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Abstract

Objective: Identifying children at high risk of developing obesity can offer a critical time
to change the course of the disease before it establishes. Numerous studies have tried to
achieve this; but practical limitations remain, including (i) relying on data not present in
routinely available pediatric data (like prenatal data), (ii) focusing on a single age prediction
(hence, not tested across ages), and (iii) not achieving good results or adequately validating
those.

Methods: A customized sequential deep learning model was built to predict the risk of
childhood obesity, focusing especially on capturing the temporal patterns. The model was
trained only on routinely collected EHRs, containing a list of features identified by a group
of clinical experts, and sourced from 36,191 diverse children aged 0 to 10. The model was
evaluated using extensive discrimination, calibration, and utility analysis; and was validated
temporally, geographically, and across various subgroups.

Results: Our results are mostly better (and never worse) than all previous studies, includ-
ing those that focus on single-age predictions or link EHRs to external data. Specifically,
the model consistently achieved an area under the curve (AUROC) of above 0.8 (with most
cases around 0.9) for predicting obesity within the next 3 years for children 2 to 7. The
validation results show the robustness of the model. Furthermore, the most influential
predictors of the model match important risk factors of obesity.

Conclusions: Our model is able to predict the risk of obesity for young children using
only routinely collected EHR data, greatly facilitating its integration with the periodicity
schedule. The model can serve as an objective screening tool to inform prevention efforts,
especially by helping with very delicate interactions between providers and families in pri-
mary care settings.

1. Introduction

Childhood obesity is a major public health problem across the globe and in the US. Obesity

affects almost 1 in 5 and about 14.7 million children and adolescents, for children and

adolescents of 2-19 years of age [1]. Despite evidence of potentially modifiable risk factors

that contribute to the development of obesity in children, children are often referred for

obesity interventions after their obesity is well established and when intervention is less

likely to be successful [2]. Prior studies show that less than 30% of children with overweight

or obesity are identified by their provider at primary care visits and less than 10% of children

have a diagnoses code for overweight or obesity placed during visits [3, 4, 5, 6]. While

pediatric providers frequently use recommended CDC or WHO age and sex-specific BMI
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charts, they do not often recognize or address weight concerns until children cross overweight

and obesity thresholds on these charts [7]. Primary barriers to effective diagnoses and

management of obesity in pediatric systems are reported as lack of time, limited resources,

and uncertainties about the level of risk [6, 8].

In such a context, reliable predictive models of childhood obesity integrated within the

structure of the common well-child visits have the potential to provide timely risk alerts and

inform more effective interventions to prevent and control this disease. Clinical predictive

models for obesity, designed using artificial intelligence and machine learning (AI/ML)

methods, are being considered to understand the contributing factors to the obesity epidemic

and inform more effective interventions [9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

One major limitation of existing obesity prediction models is that they use features that,

despite their importance, are generally not available in EHRs or are difficult and time-

consuming to collect, such as genetic background, parental data, and children’s habits.

Another limitation is that they mostly focus on predicting the risk of obesity at only one

age point (e.g., at age five) and are not flexible in allowing obesity screening for patients at

different age points. Additionally, large-scale and rigorously validated predictive models of

obesity are rare.

In this work, we aim to demonstrate the possibility of achieving reliable estimates of the

future risks of childhood obesity using commonly available (unaugmented) EHR elements

across multiple age ranges. As children’s weight status in early childhood is highly pre-

dictive of weight status into adulthood [19], we focus our study on children up until the

age of 10 years. This age range also includes a few years after the “adiposity rebound”

patterns observed in children’s weight [20, 21]. We rigorously evaluate our model through

an extensive series of temporal, geographic, and subgroup validations and explore the most

important predictors of obesity in our model. The overarching aim of our study is to offer

a general (practice-agnostic) predictive model that can be integrated within any healthcare
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system’s EHR to reliably predict a child’s risk for obesity throughout early childhood to

support clinical decision-making and obesity prevention at the point of care.

