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Abstract 
 
Rectal cancer (RC) presents significant treatment challenges, particularly in the context of chemotherapy 

resistance. Addressing this, our study pioneers the use of matched RC tumor tissue and patient-derived organoid 

(PDO) models coupled with the innovative computational tool, Moonlight, to explore the gene expression 

landscape of RC tumors and their response to chemotherapy. We analyzed 18 tissue samples and 32 matched 

PDOs, ensuring a high-fidelity representation of the tumor bioloy. Our comprehensive integration strategy 

involved differential expression analyses (DEAs) and gene regulatory network (GRN) analyses, facilitating the 

identification of 5,199 genes governing at least one regulon. By using the biological processes (BPs) collected 

from Moonlight closely related to cancer, we pinpointed 2,118 regulator-regulon groups with potential roles in 

oncogenic processes. Further, through integration of Moonlight and DEA results identified 334 regulator-regulon 

groups significantly enriched in both tissue and PDO samples, classifying them as oncogenic mediators (OMs). 

Among these, four genes (NCKAP1L, LAX1, RAD51AP1, and NAT2) demonstrated an association with drug 

responsiveness and recurrence-free survival (RFS), offering new insights into the molecular mechanisms of 

chemotherapy response in RC. Our integrated approach not only underscores the translational fidelity of PDOs, 

but also harnesses the analytical prowess of Moonlight, setting a new benchmark for targeted therapy research in 

rectal cancer. 
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Introduction  
 

Colorectal cancer (CRC) is the second leading cause of cancer-related death in the US. In 2023, an estimated 

153,020 US adults will be diagnosed with CRC[1]; RC makes up ~1/3 of these cases, and incidence is rising in 

patients <50 years[2]. Due to tumor location and proximity to essential genitourinary organs, RC treatment is 

more challenging vs. colon cancer. Treatment for RC is trimodal, composed of 5-fluorouracil (5-FU)-based 

chemotherapy, neoadjuvant chemoradiation, and radical surgery (RS). As RS can cause functional deficits and 

impair quality of life (i.e., possible colostomy), modern trials have applied total neoadjuvant therapy (TNT) for 

locally advanced RC to optimize response – with TNT, all treatment is admistered upfront, before consideration 

of RS[3-5]. Some RC tumors respond completely to TNT (no residual tumor), and these patients can avoid RS 

(i.e., watch-and-wait approach)[3]. However, 50-60% of patients respond poorly to TNT (residual tumor) and 

require RS[6-8]. These patients also typically have worse survival compared to those with significant or complete 

resolution of tumor[4, 9]. With these significant issues, along with increasing incidence in young patients[10], 

there is a critical need to discover new therapeutic targets in TNT-resistant RC. 

 The efficacy of chemotherapy, which is the backbone of TNT,  in treating cancer is significantly influenced 

by the complex interplay of various genetic factors, among which oncogenic mediator (MR) genes play a critical 

role. These genes, central to the pathways and networks involved in tumor progression, have profound 

implications for how cancer cells respond to chemotherapeutic agents. Oncogenic mediators often function within 

specific pathways, acting as crucial links in the transmission of oncogenic signals that contribute to drug resistance 

or sensitivity. Their ability to modulate key processes such as cell proliferation, apoptosis, DNA repair, and drug 

efflux mechanisms makes them pivotal in determining the success or failure of chemotherapy. Understanding the 

role of these mediators not only sheds light on the intricate molecular mechanisms underpinning chemotherapy 

resistance but also opens avenues for developing targeted therapies. By identifying and targeting these oncogenic 

mediators, it becomes possible to disrupt the cancer-specific pathways they govern, potentially enhancing the 

efficacy of chemotherapy and paving the way for personalized treatment strategies. This focus on oncogenic 

mediators thus represents a vital aspect of research in cancer therapeutics, where the ultimate goal is to tailor 

treatment approaches based on the unique genetic makeup of individual tumors, thereby maximizing therapeutic 

effectiveness while minimizing side effects. 

