1 Novel mutation leading to splice donor loss in a conserved site of *DMD*

2 causes cryptorchidism

- 3 Jianhai Chen^{1,2,#}, Yangying Jia^{1,2}, Jie Zhong¹, Kun Zhang³, Hongzheng Dai⁴,
- 4 Guanglin He⁵, Fuping Li^{6,#}, Li Zeng^{7,#}, Chuanzhu Fan^{8,#}, Huayan Xu^{3,#}
- ¹Department of Ecology and Evolution, The University of Chicago, 1101E 57th
- 6 Street, Chicago, Illinois 60637, USA
- 7 ²Institutes for Systems Genetics, Frontiers Science Center for Disease-related
- 8 Molecular Network, West China Hospital, Sichuan University, Chengdu
- 9 610041, P.R. China
- ³Department of Radiology, Key Laboratory of Birth Defects and Related
- 11 Diseases of Women and Children of Ministry of Education, West China
- 12 Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
- ⁴Department of Molecular and Human Genetics, Baylor College of Medicine,
- 14 Houston, Texas 77030, USA
- ⁵Institute of Rare Diseases, West China Hospital of Sichuan University,
- 16 Sichuan University, Chengdu, 610044 China
- ⁶Laboratory of Molecular Translational Medicine, Center for Translational
- 18 Medicine, Key Laboratory of Birth Defects and Related Diseases of Women
- 19 and Children (Sichuan University), Ministry of Education, Clinical Research
- 20 Center for Birth Defects of Sichuan Province, West China Second University
- 21 Hospital, Sichuan University, Chengdu, 610041, P.R. China
- 22 ⁷The Department of Pediatric Surgery, West China Hospital, Sichuan
- 23 University, Chengdu 610041, China
- ⁸Department of Biological Sciences, Wayne State University, Detroit, Michigan,
 48202, USA
- [#]Corresponding author: <u>jianhaichen@uchicago.edu</u>; <u>xuhuayan89@sina.com</u>;
- 27 <u>zengli998@163.com; ex3922@wayne.edu;</u> <u>lfpsnake@scu.edu.cn</u>
- 28

29 Abstract

30	Background As one of the most common congenital abnormalities in male
31	births, cryptorchidism has been found to have a polygenic etiology according
32	to previous studies of common variants. However, little is known about
33	genetic predisposition of rare variants for cryptorchidism, since rare variants
34	have larger effective size on diseases than common variants.
35	Methods In this study, a cohort of 115 Chinese probands with cryptorchidism
36	was analyzed using whole-genome sequencing (WGS), alongside 19 parental
37	controls and 2136 unaffected men. Additionally, CRISPR-Cas9 editing of a
38	conserved variant was performed in a mouse model, with MRI screening
39	utilized to observe the phenotype.
40	Results In 30 of 115 patients (26.1%), we identified four novel genes (ARSH,
41	DMD, MAGEA4, and SHROOM2) affecting at least five unrelated patients and
42	four known genes (USP9Y, UBA1, BCORL1, and KDM6A) with the candidate
43	rare pathogenic variants affecting at least two cases. Burden tests of rare
44	variants revealed the genome-wide significances for newly identified genes (p
45	$< 2.5 \times 10^{-6}$) under the Bonferroni correction. Surprisingly, novel and known
46	genes were mainly from X chromosome (seven on X and one on Y) and all
47	rare X-chromosomal segregating variants exhibited a maternal inheritance
48	rather than de novo origin. CRISPR-Cas9 mouse modeling of a splice donor
49	loss variant in DMD (NC_000023.11:g.32454661C>G), which resides in a
50	conserved site across vertebrates, replicated bilateral cryptorchidism
51	phenotypes, confirmed by Magnetic resonance imaging (MRI) at 4 and 10
52	weeks.

53	Conclusion Our results revealed the role of the DMD gene mutation in
54	causing cryptorchidism. The results also suggest that maternal-X inheritance
55	of pathogenic defects could have a predominant role in the development of
56	cryptorchidism.
57	Keywords: molecular diagnosis; WGS; rare variants; male-specific disease;
58	male hemizygosity
59	Introduction
60	
00	Cryptorchidism (also known as 'hidden testicle', OMIM 219050) has a global
61	Cryptorchidism (also known as 'hidden testicle', OMIM 219050) has a global prevalence rate of 2% to 4% at full-term birth in boys ¹ . Despite its relatively
61 62	Cryptorchidism (also known as 'hidden testicle', OMIM 219050) has a global prevalence rate of 2% to 4% at full-term birth in boys ¹ . Despite its relatively low prevalence, cryptorchidism is the most common birth defect involving
61 62 63	Cryptorchidism (also known as 'hidden testicle', OMIM 219050) has a global prevalence rate of 2% to 4% at full-term birth in boys ¹ . Despite its relatively low prevalence, cryptorchidism is the most common birth defect involving urogenital abnormalities in newborn boys. It is also the best-characterized risk

urogenital abnormalities in newborn boys. It is also the best-characterized risk
factor for infertility and testicular cancer ². Normally, the testes spontaneously
descend into the scrotum by the eighth month (33 weeks) of pregnancy, likely
triggered by transient activation of the hypothalamus-pituitary-gonadal (HPG)
axis, leading to an increase in reproductive hormone levels ^{3 4}. In patients with
cryptorchidism, one or both testes may fail to descend completely into the

69 dependent part of the scrotum, resulting in unilateral or bilateral

70 cryptorchidism, respectively.

Maternal risk factors before and during pregnancy, such as maternal smoking,
endocrine-disrupting chemicals, and gestational diabetes, have increasingly
been recognized as the risk factors for congenital cryptorchidism ⁵. However,
the studies on genetic risk factors of cryptorchidism are still limited. Multiple
etiological features, such as familial aggregation and increased prevalence in

76	first-degree relatives, suggest a genetic predisposition to this disease ⁶ . For
77	instance, a family history of cryptorchidism can increase the risk of the
78	condition in newborn boys by approximately threefold ⁷⁸ . The recurrence risk
79	has been found to be more than twice as high in brothers of cryptorchidism
80	cases compared to healthy controls ⁹ . Thus, despite cryptorchidism's complex
81	susceptibility to maternal and environmental factors, strong genetic
82	components may also contribute to its etiology.
83	Previous microarray studies based on common variants (GWAS) have
84	suggested a potential association of certain pathways with cryptorchidism but
85	failed to identify specific genes, likely due to the small effect size of common
86	variants ¹⁰ . Indeed, both population genetics theory and empirical data
87	suggest that rare variants have much larger effect sizes than common
88	variants ¹¹⁻¹⁴ , indicating their significant role in causing genetic diseases. It is
89	estimated that most human rare protein-altering variants (missense) are
90	pathogenic ¹⁵ . Furthermore, disruptive mutations (nonsense) are
91	disproportionately common causal factors in about 11.5% of human genetic
92	diseases ¹⁶ . At the population level, these causal variants are rare in allele
93	frequency due to strong purifying selection, which limits their accumulation
94	across generations. Therefore, rare deleterious variants with large genetic
95	effect sizes represent a promising area for discovering causative genes for
96	genetic diseases ¹⁷ , especially for diseases affecting fertility, such as
97	cryptorchidism.

