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ABSTRACT 1 
Background 2 
Extended reality technology, encompassing augmented reality, mixed reality, and virtual reality, 3 
has the potential to enhance the teaching and performance of neuraxial procedures. The diverse 4 

applications of extended reality include immersive simulations and novel modes of procedural 5 
navigation. 6 
 7 

Objectives 8 
This scoping review aims to explore the preclinical, clinical, and educational applications of 9 
extended reality for neuraxial procedures while suggesting directions for future research. 10 

 11 

Evidence review  12 
A systematic search was conducted across PubMed, Embase, Web of Science, Cochrane Central 13 
Register of Controlled Trials, and Google Scholar until December 2023. Additional sources were 14 
identified via citation searching of relevant articles. The findings are reported using the Preferred 15 
Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews 16 

(PRISMA-ScR). 17 
 18 

Findings  19 
41 studies, including three pending clinical trials were included. The majority of included studies 20 
were published after 2015. Extended reality technology was applied in diverse ways for teaching, 21 
simulation, and navigation, but only four of the completed studies described clinical use. For the 22 

display of visuals, computer screens were most commonly used, followed by head-mounted 23 
devices, laser projectors, and semi-transparent mirrors. 24 
 25 

Conclusions 26 
Interest in utilizing extended reality technology for neuraxial procedures is growing. Preliminary 27 
work shows promise for this technology in both education and clinical practice, but achieving 28 
accurate image registration without disrupting existing workflows remains an ongoing barrier to 29 

clinical testing. Additional research is needed to assess the cost-effectiveness and reliability of 30 
this technology.  31 
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INTRODUCTION 32 
Extended reality (XR) (encompassing augmented reality [AR] where digital objects overlay onto 33 
physical surroundings, mixed reality [MR] where digital and physical objects interact, and virtual 34 
reality [VR] where users interact with digital scenes and objects) holds significant potential in 35 

medical education and clinical practice.[1–3] XR can be used to create immersive simulations or 36 
enhance standard modes of anatomic navigation.[2] Despite these potential benefits, the use of 37 
XR within anesthesiology and pain medicine remains limited.[4] 38 
 39 
Neuraxial procedures for anesthesia and pain medicine are commonly taught and performed 40 
using landmark-based approaches or with the use of ultrasound or fluoroscopy.[5,6] However, 41 

each method has limitations related to accuracy, ergonomics, or radiation exposure. The 42 
evolution of XR technology, combined with improved access to spatial computing devices, could 43 
pave the way for innovative methods of teaching and performing neuraxial procedures. With 44 
sufficient development and validation, XR technology may improve the quality of education and 45 
patient care. However, the current progress in adopting this technology for neuraxial procedures 46 
has not been systematically analyzed. 47 

 48 
This scoping review aims to summarize the current applications of XR for neuraxial procedures 49 
and to identify barriers to widespread use. The following questions were defined to inform our 50 
search strategy: 51 
 52 

1. How has extended reality been used for neuraxial procedures in clinical settings?  53 

2. How has extended reality been used for training clinicians to perform neuraxial 54 
procedures? 55 

3. What are the benefits of and barriers to adopting XR for teaching or performing neuraxial 56 
procedures? 57 

4. What are clinician attitudes towards adopting XR for teaching or performing neuraxial 58 
procedures?  59 

 60 

METHODS 61 
A protocol for this scoping review was preregistered on the Open Science Framework on 62 
November 5th, 2023.[7] The reporting of this scoping review was guided by the standards of the 63 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping 64 
Reviews (PRISMA-ScR).[8] 65 
 66 

Search Strategy and Sources of Evidence 67 
A systematic search of the literature was performed on PubMed, Embase, Web of Science, 68 
Cochrane Central Register of Controlled Trials, and Google Scholar. The search query combined 69 
((augmented OR extended OR mixed OR virtual) AND reality) AND (epidural OR peridural OR 70 
intrathecal OR spinal OR neuraxial) AND (anesthesia OR pain). No filters were applied. Due to 71 
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a high volume of irrelevant results on Google Scholar (greater than 200,000 results), we initially 72 
screened the first 100 results for relevance, and later expanded to include 20 additional results in 73 
the most recent search on December 14th, 2023. Additional references were identified through 74 
citation searching of relevant articles. Pending trials were closely monitored, and the most recent 75 

trial included was published on January 11th, 2024. The search strategy used for each database is 76 
provided in the online supplemental appendix. 77 
 78 