Using the gene expression data from pateints or cell lines directly to discover MRs has limitations.  For 

patients’ gene expression data, intratumoural heterogeneity (ITH) via stromal cells in the tumor 

microenvironment (TME) may hide subtle gene expression alterations associated with genetic diversity and 

heterogeneity within the tumor epithelium[11]. While cancer cell lines are a mainstay in preclinical research due 

to their ease of use and reproducibility, they have notable drawbacks, including the loss of tumor heterogeneity 

and genetic drift through long-time cell lien cultures, further diverging from the original tumor's properties and 
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potentially leading to less reliable or less clinically relevant results.There are also limited cell lines originating 

from rectal cancers, and verifying whether they truly come from the rectum or from patients who have received 

multimodal therapy is not feasible [12-14]. Finally, the complexity of genomic features (i.e., curse of 

dimensionality or heterogeneity of input) presents a key challenge for prediction and driver gene discovery tasks 

involving drug response[15-17]. This means the top genomic features selected from primary tumors may not be 

relevant in different patient cohorts partially due to the false positive signals from high-dimensional molecular 

data, which was also proved in CRC biomarker research[18-21].  

      To address the limitations of RC preclinical models, we built a biorepository from RC patient tumors and used 

them to generate the first viable ex vivo and in vivo RC tumoroid or patient-derived organoid (PDO) models[22] 

that retain histopathologic and clonal oncogenic mutations of the primary tumors. Importantly, these RC PDOs 

are predictive for patient TNT response, can be established from biopsy material (90% success rate), and can be 

derived both pre-treatment and after TNT in RC tumors that fail to respond and require radical surgery[22].  

Recently, we developed an innovative computational biology tool, Moonlight, to discover cancer driver genes, 

including oncogenes, tumor-suppressor genes[23]. Moonlight relies on observations of experimentally validated 

cancer driver genes whose expression is modulated in cellular assays, together with the quantification of process 

markers, such as cellular proliferation, apoptosis, and invasion. To accomplish this task, we curated >100 

biological processes linked to cancer, including proliferation and apoptosis. During this manual curation, we 

provided Moonlight information on whether the activation of each process leads to promotion or reduction of 

cancer. Once Moonlight identifies an oncogenic process altered in tumors using gene expression data, it detects 

genes that activate or inhibit this process, which are defined as oncogenic mediators. This method has been 

successfully applied to >8,000 tumor samples from 18 cancer types to discover cancer driver genes[23] . We also 

discovered inactivation of tumor suppressors and that tissue type and subtype could indicate dual role status. 

These findings help explain tumor heterogeneity and could guide therapeutic decisions[23]. 

We conducted the current study by integrating RC PDO, tumor tissue, and drug response data using Moonlight 

to identify novel MR gene targets with the goal of rendering resistant tumors sensitive to TNT. The PDOs, derived 

from rectal cancer tumors, not only preserve the histopathological and genetic characteristics of the primary 

tumors, but also demonstrate predictive value for patient response to TNT. These organoid models offer a more 

accurate and dynamic representation of the tumor microenvironment, overcoming the challenges of intratumoral 

heterogeneity and the limitations of cell line models. Coupled with our innovative computational tool, Moonlight, 

which effectively identifies oncogenic mediators by analyzing regulatory networks and biological processes 

implicated in cancer, our approach provides a robust platform for uncovering novel therapeutic targets. By 

integrating transcriptomic data from RC PDOs, tumor tissue, and drug response, this study seeks to  identity and 

characterize oncogenic mediators, enhance TNT efficacy and improve survival outcomes for rectal cancer patients. 
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Results 
Integration of gene expression data from matched RC tumors and PDOs 

In this study, we employed a multi-tiered, proof-of-principle integration strategy to unravel the complex molecular 

landscape of rectal cancer and its response to chemotherapy as illustrated in Fig 1. Our rationale is that 5-

fluorauracil-based chemotherapy has been and remains the backbone of chemotherapy and chemoradiation in 

rectal cancer for the past 60 years – however, no new therapies have been added that specifically address the 

patients with chemoresistant tumors[3, 24-27].  Our approach began with a comprehensive analysis of 

transcriptome data from 18 RC tissue samples and matched patient-derived organoids (PDOs), focusing on the 

identification of drug-related genes based on IC50 outcomes according to FOLFOX (5-fluorouracil, leucovorin, 

and oxaliplatin) treatment of RC PDOs from our RC biorepository. IC50 in RC PDOs has been shown to correlate 

well with both oncologic and clinical outcomes [22, 28]. The integration extended to a thorough examination of 

The Cancer Genome Atlas (TCGA) COAD/READ data, where differential expression analyses (DEAs) were 

conducted to distinguish between tumor and paired normal tissues, uncovering key differentially expressed genes 

(DEGs). A subsequent gene regulatory network (GRN) analysis provided a structural and functional framework 

for understanding the interactions and regulatory relationships among these genes. Central to our strategy was the 

application of Moonlight, a tool adept at analyzing over a hundred biologically relevant processes, to identify 

altered oncogenic processes in tumors. This analysis pinpointed specific oncogenic mediator genes acting as 

regulatory hubs within these processes. By amalgamating the insights gleaned from RC tumors and PDOs, TCGA 

data, and the process-specific gene evaluation via Moonlight, we established a robust, multidimensional approach. 