98 The application of various genetic screening techniques, including whole-99 genome and exome sequencing (WGS/WES), has facilitated the precise

ts
ts
ts
-
;
d
d
ſ

119 Results

- 120 The MRI on typical bilateral and unilateral cryptorchidism and basic
- 121 sequencing statistics.

122 The diagnosis of cryptorchidism was based on a physical exam by professional pediatric urologists following standard protocols ²⁹. Typical 123 124 bilateral cryptorchidism and unilateral cryptorchidism of two patients were 125 shown using the magnetic resonance imaging (MRI) (Figure 1a-1d). In 126 comparison to controls, the patient with bilateral cryptorchidism had two non-127 descended testes, while the patient with unilateral cryptorchidism had only 128 one undescended testis (Figure 1). 129 We conducted WGS on 115 cases and 19 family controls. Among the cases, 130 there were 21 (18.26%) bilateral cryptorchidism patients and 94 (81.74%) 131 unilateral cryptorchidism patients. This dataset also includes three family trios 132 of bilateral cryptorchidism, four trios of unilateral cryptorchidism, and three 133 duos with only cryptorchidism cases and mothers. Based on previous 134 sensitivity tests, 15x WGS depth/fold can achieve accurate SNV calling, while 30x is sufficient for calling indels ^{30 31}. In this study, the average sequencing 135 136 depths were 33.03-fold for cases and 27.97-fold for controls, suggesting a 137 balanced design of sequencing depth and quality for all samples 138 (Supplementary Table 1, Figure 1f and Supplementary Figure 1a). To confirm 139 the reported relationship, we used whole-genome SNPs to estimate the 140 relatedness between family members. We also confirmed the population 141 ancestry of all samples based on the principal component analysis (PCA). 142 Based on identity by state (IBS) distances among family members, we 143 confirmed that family members are genetically closer than unrelated 144 individuals (Supplementary Figure 1b). We also confirmed that all parents-son 145 relationships are within the coefficient range of first-degree relatives (from 146 0.177 to 0.354). By incorporating individuals from the "1000 genomes" project,

- 147 we further revealed that all newly sequenced samples are closely related to
- the East Asian population (Supplementary Figure 1c).

149 The Rare Candidate Pathogenic Variants for Known Genes

- 150 With the keywords 'cryptorchidism variants' and 'cryptorchidism genetics', we
- 151 conducted the initial screening for known genes in the PubMed literature
- 152 database ³². We retrieved 56 genes previously reported to be associated with
- 153 cryptorchidism (Supplementary Table 2). Most of these previous studies were
- 154 based on the genetic screening of small patient samples. Thus, it is
- 155 interesting to know whether these genes can be confirmed in our cohort. We
- 156 found that 41 of these genes were also registered in the Online Mendelian
- 157 Inheritance in Man (OMIM) and Human Phenotype Ontology (HPO) database
- 158 (June-2022) as genes related to cryptorchidism. We also added 738 genes
- associated with cryptorchidism phenotypes from these databases. These 779
- 160 genes (738+41) were used as a "pool" of known genes (Supplementary Table
- 161 2). We annotated non-redundant variants using the online tool VEP in the
- 162 Ensembl database ³³ and then summarized both known and novel candidate
 163 genes.

We detected four known genes (*BCORL1, KDM6A, UBA1,* and *USP9Y*) with candidate rare pathogenic variants present in at least two cases but absent in paternal controls (Table 1 and Supplementary Table 3). Six variants were not

167	detected in all publicly available population databases (gnomAD, 1000
168	genomes, dbSNP, ExAC, ClinVar, etc.). One variant, BCORL1
169	(NC_000023.11:g.130028727G>A;NP_001171701.1:p.(G1391R)), was also
170	classified as rare based on the allele frequency of all human populations, with
171	the highest frequency in East Asian population (0.005439; Supplementary
172	Table 3). Although this allele frequency is relatively higher in the East Asian
173	population than globally, it remains much lower than the global prevalence
174	rate of cryptorchidism in boys, which is 2%-4%.
175	Interestingly, all known genes affecting at least two cases are on sex
176	chromosomes. Not a single autosomal gene was associated with more than
177	one case. This strongly suggests a predominant role of sex chromosomal
178	genes in cryptorchidism pathogenicity. The Y-chromosome gene USP9Y
179	(Ubiquitin Specific Peptidase 9 Y-Linked) was detected in six boys with
180	unilateral cryptorchidism. In addition, three X-chromosome genes (BCORL1,
181	UBA1, and KDM6A) were found to carry candidate rare pathogenic variants
182	affecting at least two patients. Strikingly, the two rare pathogenic variants in
183	BCORL1 (NC_000023.11:g.130028727G>A; NP_001171701.1:p.(G1391R))
184	and USP9Y (NC_000024.10:g.12739592C>G; NP_004645.2:p.(S462C)) were
185	found in four unilateral patients per variant, with only the former registered in
186	the gnomAD database. Both variants were predicted to be deleterious by
187	multiple in silico algorithms (Supplementary Table 3). In addition, the wild-type

400			1 4	· · · ·		
122	allalae of thaca	Variante chawad	AVALUTIONARY	1 CONCONVATION IN	nrimata c	COCIOC
100			GVUIUUUIAIN			NUCUICO.

- 189 based on sequence alignments of primate orthologous genes from the
- 190 Ensembl database (v105, Supplementary Figure 2). Together, the candidate
- 191 rare pathogenic variants of known genes were found to affect 12 cases,
- 192 indicating a molecular diagnostic rate of 10.4% (12/115). The diagnostic rates
- 193 for bilateral and unilateral cryptorchidism were 0% (0/21) and 12.77% (12/94),
- 194 respectively. These candidate pathogenic variants and genotypes in cases
- and parents were validated using the Sanger Sequencing (Supplementary
- 196 Figure 3).

