
present 
  

Had an extended period (>= 4 
days) of mechanical ventilation?  

CONTROL ABSTAIN 

Had diagnostic codes for 
respiratory failure? 

CONTROL, if mechanical ventilation also 
present 

ABSTAIN 

Absence of clinical notes with a 
title of “Respiratory Care”?  

CONTROL ABSTAIN 

Keywords related to narcotic 
overdose were present? 

CASE ABSTAIN 

Keywords related to hypoxia 
were present in clinical notes 
near variations of the word opioid 
or narcotic?  

CASE ABSTAIN 

Keywords related to decreasing 
opioids were present?  

CASE ABSTAIN 

Keywords related to holding 
opioids were present? 

CASE ABSTAIN 

Keywords related no pain meds 
were present?   

CONTROL ABSTAIN 

Keywords related to altered 
mental status were present?  

ABSTAIN, if a confounding diagnosis (e.g., 
sepsis, myocardial infarction) present  
or 
CASE, if confounding diagnoses absent 

ABSTAIN 

Keywords related to pinpoint 
pupils were present?   

CASE ABSTAIN 

The phrase “no acute events” 
was present? 

ABSTAIN, if acute event keywords (e.g., 
“rapid response”, “altered mental status”) 
present 
or 
CONTROL, if acute event keywords absent 

ABSTAIN 

There were no keywords to 
support OIRD (e.g., hypoxia, 
rapid response, pinpoint pupils) 

CONTROL ABSTAIN 
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present?  
 

3.2. validation set performance 

In the Validation Set, the empirical accuracy of individual LFs ranged 0.47-1.00, the final 

Generative model achieved an accuracy of 0.83, an F1 score of 0.73, and an AUC of 0.96 

(Figure 3), and the final Discriminative model achieved an accuracy of 0.88, an F1 score of 

0.80, and an AUC of 0.92 (Figure 4). Performance of the final Discriminative model in the 

Validation Set was consistent with expected performance during internal validation.  

In the post-hoc sensitivity analysis, the Discriminative model trained with the removal of 

manually adjudicated outcome labels from the Development Set (i.e., all outcome labels were 

produced by the Generative model’s probabilistic labels) yielded the same accuracy, F1 score, 

and AUC values in the Validation Set. Conversely, the Discriminative model trained without 

sample weighting during the model fit yielded decreased accuracy (0.87), F1 score (0.79), and 

AUC (0.91) values in the Validation Set. During a review of record-level performance in the 

Validation Set, records with large a discrepancy between the predicted probabilities of 

Generative and Discriminative models primarily occurred when the Generative model indicated 

a probability close to 1 yet the manually adjudicated label was “control.” Therefore, sample 

weighting during model fit improved overall model performance while the presence of manually 

adjudicated labels corrected some records mis-classified as being a “case” in the Validation Set 

data.   

3.3. test set performance 

In the first task, workers excluded 165 visits (21.6%) where the surgery was emergent. 

In the remaining 599 visits for the second task, workers determined OIRD was present in 5 

(0.83%) visits. In the manually adjudicated Test Set, the final Generative and Discriminative 

models achieved an accuracy of 0.977, an F1 score of 0.417, and an AUC of 0.988. A simple 

majority vote from the 14 LFs resulted in lower accuracy (0.967), F1 score (0.333), and AUC 
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(0.983) values.  

The Discriminative models used in the post-hoc sensitivity analysis for the Validation Set 

were associated with improved positive predictive values and F1 scores in the Test Set (Table 

4). The original AHRQ criteria performance, which served as a baseline comparison in the Test 

Set, was lower than the Generative and Discriminative models with an accuracy of 0.677 (vs. 