This approach not only enhanced our understanding of the oncogenic pathways in rectal cancer but also 

illuminated potential oncogenic mediators, offering putative targets for sensitizing resistant tumors to 

chemotherapy. 

 

Gene expression consistency between cancer tissues and matched PDOs 

In our analysis, all 50 samples, comprising 18 tissue samples and 32 organoid samples, met the stringent criteria 

set for quality control and were subsequently included in further analysis (put these criteria in Supplementary 

Material?). Following the removal of genes with minimal expression (detailed in the Methods section), a 

substantial pool of 17,418 genes was retained for analysis. Initial evaluations focused on the consistency of gene 

expression within organoid samples derived from individual patients (Fig. 2A). For each set of three replicated 

organoid samples per patient, a remarkable consistency was observed, with pairwise Spearman’s correlation 

coefficients invariably exceeding 0.958 (P-value < 0.001), underscoring the reliability of organoid models in 

reflecting patient-specific gene expression profiles. 
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Further, Principal Component Analysis (PCA) was employed on the gene expression data from the 50 samples, 

revealing a predominant segregation into two distinct clusters, one encompassing tissue samples and the other 

comprising organoid samples (Fig. 2B). Notably, the organoid cluster exhibited reduced variability along the first 

principal component (PC1), but heightened variability along the second principal component (PC2), suggesting a 

nuanced representation of genetic diversity within these models. Moreover, replicated organoid samples from the 

same patients were observed to cluster tightly on the PCA plot, reinforcing the reproducibility of the organoid 

model. 

We then probed the correlation in gene expression between primary tumor tissues and their derivative organoid 

samples (Fig. 2C). In scenarios involving multiple organoid samples from a single patient, the gene expression 

for the organoids was represented by the arithmetic mean of the samples. A substantial proportion of genes, 

16,918 out of 17,418 (97.1%), demonstrated a positive correlation (Spearman’s rho > 0) between tissue and 

organoid gene expressions. Within this subset, 6,514 genes manifested a statistically significant correlation, 

marked by a Spearman’s rho > 0.5 and a P-value < 0.05 (Supplementary Table 1). A patient-specific analysis 

was further conducted, assessing the gene expression correlation between tissue samples and their corresponding 

organoid samples, considering the full spectrum of genes as well as a subset of highly variable genes (Fig. 2D). 

This analysis consistently revealed high correlation coefficients across all patient samples, affirming the organoid 

model’s capacity to faithfully recapitulate the gene expression landscape of the original tumor tissues. 

 

Gene selection for drug responsiveness 

To discern genes correlated with drug response, we executed regression analyses on tumor tissues and their 

corresponding organoids, paired with IC50 values from FOLFOX treatment (see Methods section). This analysis 

identified a total of 660 genes from tissues (refer to Supplementary Table 2) and 819 genes from organoids 

(refer to Supplementary Table 3), each exhibiting a significant correlation with drug response (p-value < 0.05). 

Notably, there was an overlap of 75 genes between the two datasets (Fig. 3A and itemized in Supplementary 

Table 4). A subsequent sample-wise correlation assessment demonstrated a high level of consistency in the 

expression of these drug-related genes between tissue and organoid samples, as depicted in Fig. 3B. Of the 75 

drug response genes (DRGs) highlighted, 17 were positively linked to drug resistance, while 58 were positively 

linked to drug sensitivity, as shown in Fig. 3C. Utilizing the expression profiles of these DRGs, unsupervised 

hierarchical clustering was performed on a combined dataset of tissue and organoid samples. This clustering 

effectively segregated the samples into two distinct groups, each exhibiting contrasting patterns of drug 

responsiveness. Furthermore, recognizing the limited sample size in this analysis and aiming for broader 

applicability in integrated analyses, we also compiled a supplementary list of 458 genes. These genes exhibit a 
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marginally significant correlation with drug response in both tissue and organoid samples, as determined using a 

relaxed threshold of p-value 0.15 (see Supplementary Table 5). 