2. Materials and Methods

2.1 Data source and study cohort selection

The EHR data used in this analysis was extracted from Nemours Children’s Health; a large

pediatric healthcare network in the United States (US) primarily spanning the states of

Delaware, Florida, Maryland, New Jersey, and Pennsylvania. The IRB panel at Nemours

approved this research study. We used encounters between January 1, 2002, to December 31,

2019, obtained prior to the pandemic to avoid any short-term influence that the pandemic

had on weight gain patterns[22]. A total of 68 029 children with 44 401 791 encounters

were selected as having: (i) no evidence of type 1 diabetes, and (ii) no evidence of cancer,

and sickle cell disease. Of them, 37 844 children were included having at least two routine

infant checkups and at least one checkup between 2 to age 10 with recorded weight and

length/height measurements. Of them, 1 653 children were excluded whose year of birth

could not be verified, leaving 36 191 children. The final cohort was separately divided for

temporal and geographic validation. More details about the Nemours EHR dataset are

provided in Supplementary A. Figure 1 shows the steps we took to extract our cohort of 36

191 patients for the model construction.

[Figure 1 about here.]

2.2 Feature selection and data preprocessing

We extracted clinically-relevant features to childhood obesity, by using a data-driven ap-

proach coupled with input from clinical experts [23]. Details about this process are presented

in Supplementary B. The final EHR features consisted of 138 diagnoses (patient conditions

and family-history conditions associated with obesity), 84 ATC3 (Anatomical Therapeu-
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tic Chemical Classification Level-3) medication groups, and 51 measurements (vitals and

labs).

Following prior studies [24], the EHR features before age 2, were segmented into 5 win-

dows. These 5 sliding windows correspond to 0–4 months, 4–8 months, 8–12 months, 12–18

months, and 18–24 months. All EHR features after age 2 were segmented into 1-year win-

dows due to the lower frequency of medical visits (compared to before 2).

Weight and height data were converted to Weight-for-length (WFL) and BMI% as defined by

WHO and CDC, respectively. these values were considered Missing Completely at Random

(MCAR) and imputed with carry-forward of the most recent value. WFL and BMI%

were categorized into underweight, normal, overweight, and obesity categories. We defined

cutoffs for normal weight, overweight, and obesity in accordance with the CDC’s standard

thresholds of the 85th and 95th percentiles for overweight and obesity, respectively. Because

WFL% and BMI% trajectories can be helpful for determining the risk of obesity [25], we also

engineered a WFL% change feature that calculates the change in WFL% values between

5 windows defined above for model input. Table 1 shows the characteristics of the final

cohort used.

The EHR data also included demographic information about sex (male or female), race

(categorized as White, Black, Asian, and other), ethnicity (categorized as Hispanic or non-

Hispanic), and payer (categorized as public and private insurance). We also included the

Child Opportunity Index (COI) by geolocating the last address of patients before age 2

[26]. COI combines indicators of educational opportunity, health and environment, and

socioeconomic opportunity for all US neighborhoods. COI ranges from 1-100, with higher

numbers representing neighborhoods with more opportunities. Details about demographic

feature generation are provided in Supplementary B.1.

[Table 1 about here.]
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A binary representation (not MCAR) was used for all features, where the presence of a

value for the variable was captured with a 1, and 0 otherwise. We used quintile binning

for all numeric measurement features to divide each measurement into 5 categorical fea-

tures. In total, we generated 506 binary features: 138 (diagnoses) + 84 (medications) +

51*5 (measurements in 5 percentile bins) + 10 (demographic categories) + 4 (underweight,

normal, overweight, and obesity) + 5 (WFL% changes in 5 percentile bins) + 10 (COIs in

10 percentile bins). Please refer to Table S1 in Supplementary B.5 for a detailed list of the

final features.

2.3 Descriptive analysis

To study the transition of obesity status, we analyzed the distribution of children with

BMI% ≥ 95 at age 3 to 10 that transitioned from different WFL% status (WFL% < 5, 5 ≤

WFL% < 85, 85 ≤ WFL% < 95, and WFL% ≥ 95) at age 2. Figure 2 shows that 22% of

children with obesity at age 3 had normal weight at infancy and this percentage increases

with increasing age, where nearly half (49%) of children with obesity at age 10 had normal

weight at infancy.

[Figure 2 about here.]

2.4 Deep learning model training

We adopted our encoder-decoder1 deep neural network model and the training procedure

presented in detail in prior work [27, 18]. The encoder part consists of long short-term

memory (LSTM)2 cells and the decoder consists of a feed-forward network with two fully-

connected layers.