197 The Rare Candidate Pathogenic Variants for Novel Genes

198	To identify candidate pathogenic variants in novel candidate genes for
199	cryptorchidism, we excluded cases with the above-mentioned pathogenic
200	variants in known genes. Subsequently, we ranked genes based on the
201	burden of rare deleterious variants that occurred in cases. To increase the
202	reliability of the newly identified genes, we focused on genes affecting at least
203	five cases with candidate variants. We found four genes that fulfilled these
204	rigorous requirements: DMD, ARSH, MAGEA4, and SHROOM2 (Table 2).
205	Based on allele frequencies in multiple genome databases (gnomAD, 1000
206	genomes, dbSNP, ExAC, ClinVar, etc.) and in silico predictions, all variants
207	were classified as 'rare' based on allele frequencies in normal populations

208	(allele frequency < 0.01) and classified as 'deleterious' by at least one
209	prediction method. The candidate pathogenic variants of these novel genes
210	were found in 20 cases but not in paternal controls, nor in a local cohort of
211	2136 healthy men (Supplementary Table 4). Moreover, the wild-type alleles
212	showed a primate-wide evolutionary conservation based on the Ensembl
213	sequence alignments of orthologous genes (Supplementary Figure 4).
214	Interestingly, a splice donor variant in DMD (NC_000023.11:g.32454661C>G)
215	is located in a site highly conserved across vertebrates, ranging from
216	mammals to birds, reptiles, and fish (Figure 3). The cases U27 and U55 both
217	had two candidate variants. Among the affected cases, four were bilateral and
218	involved in genes ARSH, DMD, and SHROOM2. The remaining 16 unilateral
219	cases were affected by all four genes. Thus, the diagnostic rates for bilateral
220	and unilateral cryptorchidism are 19.05% (4/21) and 17.02% (16/94),
221	respectively. Together with the known genes, the overall diagnostic rates are
222	23.81% (5/21) and 28.72% (27/94) for bilateral and unilateral cryptorchidism,
223	respectively.
224	Based on gnomAD records, five variants showed low allele frequencies in
225	both the global and East Asian population, while the remaining ten variants
226	were newly discovered without information on allele frequency in databases
227	(Supplementary Table 4). We also found recurrent variants in multiple cases:

228 NC_000023.11:g.32346044G>C; NP_000100.2:p.(Q1821E) (*DMD*, two

229 patients), NC_000023.11:g.3033050C>G; NP_001011719.1:p.(P452A)

- 230 (*ARSH*, three patients), NC_000023.11:g.151924064G>A;
- 231 NP_001011550.1:p.(A134T) (*MAGEA4*, four patients), and
- 232 NC_000023.11:g.9937537G>T; NP_001307593.1:p.(A166S) (SHROOM2, two
- 233 patients). These candidate variants and genotypes were also validated using
- the Sanger Sequencing for all samples (Supplementary Figure 5).

235 Burden Tests Support the Statistical Significance of Novel Candidate

- 236 genes
- 237 To statistically test our newly identified candidate genes, we performed
- burden tests for rare variants with the RVTEST package ³⁴. We further used
- Bonferroni correction to account for multiple testing ($p = 2.5 \times 10^{-6}$). We found
- 240 that five tests supported the whole-genome significance of three genes DMD,
- 241 *MAGEA4*, and *SHROOM*2 (Table 3, $p < 2.5 \times 10^{-6}$). For *ARSH*, four methods,
- 242 except for the CMC Wald test, supported the genome-wide significance after
- 243 Bonferroni correction ($p < 2.5 \times 10^{-6}$).

244 The Maternal Origin of Candidate Variants of X-chromosome Genes

245 We identified 20 candidate X-chromosomal variants from known and novel

246 genes affecting at least two cases, based on variant screening results

- 247 (Supplementary Tables 3 and 4). There are two possibilities for the origin of
- these variants: *de novo* mutation during the early embryonic development of
- 249 probands or during maternal oogenesis and the maternal X inheritance. For
- the *de novo* mutation hypothesis, we would not expect to find the variant in

251 maternal genotypes. For the maternal X inheritance mode, we would detect

252 heterozygotes in maternal samples.

253	In the seven trios with WGS data, the candidate variant
254	NC_000023.11:g.151924064G>A; NP_001011550.1:p.(A134T) in MAGEA4
255	was detected only in proband U8 (Supplementary Table 4). The Sanger
256	Sequencing of these variants in trios indicated a maternal X-chromosome
257	origin (Figure 2a). For the duo of U9 and 9M samples, we also observed
258	maternal heterozygotes in the X-chromosomal variant genotype, despite the
259	unavailability of the paternal sample. For the additional trios with WGS-only
260	probands, the Sanger Sequencing of parental samples confirmed the
261	maternal X inheritance, in which X hemizygotes, maternal heterozygotes, and
262	paternal wild types were found simultaneously in all trios (Figure 2). Together,
263	the Sanger Sequencing of four variants, which affected seven cases and
264	parents, supported the maternal X-chromosome origin exclusively, rather than
265	de novo mutation from probands' embryogenesis or maternal germline. Future
266	studies based on more pedigree data are needed to further evaluate the
267	probability of de novo mutation during oogenesis of maternal germline or early
268	development of probands.

269 No Reliable Compound Heterozygous Rare Variants Were Detected

For compound heterozygous mode in autosomes, the family-based structure
can facilitate tracing of the parental origin for each rare variant. We firstly
focused on two heterozygous rare variants with disruptive effects on proteins
for patients of the seven complete trio families. Then, we relaxed the criteria

274	of variant impacts to cover the scenario of one heterozygous rare variant with
275	disruptive effect and the other with moderate impact (sequence-altering). We
276	did not find any gene fulfilling the requirements. Finally, we focused on the
277	scenario of potential compound heterozygous mode, in which non-pedigree
278	probands would carry at least two heterozygous rare variants in a gene with
279	disruptive effects. We observed two heterozygous rare variants of RPTN with
280	stop-gain and frameshift impacts in four unrelated patients (Supplementary
281	Table 5). However, the two variants had the same allele frequency in all
282	super-populations in the gnomAD database, suggesting that they are more
283	likely to be inherited via the linkage disequilibrium, rather than the real
284	compound heterozygous variants.
285	CRISPR-Cas9 mouse modeling of the splice donor variant in DMD
286	(NC_000023.11:g.32454661C>G)

287 Considering the highly conserved nature of the wild-type splice donor variant

288 in DMD (NC_000023.11:g.32454661C>G, represented as 'C' in Figure 3a-3b),

289 we generated transgenic mice with the mutant variant ('G') using the CRISPR-

290 Cas9 editing technique (Figure 3c). We examined cryptorchidism phenotypes

in F2 male mice using MRI at weeks 4 and 10. In the *DMD* transgenic mice,

we found undescended testicles that are different from the wild-type mice of

the same age (Figure 3d). The undescended testicles were located in the

inguinal region, suggesting the involvement of the DMD gene in the

295 development of cryptorchidism.

296 Discussion

297	In this study, we conducted rare variants screening for cryptorchidism in
298	humans. Among the known genes related to cryptorchidism, the mutation
299	burden and rigorous filtering of rare and predicted deleterious variants support
300	the roles of USP9Y, KDM6A, BCORL1, and UBA1 in the pathogenicity of
301	cryptorchidism. USP9Y is one of the three genes within an azoospermia factor
302	(AZFa) region. Previous studies have revealed that USP9Y showed increased
303	transcript levels in patients suffering from cryptorchidism after a treatment with
304	the gonadotropin-releasing hormone agonist GnRHa ³⁵ . Exome sequencing
305	has revealed the role of $BCORL1$ in spermatogenesis ³⁶ . UBA1 has been
306	reported in patients with Spinal Muscular Atrophy 2 and cryptorchidism ³⁷ .
307	KDM6A is related to the Kabuki syndrome, which may involve hypospadias
308	and cryptorchidism in males ³⁸ . However, most of these studies were not
309	designed specifically for investigating cryptorchidism-associated genes and
310	variants, so our study expands the phenotypic spectrum of these gene defects.