Detection of oncogenic regulator-regulons through Moonlight 

In our study, we leveraged an enhanced Moonlight workflow to systematically screen for potential oncogenic 

mediators from the combined TCGA dataset of rectal (READ) and colon (COAD) cancers, acknowledging the 

relatively limited sample size in each category (Fig. 4A). A cohort of 223 patients, each with matched primary 

tumor and adjacent normal tissue samples, and documented chemotherapy history, formed the basis of our 

analysis. Post exclusion of microRNA data, the remaining 17,082 protein-coding genes underwent a Differential 

Phenotype Analysis (DPA) using Moonlight, which yielded 5,272 genes demonstrating significant differential 

expression (log2|FC| > 1 and FDR < 0.01, Supplementary Table 6). Subsequent Gene Regulatory Network 

(GRN) analysis within Moonlight scrutinized these differentially expressed genes (DEGs) as potential regulators, 

exploring their associated regulons from the entire gene pool of 17,082 candidates. This comprehensive analysis 

identified 5,199 genes that govern at least one regulon (Supplementary Table 7), with the most influential gene 

regulating up to 783 regulons. 

To delve deeper into the biological significance of these findings, we conducted modified functional enrichment 

analysis (FEA) and upstream regulator analysis (URA) using the unique modules from Moonlight, pinpointing 

regulator-regulon groups implicated in cancer-relevant biological processes (BPs). Initially, Moonlight offered 

insights into 101 BPs; however, we honed our focus to 25 BPs intimately associated with cancer progression, 

such as "apoptosis," "tumor cell line proliferation," and "tumor growth" (Supplementary Table 8). These BPs 

were dissected further using Ingenuity Pathway Analysis (IPA) to isolate a subset of genes with strong 

associations to each process. An automated PubMed literature review annotated these genes, hinting at the 

direction of their expression alterations during these processes. In this refined FEA and URA, our criteria for 

significance were stringent: we considered only regulator-regulon groups with a Moonlight |Z-score| over 1 and 

a Fisher's exact test P-value below 0.05. This approach led us to identify 2,118 regulator-regulon groups, each 

potentially playing a pivotal role in cancer-related BPs (Supplementary Table 9), marking a crucial step in 

understanding the regulatory underpinnings of oncogenic processes in rectal and colon cancers. 

Integration of the discoveries from Moonglight and tissue-organoid analyses 

In our pursuit to discern specific associations between the 2,118 cancer-related regulator-regulon groups and drug 

responsiveness, we embarked on an integrated analysis, as depicted in Fig. 4B. This process commenced with a 

Gene Set Enrichment Analysis (GSEA), wherein the regulator-regulon groups were examined alongside the 

insights derived from our tissue-organoid investigation. Employing the 2,118 regulator-regulon groups as gene 
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sets, the GSEA utilized two pre-ranked gene lists, each organized in descending order based on the regression's 

t-value, one for tissue and the other for organoid analyses. To enhance the robustness of our findings, we focused 

on 11,198 genes that consistently indicated drug responsiveness trends across both tissue and organoid samples. 

This GSEA identified 334 regulator-regulon groups that exhibited significant enrichment across both modalities, 

leading us to classify these 334 entities as oncogenic mediators (OMs). In our analysis, six genes – BTK, 

NCKAP1L, LAX1, CDK1, RAD51AP1, and NAT2 – emerged as noteworthy for their association with drug 

responsiveness. Although the threshold for significance was set at a more inclusive level (P-value < 0.15), these 

genes consistently showed a positive correlation with sensitivity to FOLFOX treatment in both tissue and 

organoid samples, as demonstrated in Fig. 4C. This suggests a potential link between these genes and 

chemotherapy response. 

To further determine if these genes were associated with an oncologic outcome, we tested the prognostic potential 

of these six OMs using the Kaplan-Meier Plotter database, with results illustrated in Fig. 4D. This analysis 

revealed that RAD51AP1, NAT2, and LAX1 were significantly associated with extended recurrence-free survival 

(RFS), showcasing HR values of 0.54 (logrank P = 6.5e-09), 0.63 (logrank P = 2.9e-05), and 0.70 (logrank P = 

1.8e-03), respectively. These findings align well with the drug responsiveness trends observed in our integrated 

analysis. Interestingly, NCKAP1L, despite showing a significant association with RFS (HR = 1.36, logrank P = 

5.5e-05), exhibited a trend that diverged from the drug response analysis. 