Eligibility Criteria 79 
The PICO (population, intervention, comparison, and outcomes) framework was used to develop 80 
the inclusion and exclusion criteria (table 1). All primary studies available in English and 81 

investigating the use of XR in the performance or teaching of neuraxial procedures were 82 
included. Technical reports and conference papers were also considered. No restrictions were 83 
imposed on the publication year. Although review articles were ultimately excluded, each related 84 
review underwent thorough evaluation, and relevant citations from these reviews were 85 
incorporated into the screening pool. Essays and letters describing theoretical applications were 86 
excluded. 87 

 88 
Table 1. Inclusion and exclusion criteria  89 
 Inclusion Criteria Exclusion Criteria 
Population Clinicians and trainees performing 

or learning neuraxial procedures; 
patients receiving neuraxial 
procedures  

No additional limitations 

Intervention Use of extended reality to aid the 
teaching or performance of 
neuraxial anesthesia or pain 
procedures 

Use of extended reality by patient 
(e.g. for anxiolysis during a 
procedure) 

Comparison All comparisons No limitations 
Outcomes All outcomes No limitations 
Study Design Any primary investigations Reviewsa and essays or letters 

describing theoretical applications 
Years Any No limitations 
Language English full-text available English full-text not available 
a: Reviews were excluded, but relevant bibliography was screened and included as appropriate  90 
 91 

Study Selection  92 
After importing all retrieved articles into Covidence (Melbourne, Australia), automatic and 93 
manual deduplication was performed. Two authors (JSC and DMT) screened the articles initially 94 

by title and abstract, followed by a full-text review. When access to full-text was unavailable, 95 
corresponding authors were contacted for access. A third author (DH) was available to provide 96 
resolution if discrepancies could not be resolved via discussion. 97 
 98 

Data Extraction 99 
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Two authors (JSC and DMT) manually extracted the following data into pre-designed forms on 100 
Covidence: title, authors, year of publication, first author country, study design, purpose of XR 101 
system, mode of XR, XR display device used, procedure taught or performed, number of 102 
participants and description, key outcomes, clinician attitudes regarding adoption of XR, 103 

limitations of described system, and suggestions for further research. For this review, AR and 104 
MR were grouped into one category, as explained later in the study. Study designs were often not 105 
explicitly stated and were manually coded by the authors. 106 
 107 
To maximize congruence, we used an iterative approach where the two extractors periodically 108 
compared their results (initially after each study and subsequently after every few studies), 109 

achieved consensus, and discussed strategies to maximize accuracy. As with screening, a third 110 
author (DH) was available to resolve disagreements. 111 
 112 

Synthesis of Results 113 
We grouped the included studies by the purpose for which XR applications were created and 114 
summarized the device(s) used to achieve XR, the neuraxial procedure(s) performed, the 115 

population studied, and key findings. Participants’ responses to the use of XR as well as notable 116 
limitations of the described system were also summarized. Study authors’ suggestions for further 117 
research were also tabulated. 118 
 119 

FINDINGS 120 
A PRISMA flowchart illustrating our review is shown in figure 1. Our initial search yielded 824 121 

entries, and citation searching led to the addition of 28 additional references. One unindexed 122 
article co-written by one of the authors (RJ) was manually included, as it met inclusion criteria. 123 
280 duplicates were removed. After screening of titles and abstracts, 54 articles were selected for 124 
full-text retrieval. All 54 full-text articles were successfully retrieved (three after contacting the 125 
authors), and 41 studies were ultimately included in this review. References pertaining to the 126 
same study were merged. 127 
 128 

A total of 13 articles were excluded.[4,9–20] Three were deemed irrelevant as XR was not 129 
utilized.[9–11] One article was not available in English and was excluded.[12] A letter 130 
describing the theoretical impact of XR on obstetric anesthesia was also excluded.[13] Seven 131 
reviews were excluded,[4,14–19] but relevant citations were incorporated into the screening 132 
pool. One article was excluded as the reported progress (i.e. viewing educational content using a 133 
head-mounted device) was not considered specific to teaching neuraxial procedures.[20] 134 