More importantly, we identified four novel candidate cryptorchid genes (*DMD*, *ARSH*, *MAGEA4*, and *SHROOM2*) with genome-wide significant burdens of rare mutations with both disruptive and sequence-altering impacts. The gene *MAGEA4* (melanoma antigen family A, 4) is commonly used as a marker for human spermatogonia ³⁹. Based on the immunohistochemistry of *MAGEA4*, the number of spermatogonia was decreased in cryptorchid testes compared to the normal testes ⁴⁰. Although poorly characterized, the gene *SHROOM2*

318	was reported in patients with infertility ⁴¹ . Notably, the findings of the
319	pathogenic variants of DMD are particularly interesting, because of the
320	established role of DMD in producing the protein dystrophin critical for muscle
321	development ⁴² . Clinical studies have revealed a positive correlation (OR, 2.83)
322	between the urogenital malformation and muscular disorders, possibly due to
323	muscular defects in the cremaster muscle or other inguinal tissues 43 . DMD
324	defects have been reported extensively in Duchenne/Becker muscular
325	dystrophy ^{44 45} . Considering the dynamic process involving the muscular
326	traction of the gubernaculum during the normal testes descendance ⁴⁶ , our
327	study suggests that muscular abnormalities may play a major role in
328	cryptorchidism.
329	As the maternal effect is higher than the paternal effect for cryptorchidism (for
330	example, the recurrence rate is higher in maternal half-brothers than in
331	paternal half-brothers), the possibility of maternal inheritance has long been
332	suspected ⁹⁴⁷ . In this study, we revealed the genetic basis of maternal
333	inheritance of cryptorchidism by finding the dominant role of X-chromosomal
334	genes and their maternal origin. Indeed, based on the pedigree-based Sanger
335	sequencing, we revealed that some X-chromosomal variants with available
336	parental samples were inherited from maternal rather than paternal lineages.
337	This result is consistent with the expectation of both the X-hemizygosity effect
338	and the nature of male-specific disease. Because of X-hemizygosity in males,
339	X-chromosomal pathogenic variants invariably affect the males, while
340	commonly being masked by a normal allele in heterozygous females. In

- addition, the causative variant for a male-specific trait would affect males
- 342 more heavily than females, except in case of a pleiotropic effect of the variant
- 343 on both sexes. Clinically, such hereditary pattern could be utilized to screen
- those sex-related genetic disorders in male humans and to develop
- 345 subsequent prevention and therapeutic measurements.
- 346 Together, among the total of eight known and novel genes affecting multiple
- 347 unrelated patients of cryptorchidism, seven are X-chromosomal genes and
- 348 one is a Y gene. The candidate variants of X-chromosomal genes follow the
- 349 expectation of maternal inheritance rather than *de novo* mutation. Thus, our
- 350 study revealed a predominant role of sex chromosomal, and particularly the
- 351 X-chromosomal, gene defects, in causing male cryptorchidism.

352 Conclusion

- 353 We identified rare pathogenic variants of four known candidate genes (USP9Y,
- 354 UBA1, BCORL1, and KDM6A) and four novel candidate genes (ARSH, DMD,
- 355 *MAGEA4*, and *SHROOM2*) in patients suffering from cryptorchidism.
- 356 Considering the chromosomal distribution, seven out of eight genes are within
- 357 the X-chromosome, and USP9Y is located on the Y-chromosome. This
- 358 reveals a predominant role of X-chromosomal genes in cryptorchidism. The
- 359 maternal origin of these X-chromosomal variants reflects the strong effect of
- 360 X-hemizygosity on male-specific diseases. We successfully replicated

361	cryptorchidism phenotypes in transgenic mice. These mice harbor a splice
362	donor loss variant in <i>DMD</i> (NC_000023.11:g.32454661C>G), establishing a
363	viable mouse model for future research and therapy studies of this condition

364 Materials and methods

365 DNA samples, patient background, and whole-genome sequencing

366 DNA was extracted from peripheral whole blood of 115 patients and 19 367 parental controls, using a local database of variants from 2136 unaffected 368 men for subsequent comparison. The patients were diagnosed by pediatric 369 specialists of the West China Hospital (WCH) and West China Second 370 University Hospital (WCSUH). The parents were carefully inquired about 371 family history and all fathers denied the existence of cryptorchidism in the 372 family history. All participating parents provided informed consent, and this 373 study was formally approved by the ethics committees of WCH (Registration 374 number: 2021389) and WCSUH (Registration number: 2021389). The WGS 375 (150 bp paired-end) data of an insert size of 350 bp were sequenced using 376 the DNBSEQ-T7 platform (MGI), according to the manufacturer's protocol 377 (Supplementary Table 1).

378 Variants calling, genotyping, and annotation

Based on the high-performance computing system, we locally conducted the
variant calling, genetic relationship, and population ancestry using the pipeline
described previously ⁴⁸⁻⁵⁰. The rare variants were defined as alleles with
frequency lower than 0.01 in all geographic human populations of gnomAD

- 383 v3.1. Pathogenic variants were identified for known and novel genes
- 384 (Supplementary note).

385 Validation of variants and genotypes using the Sanger sequencing

- 386 Following the identification of candidate rare pathogenic variants, the Sanger
- 387 sequencing was conducted for all probands at first to remove false positive
- 388 variants due to errors in NGS sequencing or calling process. For the validated
- 389 variants in probands, we further conducted the Sanger sequencing for all
- available parental samples, including samples from additional six trios in
- 391 which only probands had WGS data. The parental genotypes were further
- 392 used to evaluate the origin of variants.

393 The C56BL/6J transgenic mouse modeling

394 For the highly conserved variant, transgenic mouse was modeled using the 395 CRISPR-Cas9 editing technique. Briefly, the process was carried out in two 396 main stages: the in vitro stage and the in vivo stage. In the in vitro stage, the 397 process began with the design and construction of guide RNAs (gRNAs) 398 specific to the target DNA sequence around variant, followed by the design 399 and construction of the donor vector, which carried the desired genetic 400 modification. The in vivo stage involved microinjecting the designed gRNA 401 and donor vector into fertilized eggs, and then transplanting these embryos 402 into surrogate mothers. This led to the birth of the F0 generation mice, which 403 were subsequently screened to identify individuals with successful genetic 404 modifications. Positive F0 generation mice were then bred to produce the F1 405 generation, and these offspring were also screened to confirm the presence of

- 406 the genetic modification. The F2 mice were examined for phenotypes with
- 407 MRI (Time Medical Systems, Inc, USA).