0.977), F1 score of 0.040 (vs. 0.417), and an AUC of 0.738 (vs. 0.988) (Table 4). Using the 

baseline AHRQ performance, 4 of the original 196 “cases” were determined to be a true case, 

and 1 of the original 402 “controls” was determined to be a true case.   
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Table 4. Performance of all phenotyping approaches in Test Set.   
 Sensitivity Specificity Positive 

Predictive 
Value 

Accuracy AUC F1 
Score 

Majority Vote 
from Labeling 
Functions 

1.0 0.97 0.2 0.967 0.983 0.333 

Generative 
Model 

1.0 0.98 0.263 0.977 0.988 0.417 

Final 
Discriminative 
Model (with 
weighting and 
some manual 
labels) 

1.0 0.98 0.263 0.977 0.988 0.417 

Discriminative 
Model without 
weighting 

1.0 0.98 0.278 0.978 
 

0.989 0.435 

Discriminative 
Model without 
any manual 
labels 

1.0 0.98 0.278 0.978 0.989 0.435 

Discriminative 
Model without 
weighting or 
any manual 
labels 

1.0 0.98 0.278 0.978 0.989 0.435 

AHRQ PSI-11 
Criteria 

0.8 0.68 0.020 0.677 0.738 0.040 

 
 

When examining the final Test Set status in the context of both the Generative and 

Discriminative models, all of those identified as a Case have a Generative model probability > 

0.8 and a Discriminative model probability > 0.7 (Figures 5 and 6). If one used these higher, 

joint thresholds, a revised scoring system would have an F1 score of 0.625.  

 
3.4. review of misclassified patients 

In the Validation Set, 11 of the 90 patients were classified as Cases based on the 

Discriminative model when the manual review classified the patients as Controls. None of the 

patients were misclassified as controls. Table 5 contains the predicted probabilities along with 

comments from manual review of the Validation Set.  
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Table 5. Predicted probabilities and manual review comments from misclassified visits in the 
Validation Set.  
Predicted 
Probability 

Comments from Manual Review 

1.0 Urethral cancer removal. Complex pain management for chronic cancer pain - 
always in pain but also became somnolent - no naloxone administration but 
suggested altered mental status.  

0.98 Colostomy placement. Given naloxone & intubated after altered mental status - 
seems to be more like aspiration pneumonia. Naloxone only mentioned once & 
that patient became very anxious after administration.  

0.96 Knee replacement. Rapid response team for respiratory compromise - likely 
due to metabolic acidosis or other causes. Naloxone was administered 
according the medication administration record but not in clinical notes (in fact 
one note suggests she had very little opioids).  

0.95 No surgery described in clinical notes. Transferred from outside hospital for 
complex septicemia. Multiple notes discussed how the patient was given 
naloxone pre-hospital following opioid use at home.  

0.93 Colectomy performed. Was somnolent & bradypneic requiring rapid response 
team - no effect from naloxone administration - likely due to alcohol withdrawal.  

0.93 Dialysis patient presented to Emergency Department after blood cultures 
positive during dialysis & their operation was elective surgery for severely 
infected teeth. 1-month stay in the hospital. Lots of discussion regarding 
suboxone, high opioid use, & holding opioids. No evidence of OIRD during 
visit. Interestingly, the patient returned within 5 days of discharge with OIRD in 
the community.  

0.92 Artificial hip irrigation & debridement. Coded & died after a complication with 
septic shock - no evidence of OIRD. Had been on oral naloxone.  

0.90 No surgery described in clinical notes. Transferred from outside hospital for 
sepsis. Pulmonary note identified decreased respiratory drive on mechanical 
ventilation due to "delayed clearance of sedating meds" because they had 
ruled out other neurological etiologies of altered mental status. Naloxone had 
been administered, but this was via oral route and likely for constipation. 
Etiology of respiratory depression is unclear.  

0.82 No surgery described in clinical notes. Transfer from outside hospital for sickle 
cell-related stroke. Had been taking high doses of narcotics at home.  

0.82 Kidney & heart transplant. Didn't do well with extubation on post-operative day 
1 & naloxone administration didn't help. Unlikely OIRD.  