To train the model, we first trained the encoder network on the input EHR data from 0 to 2

years. EHR data for every year after age 2 until the age that the prediction was performed

1. An encoder-decoder refers to a design, where an initial network (encoder) receives input and maps
(compresses) that to a lower dimension representation. Then a second network (decoder) learns from
the encoder output to generate output.

2. LSTMs are a type of (deep) neural network used for processing sequential data types.
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at (i.e., the end of the observation window) were then combined (concatenated) with the

n-dimensional vector representation derived from the encoder for 0-2 years of EHR data.

The number of years of data after age 2 depends on the length of the patient’s recorded

medical history. Using this design, all the prior data for each patient was used for model

training to predict the risk of obesity for the next 3 years. A detailed description of the

architecture design and parameter settings is provided in Supplementary C.

3. Experiments and Results

3.1 Setup

We extensively evaluated our predictive model by studying its discrimination power, cali-

bration, and robustness. We validated our model temporally and geographically and studied

the model’s performance across subpopulations (which can also capture the model’s fairness

across these groups), using separate test datasets. When using the entire cohort, the data

was split with an 80:20 train and test regime, with 5% of the training data as a validation

set to fix the best model. Model performance was reported exclusively on the test dataset.

The confidence intervals (CI) are calculated using 100 bootstrapped replicates.

Baseline comparison – Similar to prior work [28, 11], we consider only using the last

WFL% (below 2 years) and BMI% (above 2 years) available in the observation window as

a baseline. This scenario mimics what is generally used in clinical practice for screening

children (i.e., only using present data).

Discrimination power – We report prediction performance using Area Under Receiver

Operating Characteristic (AUROC), Area Under Precision-Recall Curve (AUPRC), sensi-

tivity, and specificity. We provide sensitivity and specificity at different binary classification

thresholds, demonstrating the trade-off between false negatives (patients who develop obe-

sity but are not predicted to develop obesity by the model) and false positives (patients who

do not develop obesity but are predicted to develop obesity by the model). Specifically, we
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fixed either sensitivity or specificity at 90% and 95% and measured the value of the other

metric.

Utility and calibration – We perform decision curve analysis [29] to demonstrate the

tradeoffs (costs and benefits) of using the prediction model to analyze the clinical utility at

various thresholds. Related to the above approach, we provide calibration metrics to help

quantify how well the predicted probabilities of an outcome match the true probabilities

observed in the data [30, 31].

Temporal validation – To study our model’s robustness across time shifts, we divided

our cohort according to the date of birth of the children. The data for 26 786 children who

were born between January 1, 2002, and December 31 2009, were included as a training set;

and the data for 9 405 children who were born between January 1, 2010, and December 31,

2015, were included in the test set. We report AUROC for the temporal validation in Table

2.

Geographic validation – We additionally validated our model across two different geo-

graphic regions in the US. We used 32 848 children seen in Delaware Valley sites, located

in the northeastern US, as a training set and 3 343 children seen in Florida, located in the

southeastern US, as a test set. We report AUROC for the geographic validation in Table

2.

Robustness across subpopulations – Robustness across subpopulations (group fairness)

is evaluated by comparing model AUROCs in the test dataset across five groups determined

by the: last WFL% category before age 2 (underweight, normal weight, overweight, obesity),

race (Black, White, Asian, Other), ethnicity (Hispanic, Non-Hispanic), sex (female, male),

and payer (private, public).

[Figure 3 about here.]
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3.2 Evaluation results

We trained our deep learning model using 36 191 eligible children to predict the risk of

obesity using 6 different lengths of observation windows from age 0-2 to 0-7. The observed

AUROC, sensitivity, specificity, and net benefit for all prediction ages are presented in

Table 2. Focusing on a popular setting that is heavily studied in the literature [11, 28,

10], we specifically present discrimination results for 0-2 years observation window and

obesity prediction at age 5 in Figure 3. Notably, our model outperforms the presented

baseline based on a child’s last WFL% with an AUROC and AUPRC of 0.81 and 0.61

compared with 0.71 and 0.56, respectively. Our model also dominates over other strategies

(baseline, intervention for all, and intervention for none) across various net benefit threshold

probabilities, with significant margins above the 15% threshold3 probability regime.

Figure 4 compares the AUROC of our model on different subpopulations of children for

prediction at age 5, across the 5 groups mentioned in Section 3.1. AUROCs among each

group show minimal deviation of 0.04, 0.04, 0.01, 0.001, and 0.008, respectively, showing

the robustness of our model across each group.