408 Statements & Declarations

409 Acknowledgements

- 410 This study was supported by the fifth batch of technological innovation
- 411 research projects in Chengdu (2021-YF05 -01331-SN), the Postdoctoral
- 412 Research and Development Fund of West China Hospital of Sichuan
- 413 University (2020HXBH087), the Short-Term Expert Fund of West China
- 414 Hospital (139190032), Fund of Sichuan Provincial Department of Science and
- 415 Technology (2021YFS0244), and Fund of Sichuan Provincial Department of
- 416 Science and Technology (2021YFS0026). We also acknowledge the
- 417 computing support from the West China Biomedical Big Data Center and the
- 418 Med-X Center for Informatics of Sichuan University.

419 **Competing Interests**

420 The authors declare no competing financial interests.

421 Author Contributions

- 422 H.Y.X., C.Z.F., L.Z., and F.P.L. supervised this work. J.H.C., J.Z., K.Z., and
- 423 H.Z.D., designed the research. J.H.C., J.Z., and GL.H analyzed data. J.H.C,
- 424 Y.Y.J, and J.Z. conducted lab work. G.L.H provided the candidate rare

- 425 variants screening in 2136 normal controls. J.H.C. drafted the manuscript and
- 426 all authors took part in revising and improving the manuscript.

427 Data Availability

- 428 The candidate variants data are listed in the supplementary tables. The
- 429 variants data could be available from the corresponding author on request.

430 Ethics approval

- 431 All authors declare that they have no Conflict of Interest. This study
- 432 conformed with the Helsinki Declaration of 1975 (as revised in 2008)
- 433 concerning Human and Animal Rights. All participating parents provided
- 434 informed consent, and this study was formally approved by the ethics
- 435 committees of WCH (Registration number: 2021389) and WCSUH
- 436 (Registration number: 2021389).

437 Consent to participate

438 Written informed consent was obtained from the parents.

439 **References**

- 440 1. Barthold JS, González R. The Epidemiology of Congenital Cryptorchidism, Testicular Ascent and
 441 Orchiopexy. *Journal of Urology* 2003;170(6):2396-401. doi:
- 442 doi:10.1097/01.ju.0000095793.04232.d8
- 443 2. Agoulnik A, Ferguson L. Testicular Cancer and Cryptorchidism. 2013;4 doi:
- 444 10.3389/fendo.2013.00032
- 3. Kuiri-Hänninen T, Koskenniemi J, Dunkel L, et al. Postnatal Testicular Activity in Healthy Boys and
 Boys With Cryptorchidism. *Frontiers in Endocrinology* 2019;10 doi:
- 447 10.3389/fendo.2019.00489
- 448 4. Raivio T, Toppari J, Kaleva M, et al. Serum Androgen Bioactivity in Cryptorchid and Noncryptorchid
 449 Boys during the Postnatal Reproductive Hormone Surge. *The Journal of Clinical Endocrinology*450 & *Metabolism* 2003;88(6):2597-99. doi: 10.1210/jc.2002-021676

451 452 453	5. Elamo HP, Virtanen HE, Toppari J. Genetics of cryptorchidism and testicular regression. <i>Best Practice & Research Clinical Endocrinology & Metabolism</i> 2022;36(1):101619. doi: <u>https://doi.org/10.1016/j.beem.2022.101619</u>
454	6. Chacko JK, Barthold JS. Genetic and environmental contributors to cryptorchidism. <i>Pediatr</i>
455	Endocrinol Rev 2009;6(4):476-80.
456	7. Elert A, Jahn K, Heidenreich A, et al. Population-based investigation of familial undescended testis
457	and its association with other urogenital anomalies. <i>Journal of Pediatric Urology</i>
458	2005;1(6):403-07. doi: 10.1016/j.jpurol.2005.04.005
459	8. Promm M, Schröder A, Neissner C, et al. Acquired cryptorchidism: More harm than thought?
460	Journal of Pediatric Urology 2016;12(4):236.e1-36.e6. doi: 10.1016/j.jpurol.2016.04.010
461 462	9. Schnack TH, Zdravkovic S, Myrup C, et al. Familial aggregation of cryptorchidism—a nationwide cohort study. 2008;167(12):1453-57.
463 464 465	10. Barthold JS, Wang Y, Kolon TF, et al. Pathway analysis supports association of nonsyndromic cryptorchidism with genetic loci linked to cytoskeleton-dependent functions. <i>Human Reproduction</i> 2015;30(10):2439-51. doi: 10.1093/humrep/dev180
466 467	11. Bloom JS, Boocock J, Treusch S, et al. Rare variants contribute disproportionately to quantitative trait variation in yeast. <i>eLife</i> 2019;8:e49212. doi: 10.7554/eLife.49212
468	12. Walter K, Min JL, Huang J, et al. The UK10K project identifies rare variants in health and disease.
469	Nature 2015;526(7571):82-90. doi: 10.1038/nature14962
470	13. Maher MC, Uricchio LH, Torgerson DG, et al. Population Genetics of Rare Variants and Complex
471	Diseases. <i>Human Heredity</i> 2012;74(3-4):118-28. doi: 10.1159/000346826
472	14. Halvorsen M, Huh R, Oskolkov N, et al. Increased burden of ultra-rare structural variants localizing
473	to boundaries of topologically associated domains in schizophrenia. <i>Nature Communications</i>
474	2020;11(1):1842. doi: 10.1038/s41467-020-15707-w
475	15. Kryukov GV, Pennacchio LA, Sunyaev SR. Most Rare Missense Alleles Are Deleterious in Humans:
476	Implications for Complex Disease and Association Studies. <i>The American Journal of Human</i>
477	<i>Genetics</i> 2007;80(4):727-39. doi: <u>https://doi.org/10.1086/513473</u>
478	16. Abrahams L, Savisaar R, Mordstein C, et al. Evidence in disease and non-disease contexts that
479	nonsense mutations cause altered splicing via motif disruption. <i>Nucleic Acids Research</i>
480	2021;49(17):9665-85. doi: 10.1093/nar/gkab750
481	17. Ganna A, Satterstrom FK, Zekavat SM, et al. Quantifying the Impact of Rare and Ultra-rare Coding
482	Variation across the Phenotypic Spectrum. <i>The American Journal of Human Genetics</i>
483	2018;102(6):1204-11. doi: 10.1016/j.ajhg.2018.05.002
484 485	18. Li J, Kong N, Han B, et al. Rare variants regulate expression of nearby individual genes in multiple tissues. <i>PLOS Genetics</i> 2021;17(6):e1009596. doi: 10.1371/journal.pgen.1009596