 135 
The characteristics of the included evidence are displayed in table 2. Clinical use of XR was 136 
infrequent, with only four of 38 completed studies reporting the use of XR in patient care. 137 
Researchers from Canada and the United States were first authors for more than 50% of the 138 
included studies, but those from Europe, China, and South Korea have made substantial 139 
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contributions. Both AR and VR were frequently used. Eighteen completed studies used computer 140 
screens to display XR visuals, and sixteen used head-mounted devices (HMDs). The remaining 141 
four studies employed either laser projectors or semi-transparent mirrors to project relevant 142 
visuals onto the subject’s back. 143 

 144 
Table 2. Characteristics of included studies 145 
Characteristic Value N (%) 
First author country Canada 11 (26.8) 
 United States 10 (24.4) 
 China 6 (14.6) 
 South Korea 4 (9.8) 
 United Kingdom 3 (7.3) 
 Germany 2 (4.9) 
 Brazil 1 (2.4) 
 Ireland 1 (2.4) 
 Japan 1 (2.4) 
 Portugal 1 (2.4) 
 Singapore 1 (2.4) 
Year of publication Before 2000 2 (4.9) 
 2000-2010 1 (2.4) 
 2011-2020 18 (43.9) 
 2021-2024 20 (48.8) 
Form of XR AR/MR 23 (56.1) 
 VR 17 (41.5) 
 Both AR and VR 1 (2.4) 
Described use of XRa Clinical use 4 (10.5) 
 Preclinical development 13 (34.2) 
 Educational 21 (55.3) 
Study design RCTs 5 (12.2) 
 Planned RCTs 3 (7.3) 
 Non-RCT Experiments 17 (41.5) 
 Case report/series 4 (9.8) 
 Technical report / Usability 12 (29.3) 
XR device Computer screen 18 (43.9) 
 Head-Mounted Device 16 (39) 
 Semi-transparent mirror 2 (4.9) 
 Projector 2 (4.9) 
 Unspecified 3 (7.3) 
Source of funding Not reported 9 (22) 
 Not sponsored 4 (9.8) 
 Industry 4 (9.8) 
 Public, department, or non-profit 24 (58.5) 
Abbreviations: XR, extended reality; AR, augmented reality; MR, mixed reality; VR, virtual reality; RCT, 146 
randomized-controlled trial 147 
a: excludes clinical trial pre-registrations 148 
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A summary of each study is provided in supplemental table 1 and discussed below.  149 
 150 

Clinical applications of extended reality 151 
Among the four studies detailing the clinical use of XR, our review identified only one 152 

randomized controlled trial (RCT) investigating XR navigation in patient care. Wiegelmann et 153 
al.[21] used a previously described technique[22] to overlay a holographic line representing the 154 
optimal needle trajectory from the skin to the thoracic epidural space. This holographic line was 155 
visible to proceduralists wearing an HMD as they performed a thoracic epidural. This study 156 
found a significant reduction in average procedure time with XR compared to traditional 157 
approaches (4.5 minutes vs. 7.3 minutes, p=0.02).[21] Although there was a significant reduction 158 

in the number of needle movements required (7.2 vs 14.4, p=0.01), there was no noticeable 159 
difference in the pain associated with the procedure. 160 
 161 
VR has successfully been used for preprocedure simulation in challenging interventional 162 
procedures. A case report by Wang et al. describes the successful use of an existing VR anatomy 163 
application to determine the optimal fluoroscopic angulation in a patient with a suspected 164 

schwannoma undergoing a transforaminal epidural injection at the level of the lesion.[23] Seong 165 
et al. developed VR software enabling clinicians to simulate needle interventions using patient 166 
computed tomography (CT) scans.[24] This system allowed clinicians to simulate fluoroscopy 167 
and obtain x-ray images representative of the real patient to determine the ideal approach. 168 
Clinicians successfully executed a challenging transforaminal epidural injection following prior 169 
failed attempts by implementing the preprocedure plan designed in VR.[24]   170 