[Table 2 about here.]

[Figure 4 about here.]

3.3 Analyzing model predictors

We investigated the risk factors identified by the model by analyzing which predictors most

attribute to the model’s prediction. We used the attention scores [32, 33] obtained from the

LSTM cells, as a way to determine which features are given more attention (importance) by

the model to predict the output (more details are provided in Supplementary D.1).

We present the mean of the importance scores of all features inside each of the 7 input feature

categories (diagnoses, family-history diagnoses, medications, measurements, demographics,

3. Here, a threshold such as 10% means that for every 10 children evaluated for risk of obesity by the
predictive model, the health service is willing to risk the cost of mistakenly prescribing 9 children [28].
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last obesity status before age 2, and WFL% changes before age 2 for the entire cohort)

in Figure 5.A. Clinical diagnoses and WFL% changes were the top 2 important predictor

groups. We also present the ranking for the top 20 predictors based on the mean importance

scores for the predictors in the entire cohort in Figure 5.B. Previous weight percentile

measurements and weight gain patterns were among the top 5 features; in addition to weight-

related diagnoses and diagnoses of elevated blood pressure, gastroesophageal reflux disease,

developmental delay, hypothyroidism, and asthma. Among the family history diagnoses,

a family history of hypertension, cardiac disorder, and depression was important. Our

engineered feature (WFL% change before age 2) was also among the top 10 predictors.

We also evaluated partial dependency plots (PDP4) for the WFL% change before age 2, and

child opportunity index, as a function of the predicted risk of (the probability of developing)

obesity at age 5 for the test dataset. Specifically, Figure 5.C shows that an increase in the

WFL% before age 2 increases the risk of obesity at age 5. Figure 5.D shows that the risk

of obesity decreases with increasing COI score.

[Figure 5 about here.]

4. Discussion

In this study, we developed and extensively validated a model that can predict obesity re-

liably in early childhood using a large EHR dataset with over 36 000 children using deep

learning methods. Our descriptive analysis in Section 2.3 underscores the importance of

having a tool that includes other elements beyond a static WFL% or BMI% to identify

children at high-risk for developing obesity before their WFL% or BMI% goes above the

95th percentile. Our model used around 500 clinically relevant features from the EHR and

demonstrated strong performance across multiple age ranges, chronological time periods,

geographies, and demographic subgroups. Because our model is able to leverage unaug-

mented EHR data collected as part of routine clinical care and provides flexibility in the

4. Demonstrates the marginal effect of the different values of the feature of interest on the predicted outcome
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age at which the model is applied, there is potential for this model to be integrated into

common EHRs to provide clinical decision support at multiple time points and support the

implementation of preventive measures before a child develops obesity between 3 to age

10.

To date, there has been limited research on using deep learning methods with large lon-

gitudinal EHR data to predict childhood obesity [34, 12, 18]. There is a large body of

studies that use logistic regression to predict the development of obesity at a certain age,

most commonly 5 years. Three of the most comparable ones are presented by Redsell et al.

[35], Robson et al. [36], and Hammond et al. [11] with AUROC of 0.67, 0.78, and 0.81,

respectively. While these studies used a smaller set of features, they also used features like

parental weight, parental smoking habits, prenatal history, and infant dietary habits which

are not available in many EHRs. Several advanced ML-based models were compared by

Dugan et al. [37] and Pang et al. [24] using 167 features (anthropometric measures and

questionnaire data), and 102 features (maternal and EHR data), respectively for children

before age 2. They reported an accuracy of 0.85 using a decision-tree method at age 3 and

an AUROC of 0.81 b using XGBoost for ages 2-7.

Our study improves on prior studies in several ways. Our predictive model achieves an

AUROC of 0.85 (0.84-0.86), 0.83 (0.82-0.84), and 0.81 (0.80-0.82) for predicting the risk of

obesity at 3, 4, and age 5, respectively, using 0-2 years of data. Our predictive model also

demonstrates high accuracy for estimating the risk of obesity for the next 3 years across a

wide age range from 2 to 7 years of age (Table 2). Indeed, our model provides the flexibility

of learning from as much data as available for patients before the time of screening, which is

a method referred to as a “flexible window design” that our team developed in a prior paper

[27]. Because of this flexibility, it provides a tool to screen children at different ages and

with enough of a time window before the development of obesity for preventive interventions

to be effective.
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Beyond demonstrating the accuracy and flexibility of our model, we demonstrated the

validity of our model across temporal, geographic shifts, multiple demographic strata and

the last WFL% before age 2 and demonstrated our model’s sensitivity in predicting obesity.