0.78 Pituitary tumor resection. No complications.  
During a post-hoc manual review of the Test Set visits with high (>= 0.5) Discriminative 

model probabilities but labeled as Controls by the crowdsourcing workers (n=14), the 

investigative team agreed with all crowdsourcing results and did not re-classify any Controls as 

Cases. However, one visit was deemed ambiguous/unclear by the crowdsourcing workers with 

one worker labeling the visit as a Case and one worker labeling the visit as a Control with no tie-

breaker available. The investigative team re-classified the visit from Unknown to Case. Table 6 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.29.24301963doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.29.24301963


  

contains the predicted probabilities along with comments from the investigative team’s post-hoc 

manual review of the Test Set visits with high Discriminative model probabilities among Control 

visits. 

Table 6. Predicted probabilities and manual review comments from misclassified visits in the 
Test Set. 
Predicted 
Probability 

Comments from Manual Review 

1.0 Hip replacement. No complications.  
1.0 LVAD implant. Lengthy hospital stay with a discharge summary noting their 

"respiratory status remained tenuous".  
0.99 Cystectomy for prostate cancer. Originally on room air, then increasing oxygen 

requirements and re-intubated on post-operative day 2 for unclear etiology, but 
not likely opioids.  

0.98 Heart transplant. Very lengthy hospital stay and was intubated for a while.  
0.97 Parathyroidectomy and thymectomy. Altered mental status that resulted in 

imaging evaluation where they received morphine and mental status 
worsened. Clinical notes reported some improvement with Narcan; however, 
OIRD seems unlikely given that they were tachypneic during that event. 

0.96 Liver transplant. Improved gradually and uneventfully.  
0.94 Liver transplant. Improved gradually and uneventfully.  
0.94 Ileostomy takedown. Altered mental status of unknown origin. Seizure activity 

was originally assumed but no diagnostic evidence. Their morphine patient-
controlled analgesia was making them sleepy, so it was discontinued. They 
received a couple doses of naloxone but no immediate improvement.  

0.93 Partial nephrectomy for mass. Uneventful hospital course.  
0.84 Fine needle aspiration and craniotomy for volumetric stereotaxy. Uneventful 

hospital course.  
0.82 Pancreatojejunostomy for pancreatitis and hepatitis. Altered mental status and 

acute kidney injury that resulted in discontinuation of patient-controlled 
analgesia and naloxone administration. It appears sepsis was the complicating 
etiology rather than OIRD.  

0.63 Percutaneous nephrolithotomy. Altered mental status with hypoxia and 
hypotension. Naloxone administered twice without improvement, and they 
ultimately died in the hospital.  

0.54 Choleduodenostomy. Uneventful hospital course.  
0.51 Esophageal hernia repair. There were multiple mentions of naloxone in the 

medication lists from copy and paste of progress notes. They had post-
operative complications involving being reintubated for hernia return and went 
to the Surgical ICU.  

 
 

4. DISCUSSION  

4.1. summary 

We applied a data programming paradigm with the use of weak learners and 
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heterogenous data types to the problem of identifying OIRD. All manually-confirmed Cases 

were identified by the majority vote of LFs, Generative model, and Discriminative model. For 

rare outcomes like OIRD, this finding is encouraging because it can reduce the number of 

manual reviews needed for applying outcome labels by excluding visits/patients with low 

probabilities. In practice, as new patient records are added to our de-identified EHR database in 

the future, we could score each record with the Discriminative model quickly and follow up with 

a manual review only for records with high scores. While it would also be possible to use the 

majority vote approach or the Generative model for scoring, it is a more challenging task due to 

the pre-processing steps required for applying LFs and creating a label matrix.  

In our post-hoc sensitivity analysis of potential information added to the Discriminative 

model in the Validation Set, our results suggested sample weighting (based on the degree of 

uncertainty in the Generative model) improved overall performance and incorporating the 

outcome labels from manual adjudication corrected some misclassification. This latter finding is 

likely due to the iterative enrichment of our Development Set and Validation Set with the top 20 

Generative model probabilities as we developed LFs. Enriching both Sets with relatively 

homogenous records (i.e., the highest probabilities) and then building a Discriminative model 

with the combined Training and Development Sets resulted in added information that improved 

predictions in the Validation set. We did not find this added information influenced performance 

in the hold-out Test Set where the Generative and Discriminative models performed similarly. 