To delve into the therapeutic prospects of the identified drug-related genes, we assessed the possibility of targeting 

specific perturbagens against these genes through the Connectivity Map tool. This exploration led to the 

identification of 89 perturbagens targeting 24 out of the 334 oncogenic mediators and 107 drugs targeting 23 out 

of the 458 drug-related genes (p < 0.15), as highlighted in our previous tissue-organoid analysis (Fig. 5A and 5B; 

Supplementary Table 11 and 12). This revelation underscores the potential for therapeutic intervention and 

paves the way for further investigation into the efficacy of these perturbagens in modulating drug responsiveness 

in rectal cancer. 

 
Methods 
Human RC tissue and patient-derived organoid  

A total of 18 patients diagnosed with rectal cancer (RC) at Memorial Sloan Kettering Cancer Center were 

selected in our study. For each patient, one tumor tissue was obtained before treatment, and at least one matched 

patient-derived organoid (PDO) samples were generated. In specific, for each of the eleven out of 18 patients, 

one single PDO was generated, while to validate the replicability of PDO model, each of the remaining seven 

patients had triplicated organoid samples. Endoscopic tumor biopsies obtained with biopsy forceps were obtained 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.29.24301906doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.29.24301906


 

from RC patients undergoing standard of care diagnostic biopsy or on-treatment biopsy in the outpatient setting. 

The specimens are collected per protocol and tissue was prioritized as follows: sample sent to pathology, sample 

for PDO, and remaining saved for banking. Tissues are chopped into ∼1-mm pieces in cold PBS + antibiotics, 

and after tissue processing, tumor cells are resuspended in 300 μL of Matrigel and plated onto 24-well culture 

plates (40 μL droplet per well). After the gel solidifies, 700-800 μL of culture medium is added to wells and 

incubated at 37°C. PDOs are established and maintained in Matrigel as described in Ganesh et al.[22]. 

Consequently, 18 tissues and 32 matched organoids were involved in this study and were then RNA-sequenced 

(see below). 

 

Preparation and RNA-sequencing of tissue and organoid samples 

Surgically resected rectal tissue or biopsy tissue was washed with ice-cold PBS-Abs buffer (phosphate-buffered 

saline with antibiotic-antimycotic (Gibco™), gentamicin (Gibco™) and plasmocin (Invivogen). The tissue was 

divided into two parts. One part was flash-frozen in liquid nitrogen and then reserved at -80 °C for later purposes. 

The other part was processed for tumoroid culturing purposes, as reported[22]. The patient-derived tumoroids 

were cultured and expanded in Matrigel for three passages. To RNA, well-growing tumoroids in 4-6 matrigel 

domes (40ul matrigel/dome) were dissociated with TrypLE Express (Gibco™) as reported[22]. The obtained 

pellet was further washed with 5 ml of ice-cold PBS. Then, RNA was extracted from the tumoroid pellet using 

the AllPrep RNA kit (Qiagen) following the manufacturer’s instructions. If the RNA needs to be extracted 

separately, then the PureLink™ RNA Mini Kit (Invitrogen™) was used. The tissue RNA was extracted from the 

flash-frozen specimen using the AllPrep RNA kit. 

 

For RNA sequencing, total RNA was prepped with the Nugen Universal Plus mRNA-Seq (M01442 v2) using 

750ng via Qubit and 14 cycles PCR.  Libraries were sequenced on Illumina Novaseq 6000 and ~50M PE150 were 

generated per sample. 

Tissue-organoid data analysis  

To process raw FASTQ-formatted RNA sequencing data from organoid and tissue samples, we utilized the nf-

core/rnaseq tool[29] (version 3.12.0) in Nextflow pipeline[30] (version 22.10.7) with default settings and 

parameters. The data processing workflow consisted of pre-processing quality control (QC), STAR-based reads 

alignment to the reference genome (Genome assembly GRCh38: 

https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/), and Salmon-based gene expression data 

quantification. Detailed information of RNA-seq analysis pipeline of Nextflow could be referred to at https://nf-

co.re/rnaseq/3.12.0. 
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Data analysis for count-based gene expression data were then performed using R software[31] (version 4.2.2) in 

RStudio[32] (version 2023.09.0). We transferred count data to count-per-million (CPM) using edgeR package[33] 

(version 3.40.2), and retained only unduplicated genes with CPM values simultaneously greater than 0.1 among 

at least 15% tissue samples, 15% organoid samples and 15% tissue plus organoid samples. We implemented 

limma-based standardization using calcNormFactors function from edgeR package, and applied a log2 

transformation to the CPM values, resulting in normalized data for the downstream analysis. 