As a screening tool, having a model that is highly sensitive is preferred to ensure that young

children at risk for developing obesity are identified and preventive measures like parenting

interventions, lifestyle behavior counseling, and weight checks can be implemented in a

timely manner. Notably, the sensitivity of the model does mean that there is a possibility

of false positives; however, because obesity prevention measures are generally low-cost and

beneficial for all children no matter their weight status, we believe this is an acceptable

trade-off as long as discussion about a child’s risk for developing obesity is done in a family-

centered, thoughtful, and positive way and prevent any weight-related stigma that could

otherwise occur.

Another important strength of our model is that it utilizes only EHR data that is collected

as part of routine clinical care. Our feature selection process can be applied to any EHR

dataset that contains common data elements of basic demographics, diagnoses codes, med-

ications, and measurements. This is advantageous compared to prior models which may

require extensive data collection or data linkages that are not feasible outside of the research

setting.

Similar to other studies [32, 38], our evaluation of the importance of the EHR features to our

model also allows us to better understand what risk factors are important to a child’s risk of

obesity, which can facilitate the provision of more personalized interventions. For example,

stressing healthy lifestyles for infants whose family has a strong cardiovascular history could

be an effective intervention based on our model. In addition to certain diagnoses and family

history, our results demonstrated that change in WFL% in infancy is an important feature

to calculate from EHR measurements to determine a child’s risk of obesity. Being able to

learn from these longitudinal engineered and other EHR features is an advantage of our

deep learning model.
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We also found that the risk of obesity decreases with the increasing child opportunity

index (COI), corroborating the importance of social determinants of health on childhood

obesity [39, 40]. While COI may not be part of routine EHR data, it is easily calculated

with information that is in the EHR (through ZIP codes) and our study demonstrates the

importance of accounting for the influence of neighborhood environments on child health

outcomes.

Our study does have some limitations. First, our study is retrospective and may be affected

by changes in healthcare delivery over time. However, we were able to temporally validate

the model to account for time shifts between children born between 2002-2009 and 2010-

2015. Second, the dataset included information from a single healthcare system. Despite

this, the dataset did include children from five different states in different geographic regions

and we were able to validate our model between these geographic regions. Third, a large

number of children were excluded due to inadequate or missing height and weight measure-

ments before age 2 and this may have introduced sample bias. Finally, our dataset did not

contain information on lifestyle behaviors, prenatal variables, or other sociodemographic

variables, which we know are important to a child’s risk for the development of obesity.

However, our focus was to use an EHR dataset that included only data collected during

routine clinical care, to increase the potential that the model could be integrated into ex-

isting EHR systems to provide clinical decision support for providers in identifying children

at risk for obesity to facilitate early prevention efforts across many pediatric healthcare set-

tings. Our team is actively working on creating a CDS (clinical decision support) tool on the

SMART on FHIR (Fast Healthcare Interoperability Resources) platform [41], allowing its

wider adoption and integration in clinical practice and increasing its interoperability.

5. Data availability

Our code, containing the model with parameter (weight) values, is publicly available on

GitHub at https://github.com/healthylaife/ObesityPrediction. Interested scholars
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can access the data by contacting Nemours Biomedical Research Informatics Center and

signing a data use agreement.
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Table 1: Statistics for the study cohort (full), as well as the cohorts used for temporal and
geographic validation. Counts with the percentage prevalence in the respective
cohort for last obesity status before age 2, sex, race, ethnicity, and payer are
shown. In the bottom part, the mean(standard deviation) for the number of times
that weight, height, diagnoses, medications, and lab measurements were recorded
before and after age 2 are shown.