 171 
AR was applied in remote consultations during spinal cord stimulator surgeries. Fritz et al. detail 172 
the use of AR goggles which enabled a remote specialist, located 200 miles away, to observe the 173 
procedure and provide annotated images and live commentary.[25] This led to the successful 174 
insertion of paddle leads in a patient with highly challenging anatomy.[25] 175 
 176 
Our review includes three uncompleted clinical trial registrations, all filed by the same group of 177 

investigators and listed as "not yet recruiting" according to the Chinese Clinical Trial 178 
Registry.[26–28] The researchers aim to compare the success rates of first-pass lumbar punctures 179 
for clinicians using mixed reality guidance versus those using the conventional approach. Efforts 180 
to contact the researchers for updates on the studies were unsuccessful. A summary of the 181 
group's previous work is provided later in this review.[29] 182 
   183 

Preclinical applications of extended reality 184 
We identified thirteen preclinical investigations of XR primarily exploring how AR/MR 185 
technology could enhance or replace traditional navigation methods. 186 
 187 
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A significant focus was placed on improving ultrasound-assisted neuraxial procedures using AR 188 
and MR. Three studies utilized image processing algorithms to automatically detect and project 189 
lumbar spine levels[30,31] or the midline[32] during neuraxial ultrasound. A fourth study 190 
introduced a machine learning/artificial intelligence-based system for automatic detection and 191 

projection of spine levels.[33] The authors suggest such systems could be used clinically by 192 
anesthesiologists to determine the appropriate site of initial needle insertion. 193 
 194 
Continuous ultrasound guidance during needle placement can present ergonomic and visual 195 
challenges. Ameri et al. reported a possible solution, using a tracked epidural needle and 196 
augmented reality (AR) to improve visualization of the needle and anatomy on ultrasound. This 197 

system showed a lower rate of accidental dural punctures compared to using only ultrasound in 198 
trials conducted on a phantom.[34] An alternative approach involved using a head-mounted 199 
display (HMD) to create a holographic line representing the optimal needle trajectory from the 200 
skin to the epidural space.[22] This method was validated in a randomized controlled trial 201 
(RCT), which is summarized earlier in this review.[21] 202 
 203 

Fritz et al. addressed limitations of magnetic resonance imaging-guided lumbar spine 204 
interventions by overlaying preprocedural axial magnetic resonance images onto the procedural 205 
field using a semi-transparent mirror.[35,36] This system enabled successful epidural injections 206 
on cadavers without repeat scanning, with a median procedure time of 8.6 minutes.[36] 207 
 208 
In a study with volunteers, Wu et al. assessed the accuracy of overlaying holograms of spinous 209 

processes on their actual locations.[29] Computed tomography (CT) images were used to 210 
generate 3-dimensional images of the spine, which were projected over the subject’s backs using 211 
an HMD.[29] Markers were placed over the holographic spinous processes, and the subjects 212 
underwent a repeat CT scan to assess the accuracy of marker placement. The maximum mean 213 
error along one axis was 4.2 mm.[29] A significant limitation of this system is that, for clinical 214 
use, patients would need to undergo preprocedural CT scanning while using a posture fixation 215 
device and maintain that position during the neuraxial procedure. The researchers plan to 216 

conduct a randomized controlled trial, and registrations were submitted to the Chinese Clinical 217 
Trial Registry as discussed previously in this review.[26–28] 218 
 219 
In fluoroscopy-guided neuraxial procedures, AR showed promise in reducing radiation exposure 220 
without compromising accuracy. Reinacher et al. demonstrated high success rates with AR in 221 
simulated neuraxial access on prone phantoms[37]. On phantoms with simulated respiratory 222 

motion, AR combined with fluoroscopy reduced procedure time and radiation exposure.[38,39] 223 
 224 
Finally, an atypical use case for XR neuraxial simulators was presented by Cometa et al.[40] 225 
They compared the epidural space overshoot associated with different loss-of-resistance 226 
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techniques using measurements derived from an MR-based simulator. Intermittent needle 227 
advancement with intermittent plunger pressure resulted in the most significant overshoot.[40] 228 
 229 