486	19. Gorlov I, Gorlova O, Frazier M, et al. Evolutionary evidence of the effect of rare variants on disease
487	etiology. <i>Clinical Genetics</i> 2011;79(3):199-206. doi: <u>https://doi.org/10.1111/j.1399-</u>
488	<u>0004.2010.01535.x</u>
489	20. Wang J, Lu Y, Yan X, et al. Identification of novel MITF mutations in Chinese families with
490	Waardenburg syndrome type II. <i>Molecular Genetics & Genomic Medicine</i> 2021;9(9):e1770.
491	doi: <u>https://doi.org/10.1002/mgg3.1770</u>
492 493 494	21. Bu F, Zhong M, Chen Q, et al. DVPred: a disease-specific prediction tool for variant pathogenicity classification for hearing loss. <i>Hum Genet</i> 2022;141(3-4):401-11. doi: 10.1007/s00439-022-02440-1 [published Online First: 20220219]
495	22. Cheng J, Zhou X, Lu Y, et al. Exome sequencing identifies a novel frameshift mutation of MYO6 as
496	the cause of autosomal dominant nonsyndromic hearing loss in a Chinese family. <i>Ann Hum</i>
497	<i>Genet</i> 2014;78(6):410-23. doi: 10.1111/ahg.12084 [published Online First: 20140917]
498	23. Sun Y, Cheng J, Lu Y, et al. Identification of two novel missense WFS1 mutations, H696Y and R703H,
499	in patients with non-syndromic low-frequency sensorineural hearing loss. <i>J Genet Genomics</i>
500	2011;38(2):71-6. doi: 10.1016/j.jcg.2011.01.001 [published Online First: 20110223]
501 502 503	24. Cheng J, Zhu Y, He S, et al. Functional mutation of SMAC/DIABLO, encoding a mitochondrial proapoptotic protein, causes human progressive hearing loss DFNA64. <i>Am J Hum Genet</i> 2011;89(1):56-66. doi: 10.1016/j.ajhg.2011.05.027 [published Online First: 20110630]
504	25. Yuan Y, Huang D, Yu F, et al. A de novo GJB2 (connexin 26) mutation, R75W, in a Chinese pedigree
505	with hearing loss and palmoplantar keratoderma. <i>Am J Med Genet A</i> 2009;149a(4):689-92.
506	doi: 10.1002/ajmg.a.32461
507 508	26. Ayers K, Kumar R, Robevska G, et al. Familial bilateral cryptorchidism is caused by recessive variants in RXFP2. <i>Journal of medical genetics</i> 2019;56(11):727-33.
509 510 511	27. Belkadi A, Bolze A, Itan Y, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. <i>Proceedings of the National Academy of Sciences</i> 2015;112(17):5473-78. doi: doi:10.1073/pnas.1418631112
512	28. Hiatt SM, Thompson ML, Prokop JW, et al. Deleterious Variation in BRSK2 Associates with a
513	Neurodevelopmental Disorder. <i>The American Journal of Human Genetics</i> 2019;104(4):701-08.
514	doi: 10.1016/j.ajhg.2019.02.002
515	29. McDougal WS, Wein AJ, Kavoussi LR, et al. Campbell-Walsh Urology 11th Edition Review E-Book:
516	Elsevier Health Sciences 2015.
517	30. Sun Y, Liu F, Fan C, et al. Characterizing sensitivity and coverage of clinical WGS as a diagnostic test
518	for genetic disorders. <i>BMC Medical Genomics</i> 2021;14(1):102. doi: 10.1186/s12920-021-
519	00948-5

520 521 522	31. Kishikawa T, Momozawa Y, Ozeki T, et al. Empirical evaluation of variant calling accuracy using ultra-deep whole-genome sequencing data. <i>Scientific Reports</i> 2019;9(1):1784. doi: 10.1038/s41598-018-38346-0
523	32. Canese K, Weis S. PubMed: the bibliographic database. <i>The NCBI handbook</i> 2013;2(1)
524 525	33. McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. <i>Genome biology</i> 2016;17(1):1-14.
526 527	34. Zhan X, Hu Y, Li B, et al. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. <i>Bioinformatics</i> 2016;32(9):1423-26.
528 529 530 531	35. Gegenschatz-Schmid K, Verkauskas G, Stadler MB, et al. Genes located in Y-chromosomal regions important for male fertility show altered transcript levels in cryptorchidism and respond to curative hormone treatment. <i>Basic and Clinical Andrology</i> 2019;29(1):8. doi: 10.1186/s12610-019-0089-3
532 533 534	36. Lu C, Zhang Y, Qin Y, et al. Human X chromosome exome sequencing identifies BCORL1 as contributor to spermatogenesis. <i>Journal of Medical Genetics</i> 2021;58(1):56-65. doi: 10.1136/jmedgenet-2019-106598
535 536 537	37. Öztürk Ö, Çavdartepe BE, Bağış H. X-Linked Spinal Muscular Atrophy 2 due to a Synonymous Variant in the UBA1 Gene in a Family with Novel Findings from Turkey. <i>Molecular</i> <i>Syndromology</i> 2022;13(3):246-53. doi: 10.1159/000519640
538 539 540	38. Armstrong L, Moneim AAE, Aleck K, et al. Further delineation of Kabuki syndrome in 48 well- defined new individuals. <i>American Journal of Medical Genetics Part A</i> 2005;132A(3):265-72. doi: <u>https://doi.org/10.1002/ajmg.a.30340</u>
541 542 543	39. He Z, Kokkinaki M, Jiang J, et al. Isolation, Characterization, and Culture of Human Spermatogonia1. <i>Biology of Reproduction</i> 2010;82(2):363-72. doi: 10.1095/biolreprod.109.078550
544 545 546	40. Yang S, Ping P, Ma M, et al. Generation of Haploid Spermatids with Fertilization and Development Capacity from Human Spermatogonial Stem Cells of Cryptorchid Patients. <i>Stem Cell Reports</i> 2014;3(4):663-75. doi: 10.1016/j.stemcr.2014.08.004
547 548	41. Fabian-Jessing BK, Vestergaard EM, Plomp AS, et al. Ocular albinism with infertility and late-onset sensorineural hearing loss. 2018;176(7):1587-93. doi: <u>https://doi.org/10.1002/ajmg.a.38836</u>
549 550	42. Duan D, Goemans N, Takeda Si, et al. Duchenne muscular dystrophy. <i>Nature Reviews Disease Primers</i> 2021;7(1):13. doi: 10.1038/s41572-021-00248-3
551 552 553	43. Diniz G, Barutcuoglu M, Unalp A, et al. Evaluation of the relationship between urogenital abnormalities and neuromuscular disorders Evaluation of the relationship between urogenital abnormalities and. 2008;13(1-2):19-24.
554 555	44. Moser H. Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention. <i>Human genetics</i> 1984;66(1):17-40.