Temporal Temporal Geographic Geographic All
Train(n=26 786) Test(n=9 405) Train(n=32 848) Test(n=3 343) (n=36 191)

Last obesity Status before age 2
Underweight (WFL< 5%) Count(%) 376(1.4) 128(1.36) 399(1.2) 105(3.14) 504(1.39)
Normal (5%<=WFL< 85%) Count(%) 13 781(51.44) 5 108(54.31) 17 067(51.9) 1 822(54.5) 18 889(52.19)
Overweight (85%<=WFL< 95%) Count(%) 5 811(21.69) 1 979(21.04) 7 164(21.8) 626(18.72) 7 790(21.52)
Obesity (WFL>=95%) Count(%) 6 818(25.45) 2 190(23.28) 8 218(25.01) 790(23.62) 9 008(24.89)

Sex:
Female Count(%) 1 2643(47.20) 4 355(46.30) 15 549(47.33) 1 449(43.34) 16 998(46.96)
Male Count(%) 14 143(52.79) 5 050(53.69) 17 299(52.66) 1 894(56.65) 19 193(53.03)

Ethnicity:
Hispanic Count(%) 3 475(12.97) 1 323(14.06) 4 277(13.02) 521(15.58) 4 798(13.25)
Non-Hispanic Count(%) 23 197(86.60) 8 012(85.18) 28 432(86.55) 2 777(83.06) 31 209(86.23)

Race:
Asian Count(%) 472(1.76) 191(2.03) 610(1.85) 53(1.58) 663(1.83)
Black Count(%) 11 524(43.02) 3 721(39.56) 14 694(44.73) 551(16.48) 15 245(42.12)
White Count(%) 11 352(42.38) 4 088(43.46) 13 496(41.08) 1 944(58.15) 15 440(42.66)
Other Count(%) 3 048(11.37) 1 216(12.92) 3 812(11.60) 452(13.52) 4 264(11.78)

Payer:
Private Count(%) 11 114(41.49) 3 850(40.93) 13 483(41.04) 1 481(44.30) 14 964(41.34)
Public Count(%) 15 624(58.32) 5 539(58.89) 19 314(58.79) 1 849(55.30) 21 163(58.47)

Weight and height measurements before age 2 Mean(SD) 9.80(2.30) 10.11(2.24) 10.04(2.20) 8.28(2.53) 9.88(2.29)
Weight and height measurements between age 2 and 10 Mean(SD) 22.10(22.23) 17.07(19.16) 21.15(20.56) 17.86(15.47) 20.83(21.36)
Diagnoses available before age 2 Mean(SD) 2.95(3.41) 3.32(3.59) 2.92(3.38) 4.46(4.0) 3.03(3.44)
Diagnoses available between age 2 and 10 Mean(SD) 4.82(7.52) 3.87(6.16) 4.49(7.18) 5.81(7.80) 4.58(7.20)
Medications available before age 2 Mean(SD) 7.66(5.40) 9.97(7.87) 8.51(6.25) 5.27(5.25) 8.27(6.23)
Medications available between age 2 and 10 Mean(SD) 11.33(8.19) 10.75(8.87) 11.45(8.35) 7.99(7.93) 11.18(9.36)
Labs available before age 2 Mean(SD) 25.04(29.54) 26.81(29.54) 24.77(28.67) 32.70(35.66) 25.50(29.47)
Labs available between age 2 and 10 Mean(SD) 60.00(45.56) 43.95(31.46) 54.69(40.41) 66.99(61.44) 55.83(42.93)
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Table 2: Predictive performance across six different observa-
tion windows. Results are shown for prediction for the next
1, 2, and 3 years. The fixed values for sensitivity and speci-
ficity are highlighted. The net benefits are shown at three
thresholds of 20, 40, and 60 percent.

Input age range Prediction Age

0-2 3 (n=7 224) 4 (n=8 875) 5 (n=8 982)

AUROC(95%CI) 0.87(0.85-0.88) 0.84(0.81-0.86) 0.81(0.79-0.83)
Temporal validation 0.85(0.84-0.86) 0.83(0.82-0.84) 0.81(0.80-0.82)
Geographic validation 0.82(0.80-0.83) 0.80(0.79-0.82) 0.77(0.76-0.79)
Baseline 0.77(0.75-0.78) 0.75(0.73-0.77) 0.71(0.68-0.73)

Sensitivity/Specificity 0.90 /0.56 0.90 /0.52 0.90 /0.43

0.95 /0.40 0.95 /0.37 0.95 /0.30

0.62/ 0.90 0.57/ 0.90 0.48/ 0.90

0.47/ 0.95 0.42/ 0.95 0.37/ 0.95
Net Benefit(20/40/60) 0.14/0.09/0.05 0.12/0.07/0.04 0.12/0.08/0.04