Educational applications of extended reality 230 
Early applications of XR for neuraxial education involved non-immersive VR, presenting a 231 
virtual patient on a computer screen for a simulated neuraxial procedure.[41–45] Haptic devices 232 
controlled the virtual needle and provided feedback as the needle traversed simulated tissues of 233 
varying density. Attempts to enhance realism incorporated force data derived from porcine 234 
models[41,42], CT data,[43] and MRI intensity levels[44]. In order to increase engagement, 235 
some iterations incorporated gamification, or the use of game design elements in non-gaming 236 

contexts,[46] by awarding points[43] and virtual “achievements”[47]. 237 
 238 
Kulcsár et al. conducted a pilot randomized-controlled trial using a non-immersive VR spinal 239 
anesthesia simulator, comparing it to low-fidelity training on an orange.[48] Although no 240 
significant differences were observed in multiple-choice and simulator-based tests, simulator-241 
trained interns exhibited better performance on real patients according to a global rating 242 

scale.[48] 243 
 244 
One advantage of XR is its ability to provide information that is typically unavailable. In one 245 
study, an interactive spine model was used to improve trainee knowledge through simulation of 246 
spinal ultrasound scanning.[49] Edwards et al. applied a mixed reality simulator to develop a 247 
modified paramedian thoracic epidural technique, which was taught to trainees and then applied 248 

in challenging patients.[50] In a 2015 RCT, Keri et al. found that residents who practiced 249 
ultrasound-guided lumbar puncture with AR enhancement outperformed those who practiced 250 
with ultrasound alone.[51] 251 
 252 
Hologram-producing HMDs have found use in neuraxial education. Usability studies using 253 
HoloLens (Microsoft Corporations, Redmond, Washington) for training garnered positive 254 
responses from participants.[52–55] However, in an RCT conducted by Hayasaka et al., it failed 255 

to demonstrate a lasting difference between students trained on an AR-enhanced phantom and 256 
those trained without AR.[55] 257 
 258 
Most recent VR applications were built using the Unity game engine (Unity Software Inc., San 259 
Francisco, California).[47,56–59] Unity simplifies the development of XR applications and 260 
reduces duplicate work by providing pre-built code.[60] In one RCT involving a Unity-based 261 

immersive VR simulator, trainees learning lumbar transforaminal epidural block placement using 262 
VR outperformed those who learned via text and video material alone.[58] 263 
 264 
Although software like Unity has reduced the redundant work in the development of XR 265 
education and simulation software, there is significant heterogeneity in how individual systems 266 
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are developed. Lampotang et al. argue that these heterogeneous approaches may lead to 267 
increased validation and curriculum development costs. They describe the System of Modular, 268 
Mixed and Augmented Reality Tracking Simulators (SMMARTS) as a potential solution.[61] 269 
SMMARTs enables the reuse of hardware and software components and allows for the 270 

development of varied procedural simulators, including an epidural loss-of-resistance 271 
simulator.[61] 272 
 273 
Our search strategy identified one validation study of commercial XR simulators. White and 274 
Jung conducted a pre- and post-test study using a spinal cord stimulator training system.[62] 275 
After seven minutes of instruction using the VR simulator, participants had subjective and 276 

objective improvements in their performance.[62] A notable limitation was the $50,000 cost of 277 
the system (SPINE Mentor, Surgical Science, Göteborg, Sweden).[62] 278 
 279 

DISCUSSION 280 
To our knowledge, this is the first scoping review on the uses of XR technology for neuraxial 281 
anesthesia and pain procedures. We identified 38 completed and three pending studies 282 

investigating the use of XR for neuraxial procedures. Our findings demonstrate accelerating 283 
interest in the use of XR technology. The first included article was published in 1996, but a 284 
significant majority was published after 2015, as shown in figure 2, as mainstream commercial 285 
XR devices were released. The release and widespread adoption of commercial, standalone 286 
devices such as the Meta Quest 3 (Meta Inc., Menlo Park, CA) and the Vision Pro (Apple Inc., 287 
Cupertino, CA) is expected to further drive XR research. 288 

 289 
While a significant number of studies have been conducted in Canada and the United States, our 290 
results indicate global interest in XR for neuraxial procedures. However, when accounting for 291 
duplicate authors, the total number of active research groups in this field remains limited.  292 
 293 
To avoid confusion stemming from misuse of terminology, we intentionally grouped AR and 294 
MR in our analysis. AR, MR, and VR exist on a spectrum[60], and modern spatial computing 295 

devices often support multiple forms of XR. This makes functional categorization (e.g., 296 
simulation vs. procedural navigation) more relevant than the relative visibility of virtual and 297 
physical content. 298 
 299 
A majority of the included studies evaluated the use of XR in educational settings. Surveyed 300 
trainees and clinicians displayed favorable responses to the adoption of XR for neuraxial 301 