556 557	45. Emery AE, Muntoni F, Quinlivan R. Duchenne muscular dystrophy: Oxford Monographs on Medical G 2015.
558 559	46. Hutson JM, Hasthorpe S, Heyns CF. Anatomical and Functional Aspects of Testicular Descent and Cryptorchidism [*] . <i>Endocrine Reviews</i> 1997;18(2):259-80. doi: 10.1210/edrv.18.2.0298
560 561 562	47. Jensen MS, Toft G, Thulstrup AM, et al. Cryptorchidism concordance in monozygotic and dizygotic twin brothers, full brothers, and half-brothers. <i>Fertility and Sterility</i> 2010;93(1):124-29. doi: 10.1016/j.fertnstert.2008.09.041
563 564 565	48. Chen J, Zhang P, Chen H, et al. Whole-genome sequencing identifies rare missense variants of WNT16 and ERVW-1 causing the systemic lupus erythematosus. <i>Genomics</i> 2022;114(3):110332. doi: <u>https://doi.org/10.1016/j.ygeno.2022.110332</u>
566 567 568	49. Oud MS, Houston BJ, Volozonoka L, et al. Exome sequencing reveals variants in known and novel candidate genes for severe sperm motility disorders. <i>Human Reproduction</i> 2021;36(9):2597-611. doi: 10.1093/humrep/deab099
569 570 571	50. Jia Y, Chen J, Zhong J, et al. Novel rare mutation in a conserved site of PTPRB causes human hypoplastic left heart syndrome. <i>Clinical Genetics</i> 2023;103(1):79-86. doi: https://doi.org/10.1111/cge.14234
572	
573	Table 1. The candidate pathogenic variants of known genes. "B" and "U" in ID
574	column are "bilateral cryptorchidism" and "unilateral cryptorchidism",
575	respectively. The "Pred" column shows the number of prediction methods
576	that support deleterious effects of the variants (see Supplementary Table 3
577	for specific methods). Note: <u>USP9Y</u> (underlined) is a Y chromosome gene,
578	while all other genes reside on the X chromosome.

ID	HVGS	Gene,Chr	Pred
U106	NC_000023.11:g.130028727G>A;NP_001171701.1:p.(G1391R)	BCORL1	6
U37	NC_000023.11:g.130028727G>A;NP_001171701.1:p.(G1391R)	BCORL1	6
U50	NC_000023.11:g.130028727G>A;NP_001171701.1:p.(G1391R)	BCORL1	6
U9	NC_000023.11:g.130028727G>A;NP_001171701.1:p.(G1391R)	BCORL1	6
U60	NC_000023.11:g.45069958A>C;NP_001278345.1:p.(K775T)	KDM6A	5
U58	NC_000023.11:g.45110152A>G;NP_001278344.1:p.(D1412G)	KDM6A	6
U51	NC_000023.11:g.47212835A>T;NP_003325.2:p.(Y873F)	UBA1	11
U60	NC_000023.11:g.47214843G>C;NP_695012.1:p.(V1031L)	UBA1	5
U49	NC_000024.10:g.12722148G>A;NP_004645.2:p.(E96K)	<u>USP9Y</u>	6
U50	NC_000024.10:g.12722148G>A;NP_004645.2:p.(E96K)	<u>USP9Y</u>	7
U109	NC_000024.10:g.12739592C>G;NP_004645.2:p.(S462C)	<u>USP9Y</u>	5
U73	NC_000024.10:g.12739592C>G;NP_004645.2:p.(S462C)	<u>USP9Y</u>	5

U13	NC_000024.10:g.12739592C>G;NP_004645.2:p.(S462C)	<u>USP9Y</u>	5
U71	NC_000024.10:g.12739592C>G;NP_004645.2:p.(S462C)	<u>USP9Y</u>	5

579

- 580 Table 2. The pathogenic variants in novel candidate genes. "B" and "U" in the
- 581 ID column are "bilateral cryptorchidism" and "unilateral cryptorchidism",
- 582 respectively. The "Pred" column shows the number of prediction methods
- 583 supporting the variants as deleterious (see Supplementary Table 4 for specific
- *in silico* prediction algorithms). Note: all genes are on the X chromosome.

ID	HGVSc	Gene	Pred
U27	NC_000023.11:g.3024049G>C;NP_001011719.1:p.(E310D)	ARSH	5
U64	NC_000023.11:g.3024093G>C;NP_001011719.1:p.(G325A)	ARSH	13
B122	NC_000023.11:g.3033050C>G;NP_001011719.1:p.(P452A)	ARSH	9
U127	NC_000023.11:g.3033050C>G;NP_001011719.1:p.(P452A)	ARSH	9
U28	NC_000023.11:g.3033050C>G;NP_001011719.1:p.(P452A)	ARSH	9
U42	NC_000023.11:g.31774145C>T; LRG_199p1:p.(E2453K)	DMD	3
U55	NC_000023.11:g.32342234G>A;NP_004000.1:p.(R1926C)	DMD	6
U114	NC_000023.11:g.32346044G>C;NP_000100.2:p.(Q1821E)	DMD	1
U58	NC_000023.11:g.32346044G>C;NP_000100.2:p.(Q1821E)	DMD	1
B130	NC_000023.11:g.32454661C>G (splice donor loss variant)	DMD	1
U70	NC_000023.11:g.32472199A>G;NP_000100.2:p.(Y964H)	DMD	5
U111	NC_000023.11:g.32573783C>T; NP_000100.2:p.(D548N)	DMD	7
U106	NC_000023.11:g.151924064G>A;NP_001011550.1:p.(A134T)	MAGEA4	2
U36	NC_000023.11:g.151924064G>A;NP_001011550.1:p.(A134T)	MAGEA4	2
U8	NC_000023.11:g.151924064G>A;NP_001011550.1:p.(A134T)	MAGEA4	2
U94	NC_000023.11:g.151924064G>A;NP_001011550.1:p.(A134T)	MAGEA4	2
U27	NC_000023.11:g.151924194A>T;NP_001373127.1:p.(Y177F)	MAGEA4	4
U98	NC_000023.11:g.9786618C>A;NP_001640.1:p.(R25S)	SHROOM2	2
U33	NC_000023.11:g.9894590G>A;NP_001640.1:p.(D228N)	SHROOM2	2
U2	NC_000023.11:g.9937394C>T;NP_001307593.1:p.(P118L)	SHROOM2	5
U55	NC_000023.11:g.9937537G>T;NP_001307593.1:p.(A166S)	SHROOM2	2
B79	NC_000023.11:g.9937537G>T;NP_001307593.1:p.(A166S)	SHROOM2	5
B81	NC_000023.11:g.3024049G>C;NP_001011719.1:p.(E310D)	SHROOM2	5

585

586 Table 3. The significance levels of burden tests for novel candidate genes

587 with rare variants.