0-3 4 (n=7 224) 5 (n=7 224) 6 (n=7 216)

AUROC(95%CI) 0.90(0.87-0.92) 0.88(0.86-0.90) 0.84(0.82-0.86)
Temporal validation 0.89(0.87-0.91) 0.86(0.84-0.88) 0.83(0.81-0.85)
Geographic validation 0.85(0.84-0.87) 0.83(0.81-0.84) 0.79(0.77-0.80)
Baseline 0.82(0.81-0.84) 0.78(0.76-0.80) 0.74(0.72-0.75)

Sensitivity/Specificity 0.90 /0.70 0.90 /0.60 0.90 /0.55

0.95 /0.55 0.95 /0.46 0.95 /0.40

0.68/ 0.90 0.62/ 0.90 0.54/ 0.90

0.54/ 0.95 0.46/ 0.95 0.40/ 0.95
Net Benefit(20/40/60) 0.17/0.12/0.08 0.14/0.09/0.05 0.12/0.07/0.03

0-4 5 (n=8 875) 6 (n=8 867) 7 (n=5 158)

AUROC(95%CI) 0.91(0.89-0.92) 0.88(0.86-0.90) 0.86(0.84-0.87)
Temporal validation 0.90(0.88-0.92) 0.86(0.85-0.88) 0.84(0.82-0.86)
Geographic validation 0.87(0.85-0.89) 0.84(0.82-0.85) 0.82(0.80-0.84)
Baseline 0.84(0.82-0.83) 0.82(0.81-0.83) 0.78(0.75-0.80)

Sensitivity/Specificity 0.90 /0.71 0.90 /0.59 0.90 /0.53

0.95 /0.58 0.95 /0.43 0.95 /0.38

0.71/ 0.90 0.62/ 0.90 0.57/ 0.90

0.58/ 0.95 0.51/ 0.95 0.45/ 0.95
Net Benefit(20/40/60) 0.16/0.11/0.08 0.12/0.09/0.05 0.12/0.08/0.05

0-5 6 (n=8 974) 7 (n=5 256) 8 (n=2 300)

AUROC(95%CI) 0.92(0.90-0.93) 0.90(0.88-0.92) 0.87(0.85-0.88)
Temporal validation 0.91(0.89-0.92) 0.88(0.87-0.89) 0.85(0.84-0.86)
Geographic validation 0.89(0.87-0.91) 0.85(0.83-0.86) 0.83(0.82-0.84)
Baseline 0.83(0.82-0.84) 0.80(0.79-0.81) 0.78(0.75-0.80)

Sensitivity/Specificity 0.90 /0.71 0.90 /0.69 0.90 /0.54
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0.95 /0.57 0.95 /0.53 0.95 /0.39

0.75/ 0.90 0.72/ 0.90 0.64/ 0.90

0.64/ 0.95 0.59/ 0.95 0.52/ 0.95
Net Benefit(20/40/60) 0.17/0.12/0.08 0.15/0.11/0.08 0.16/0.12/0.07

0-6 7 (n=5 272) 8 (n=2 314) 9 (n=1 249)

AUROC(95%CI) 0.92(0.90-0.95) 0.90(0.88-0.91) 0.88(0.86-0.90)
Temporal validation 0.92(0.91-0.94) 0.89(0.87-0.90) 0.86(0.85-0.88)
Geographic validation 0.90(0.88-0.91) 0.87(0.85-0.89) 0.84(0.83-0.86)
Baseline 0.84(0.82-0.85) 0.82(0.81-0.83) 0.79(0.78-0.80)

Sensitivity/Specificity 0.90 /0.74 0.90 /0.61 0.90 /0.54

0.95 /0.60 0.95 /0.46 0.95 /0.34

0.79/ 0.90 0.70/ 0.90 0.56/ 0.90

0.67/ 0.95 0.59/ 0.95 0.45/ 0.95
Net Benefit(20/40/60) 0.16/0.11/0.08 0.17/0.11/0.08 0.16/0.09/0.07

0-7 8 (n=2 316) 9 (n=1 150) 10 (n=539)