education.[19,44,52,53,55,63] The largest reported survey of trainees and anesthesiologists 302 
included more than 90 respondents, and VR simulation was highly rated on various metrics, 303 
including ease of use (median score eight out of ten) and visual quality (median score 8 out of 304 
ten).[44] However, there is a lack of research into the clinical transferability of XR-based 305 
training. 306 
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 307 
Clinical use of XR for neuraxial procedures remains limited. This is in contrast to specialties 308 
such as neurosurgery, where AR is used clinically for intraoperative navigation.[64] Similar 309 
application of XR navigation would confer numerous benefits in neuraxial procedures. If patient-310 

specific anatomic holograms can be precisely overlayed onto the procedural field, XR may allow 311 
intuitive and hands-free navigation (versus ultrasound), improve accuracy (versus blind 312 
procedures), and reduce radiation exposure (versus fluoroscopy). 313 
 314 
Despite these potential benefits, certain barriers hinder the widespread adoption of XR 315 
technology for neuraxial navigation. The cost of XR systems can vary widely depending on 316 

system complexity, and how clinicians and patients will respond to non-traditional navigation 317 
modes is still unknown. However, the most significant barrier lies in displaying accurate 318 
navigational information for each individual patient. Preprocedural cross-sectional imaging is 319 
often unavailable for patients undergoing neuraxial procedures. Even when imaging is available, 320 
patient positioning can dramatically affect the shape of the spine, making image-to-patient 321 
registration challenging. Existing research suggests that it’s possible to incorporate XR into 322 

ultrasound-assisted neuraxial procedures with minimal impact on workflow[21]. However, 323 
clinical validation for fluoroscopic-guided procedures has not been performed.  324 
 325 
Based on the results of this review, several unanswered questions emerge. Does XR guidance 326 
improve the safety and accuracy of neuraxial procedures? Are XR systems cost-effective for use 327 
in neuraxial procedures? Do the benefits of XR-enhanced simulators translate to better clinical 328 

performance? What role does machine learning play in registering preprocedural images onto 329 
real patients? How can the research community minimize the need for duplicate work in XR 330 
system development? 331 
 332 

Limitations 333 
This scoping review has several limitations. While our search and screening criteria allowed for 334 
the inclusion of diverse studies published in various forms, there is likely to be publication bias 335 

in the included studies, many of which report favorable results. A formal assessment of the 336 
quality of the evidence is beyond the scope of a scoping review, and, as such, we do not provide 337 
practice recommendations. 338 
 339 
Our study deviated slightly from the pre-registered protocol in a few instances. During the 340 
screening process, we decided to exclude studies not available in English, leading to the 341 

exclusion of one study. Additionally, we excluded reviews, although relevant citations were 342 
included. Originally, we did not anticipate the need to contact the authors of individual studies, 343 
but we ended up having to contact three authors to obtain full-text articles. We believe that these 344 
deviations had minimal or even positive impacts on the review.  345 
 346 
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Despite these limitations, this scoping review offers a comprehensive overview of the available 347 
research on the use of XR for neuraxial procedures. Our broad and iterative search strategy led to 348 
the screening of a large number of studies, and our inclusive eligibility criteria led to the 349 
inclusion of diverse studies spanning nearly three decades. As intended, this scoping review 350 

maps the existing evidence, identifies knowledge gaps, and provides suggestions for further 351 
research. 352 
 353 

CONCLUSIONS 354 
This scoping review emphasizes the diverse applications of XR technology in the teaching and 355 
performance of neuraxial procedures within the fields of anesthesiology and pain medicine. 356 

Although many of the included studies were exploratory in nature, there is a growing cohort of 357 
researchers investigating the potential of XR in clinical settings. To advance the field, future 358 
research should prioritize investigations into the safety, accuracy, practicality, and cost-359 
effectiveness of XR. A concerted effort in these areas is expected to catalyze adoption of this 360 
technology and enhance the quality of both education and patient care. 361 
 362 
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Figure Legends 551 
 552 
Figure 1: PRISMA flowchart of the review process 553 
 554 
Figure 2: Number of included studies by year (1996 to 2023)  555 
a: Release of Oculus Rift DK1 556 
b: Release of Microsoft HoloLens 557 
c: Release of Microsoft HoloLens 2 558 
d: Release of Meta Quest 3 559 
e: Release of Apple Vision Pro 560 
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