However, we did observe improved performance in the Test Set of the unweighted model as 

well as removal of the manually adjudicated labels. This observation suggests our final 

Discriminative model was slightly over-fit with a higher number of false positives. To advance 

the science of computational phenotyping, future studies should continue examining which 

modeling choices are ideal for certain scenarios and assumptions.  

Other biomedical studies have used the paradigm proposed by Snorkel (e.g., post-

market medical device surveillance[27], extraction of pain levels from EHR notes[15]). Others’ 
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work using Snorkel suggests the Discriminative models perform better than Generative 

models,[15] so we hypothesized model performance on the hold-out Test Set would be high. 

What we found was that the two models performed differently, and there could be merit in 

considering both for creating outcome labels.  

4.2.  limitations 

Our work has its limitations. That study was conducted in a single organization, which 

could limit generalizability. Our data source did not identify the elective nature of its surgeries, 

which we attempted to overcome with the removal of visits where the surgical date occurred on 

the same day as an Emergency Department visit. Another limitation of our work is a relative 

reduction in the potential data types included in LFs. For example, when exploring the 

effectiveness of naloxone administration, we attempted to incorporate the cosine similarity of 

vector embeddings of text data compared to examples of text suggesting naloxone 

effectiveness without success. Future studies could examine whether this contemporary natural 

language processing method improves LF performance. Similarly, clinical notes authored by 

nurses were not typically available in our data source. Although it is unlikely a nurse would 

document evidence of OIRD when a prescribing provider does not, that scenario could occur 

and should be examined in future work.  

We initially followed the Snorkel developers’ guidance for all steps in the labeling 

process but ultimately made some modifications, which we believe add to the literature for 

computational phenotyping of health-related conditions. During hyperparameter tuning of the 

Generative model, we used a single reviewer to determine which LF rank ordering had the 

greatest face validity for clinical relevance. Additional work is needed to explore whether a more 

reliable and valid approach for determining the most appropriate ranking is possible, particularly 

as this was a departure from using Snorkel’s recommendation of empirical accuracy. Finally, our 

iterative LF development process depended on enriching the Development Set and Validation 

Set based on the highest probabilities of candidate Generative models. We did not enrich our 
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data sets for Control status (i.e., lower probabilities), but Control enrichment could easily be 

included depending on the clinical outcome under investigation.  

 

5. CONCLUSION 

The use of Snorkel to implement a data programming approach for phenotyping OIRD in 

a large observational data set was successful, particularly with its 100% sensitivity. This method 

opens new opportunities for identifying rare, incompletely ascertainable outcomes in large 

clinical data sets. Although the F1 score suggested only moderate overall performance, the high 

sensitivity of Snorkel’s predictions combined with the low prevalence of OIRD results in 

significantly fewer manual chart reviews (compared to not using Snorkel) necessary to apply 

phenotypes to the entirety of a large data set. In the future, we plan to apply Snorkel to other 

clinical domains to evaluate performance and explore under what conditions (e.g., data types, 

data quality, number of labeling functions, scientific programming experience of research 

investigators) Snorkel performs well.  
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Figure Legends 

Figure 1. Graphical representation of research methods.  
 
Figure 2. Flow diagram illustrating the number of patients and visits present at each phase of 
cohort processing. *Note: The number of unique patients in the Manually-Reviewed Test Set 
(702) is smaller than the sum of the 2 preceding boxes (717) because those boxes were 
sampled at the visit-level instead of patient-level.  
 
Figure 3. Comparison of OIRD predicted probabilities from the Generative model with manually-
adjudicated labels in Validation Set.  
 
Figure 4. Comparison of OIRD predicted probabilities from the Discriminative model with 
manually-adjudicated labels in Validation Set.  
 
Figure 5. Comparison of predicted probabilities between Generative and Discriminative models 
with final case/control status denoted – all visits.  
 
Figure 6. Comparison of predicted probabilities between Generative and Discriminative models 
with final case/control status denoted – with visits determined to be a Control with full 
agreement on manual review are removed.  
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