AUROC(95%CI) 0.93(0.92-0.94) 0.91(0.88-0.92) 0.87(0.85-0.89)
Temporal validation 0.92(0.90-0.93) 0.90(0.88-0.91) 0.85(0.82-0.87)
Geographic validation 0.90(0.89-0.92) 0.88(0.86-0.90) 0.84(0.81-0.85)
Baseline 0.84(0.82-0.85) 0.82(0.81-0.83) 0.79(0.78-0.80)

Sensitivity/Specificity 0.90 /0.70 0.90 /0.63 0.90 /0.56

0.95 /0.54 0.95 /0.47 0.95 /0.40

0.75/ 0.90 0.67/ 0.90 0.59/ 0.90

0.65/ 0.95 0.55/ 0.95 0.46/ 0.95
Net Benefit(20/40/60) 0.16/0.11/0.09 0.16/0.09/0.09 0.17/0.09/0.08
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26 786 Children born between 
2002 to 2009

9 405 Children born between 
2010 to 2015

32 848 Children seen in 
Delaware valley

3 343 Children seen in the state 
of Florida

Temporal    Validation

Geographical     Validation

68 029 Children born between 2002 to 
2015 with available EHR data between 
0 to 10 years of age and no evidence of 
type 1 diabetes, cancer, and sickle cell 

disease 

65 725 Children have at least 2 
different recorded weight, height 

before 2 years of age

2 304 Children with less than 2 different 
recorded weight, height before 2 years 

of age are excluded

37 844 Children have at least 1 
recorded weight, height between 3 

to 10 years of age

27 881 Children with no recorded 
weight, height between 3 to 10 years 

of age are excluded

1 653 Children whose year of birth 
could not be matched are excluded

36 191 Children cohort selected 
and further divided into temporal 
and geographic validation cohorts

Figure 1: The cohort selection steps. Temporal and geographic validation regimes are
shown in gray.
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Figure 2: Study of the distribution of children with obesity (BMI% ≥ 95) at age 3 to 10.
We analyze what percentage of children with obesity at ages 3 to 10 had WFL%
< 5, 5 ≤ WFL% < 85, 85 ≤ WFL% < 95, and WFL% ≥ 95 at age 2. X-axis
shows the distribution of the cohort with obesity at every age from 3 to age 10.
Four categories of WFL% at age 2 are shown on the right.
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Figure 3: Evaluation of obesity prediction model to predict obesity at age 5 using 0-2 years
of data: A. AUROC curve of the model (blue) and a baseline model based on the
last available WFL% or BMI% measurement in the observation window (orange
line), B. AUPRC curve of the model (blue) and a baseline model based on the
last available WFL% measurement before age 2 (orange line), C. Decision curve
analysis for different strategies of treatment, D. Calibration curve. The dotted
line represents ideal calibration and the orange line for before calibration and the
green line after calibration.
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0.784 (0.758-0.810)
Non-Hispanic (N=7 668)

Hispanic (N=1 254)
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0.754 (0.731-0.778)

0.792 (0.774-0.812)
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0.665 (0.641-0.685)
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WFL < 85 (N=4 867)

WFL >= 95 (N=2 097)

85 <= WFL < 95 (N=1 897)

Public (N=5 298)

Private (N=3 670)
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Race

Last WFL at the age of 2

Figure 4: Evaluating the predictive model’s robustness by comparing AUROCs (in the test
dataset) across five groups (13 subgroups): last WFL before age 2 (3 categories),
race (Asian, Black, White, Other), ethnicity (Hispanic, Non-Hispanic), sex (fe-
male, male), and payer (private, public).
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Figure 5: Feature Importance Analysis for all samples to predict obesity at age 5 using 0-2
years of data. (A) Feature importance ranking of 7 feature groups, (B) Relative
feature importance ranking of top 20 features, C-D partial dependence plots
between risk for obesity and (C) Change in WFL% before age 2 over 5 percentile
categories (Dividing the numeric data (WFL%) into 5 bins (aka quintiles) such
that there are an equal number of observations in each bin. This would produce
a categorical object indicating quantile membership for each data point. The
x-axis shows the range of each bin.), (D) child opportunity index (COI) at age 2
over COI-decile (Dividing the numeric data into 10 bins (aka deciles) such that
there are an equal number of observations in each bin. This would produce a
categorical object indicating decile membership for each data point. The x-axis
shows the range of each bin.) categories.
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