Gene	CMC	CMCFisherExact	CMCWald	Fp	Zeggini
ARSH	5.90E-20	1.19E-06	2.20E-05	4.12E-21	5.90E-20
DMD	2.01E-38	8.39E-15	3.54E-18	1.32E-52	2.01E-38

MAGEA4	3.11E-65	2.32E-22	7.75E-23	2.25E-18	1.48E-52	
SHROOM2	5.41E-32	1.48E-11	6.67E-13	1.40E-46	5.41E-32	

588

589

590	Figures legends
591	Figure 1. The Magnetic Resonance Imaging (MRI) and Sequencing Depth. (a-
592	e) The two magnetic resonance imaging (MRI) graphs for bilateral
593	cryptorchidism (case B130). (c-d) The two MRI graphs for unilateral
594	cryptorchidism (case U111). (e) The MRI for one control. The red arrows
595	show the location of the testes. (f) The WGS overall depths for the cases (red)
596	and control (green).
597	Figure 2. The Pedigree Information and the Chromatogram of the Sanger
598	Sequencing Results For Cases and Their Parents. (a) The pedigree
599	information for seven trios and four duos with WGS data. (b) The pedigree
600	information for six trios, with WGS data only for the cases. (c) The Sanger
601	sequencing chromatogram for candidate variants of known and novel genes.
602	"1/1", "0/1", and "0/0" are genotypes. U and B represent "unilateral" and
603	"bilateral", respectively. "F" and "M" indicate "Father" and "Mother",
604	respectively. "-F" and "-R" show the results of PCR sequencing from forward
605	primer and reverse primer, respectively.

606	Figure 3. Evolutionary Conservation of the Splice Donor Variant in DMD
607	(NC_000023.11:g.32454661C>G) and MRI of Transgenic and Normal Mice.
608	(a) Conservation of the DMD variant (NC_000023.11:g.32454661C>G)
609	according to the UCSC Vertebrate Alignment. (b) Conservation based on the
610	Amniote alignment from the Ensembl database. (c) Schematic representation
611	of a transgenic mouse with CRISPR-Cas9 editing. (d) Position of the testicles
612	in normal C57 mice compared to DMD transgenic mice, as determined by
613	MRI. Undescended testicles were observed in the DMD transgenic mice at
614	both 4 and 10 weeks, with both testicles located in the inguinal region.
615	Supplementary Figure 1. The Screening and Analyzing Process for Variants.
616	(a) The bioinformatics pipeline for variant calling, filtering, and genotyping with
617	WGS data. (b) The relationship network among all cases and their family
618	members. Thicker lines indicate closer genetic relationships. (c) The PCA for
619	population identity of newly sequenced individuals conducted by incorporating
620	major populations from the "1000 genomes" project, including African (AFR),
621	American (AMR), European (EUR), South Asian (SAS), and East Asian
622	(Chinese Dai in Xishuanagbanna, CDX; Han Chinese in Beijing, CHB; Han
623	Chinese South, CHS; Japanese in Tokyo, Japan, JPT; Kinh in Ho Chi Minh
624	City, Vietnam, KHV) populations.

Supplementary Figure 2. The evolutionary conservation of sites for known
genes across primate species, based on the Ensembl (v105) sequence
alignments of orthologous genes. The arrows show the locations of variants.
Supplementary Figure 3. The Sanger sequencing confirmation for known

629 genes (UBA1, USP9Y, KDM6A, and BCORL1) related to cryptorchidism.

- 630 Supplementary Figure 4. The evolutionary conservation of sites for novel
- 631 candidate genes across primate species, based on the Ensembl (v105)
- 632 sequence alignments of orthologous genes. The arrows show the loci with
- 633 gene names and variant information.
- 634 Supplementary Figure 5. The Sanger sequencing validation of four novel
- 635 candidate genes (DMD, ARSH, MAGEA4, and SHROOM2) related to
- 636 cryptorchidism (B130 was not tested due to insufficient amount of DNA).

С

е

а

Т

Α Α

Δ Δ

Α A

Α Α

G Δ Δ

а		NC_000023.11:g.32454661C>G		
Cons 100 Vert	4_ is -0.5	100 vertébrate	Basewise Conservation by PhyloP T T T T T ACCT Alignments of 100 Vertebrates	T_Az°LC~
x	Gaps T C Mouse T T T T T T C D Mouse T T T T C C D G D <t< th=""><th>T T</th><th>1 2 + T T T T T A C K T - - - - A C K T - - - - A C K T - - - - A C K T - - - - A C K T - - - - A C K T - - - - A C K T T T - - - A C K T T T - - - A C K T T T T - - A C K T T T T - A C K T T T T C A C K T A</th><th>M E M E M E M E L E L E L E</th></t<>	T T	1 2 + T T T T T A C K T - - - - A C K T - - - - A C K T - - - - A C K T - - - - A C K T - - - - A C K T - - - - A C K T T T - - - A C K T T T - - - A C K T T T T - - A C K T T T T - A C K T T T T C A C K T A	M E M E M E M E L E L E L E
b NC_000023.11:g.32454661C>G d				
Mammal	Homo_sapiens Pan_paniscus Pan_troglodytes Gorilla_gorilla Pongo_abelii Nomascus_leucogenys Macaca_fascicularis Macaca_mulatta Papio_anubis Mirocebus_murinus Cavia_porcellus Mus_parellus Mus_parellus Mus_patari Rattus_norvegicus Marmota_marmota_marmota Sciurus_vulgaris Balaenoptera_musculus Delphinapterus_leucas Monodon_monoceros Phocena_sinus Physeter_catodon Bos_squuniens Bos_indicus_hybrid Cervus_hanglu_yarkandensis Catagonus_wagneri Sus_scrofa Camelus_dromedarius Canis_lupus_familiaris Felis_catus Panthera_leo Panthera_leo Panthera_pardus Equus_caballus Rhinolophus_ferrumequinum Loxodonta_africana	••••••••••••••••••••••••••••••••••••	C57 mice 4-week-old Bladde Groin Testicle C57 mice 10-week-old	DMD mice 4-week-old
Aves	Coturnix_japonica Gallus_gallus Meleagris_gallopavo Aquila_chrysaetos_chrysaetos Parus_major Serinus_canaria	T-CTTTTACCTTCAGTTCTT T-CTTTTACCTTCAGTTCTT T-CTTTTACCTTCAGTCCTT T-CTTTTACCTTCAGTTCCT T-CTTTTACCTTCAGCTCCT T-CTTTTACCTTCAGTTCCT	Bladd	er
Reptile	Taeniopygia_guttata Crocodylus_porosus Gopherus_evgoodei Terrapene_carolina_triunguis Naja_naja Pseudonaja_textilis Podarcis_muralis Salvator_merianae	T-ATTTTACCTTCAGTTCCT T-CTTTTACCTTTAGTTCTT C-CTTTTACCTTCAGTTCCT C-CTTTTACCTTCAGTTCCT T-ATACTACCTTTAATTCTT T-ATACTACCTTTAATTCTT T-ATACTACCTTTAGTTCCT T-T-TGTTACCTTCAGTTCCT	Groi	n
C ENSMUST00000114000.8				
<u>/-</u>	ATG	79		

а