 

To validate the reproducibility of the triplicated organoid samples, we created heatmaps to visually represent the 

Spearman’s correlation matrix. To evaluate the correlation between gene expression in organoid and tissue 

samples, we computed patient-wise Spearman’s correlation coefficients. For patients with replicated organoid 

samples, we averaged their gene expression values to align with tissue values. Histograms were then generated 

to illustrate the distribution of Spearman’s correlation coefficients for all genes and top-5000 variable genes. 

 

To identify genes associated with drug responsiveness (Fig. 1A), we conducted a preliminary screening through 

differential expression analysis (DEA) using regression models. As multiple replicated samples were generated 

for a proportion of organoids, we treated the patient identifier as a mixed-effect variable for regression modeling. 

Specifically, we fitted the model log2(CPM + 1) ~ 1|patient.id + ln(IC50) using the lmer function in lme4 R 

package for organoid samples. For tissue samples, the model log2(CPM + 1) ~ ln(IC50) was fitted using the limma-

voom method from the limma package [34]. Here, gene expression was measured by log2-transformed CPM. 

Genes with unadjusted P-values < 0.05 were selected as candidates associated with chemotherapy response. 

 

Furthermore, we identified the intersection of candidate genes from both organoid and tissue data and used them 

to generate a heatmap utilizing the ComplexHeatmap[35] package. 

 

A modified Moonlight workflow 

To identify a set of oncogenic genes based on TCGA cohort[36], we performed customized analysis based on 

Moonglight pipeline[37] (Fig. 1B). For all human colon (COAD) and rectal (READ) cancer patients from TCGA, 

high-throughput RNA-seq data normalized by upper quartile (HTseq – FPKM-UQ) and clinical information were 

downloaded and processed with TCGABiolinks package[38]. To prioritize the investigation of drug response, 

only patients who received chemotherapy were included in the analysis. For the patients with duplicated primary 

solid tumor (TP) samples, only the first sample profiled by date was retained. For consistency with our dataset, 

we excluded genes that encode microRNAs from subsequent analysis. 
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The MoonlightR::DPA module was employed to identify differentially expressed genes (DEGs) between tumor 

and normal tissues, with a significance threshold set at false discovery rate (FDR) < 0.01 and log2|FC| > 1. To 

uncover potential target regulons associated with each DEG, the MoonlightR::GRN module was utilized to 

construct a gene regulatory network (GRN) based on mutual information. This GRN comprised regulator-regulon 

groups, where each DEG was considered a potential regulator, and its regulons were selected from the entire gene 

pool using algorithms in the GRN module. To further investigate genes associated with cancer-related biological 

processes (BPs), a subset of BPs was chosen from the original 101-BP list predefined in the Moonlight R package. 

Within each BP, there was a set of genes that could potentially exhibit upregulation, downregulation, or 

unspecified changes in expression levels during that specific BP. A selective subset of cancer-related BPs was 

retained for subsequent analysis in MoonlightR::URA. In this step, the enrichment significance of each 

combination of regulator-regulon group and BP was assessed using URA-derived Moonlight Z-scores and P-

values. Regulator-regulon groups with at least one significantly enriched BP, meeting the threshold of Mooonlight 

|Z| > 1 and P < 0.05 in the URA step, were selected as candidates for further analysis. 

 

Gene set enrichment analysis (GSEA) using the fgsea[39] package was performed for each regulator-regulons 

group to integrate the Moonlight-based analysis and tissue-organoid analysis (Fig. 1C). A set of regulons, 

representing the potentially target genes for each regulator, was utilized as a gene set. Two gene lists, one from 

organoid analysis and the other from tissue analysis, were employed in GSEA. These lists were ranked in 

descending order of log2FC. Only genes exhibiting the same trends in drug response were retained for GSEA in 

both pre-ranked lists. The gene set size was constrained, with a maximum of 500 genes and a minimum of 5 genes. 

 

Regulators from the regulator-regulons groups that demonstrated significant enrichment patterns (P-value < 0.05) 

in both organoid-based and tissue-based lists were ultimately selected as oncogenic mediators (OMs) through this 

integrated analysis. 

 

Survival analysis 

To investigate the prognostic performance of genes, we retrieved an online resource namely Kaplan-Meier Plotter 

(https://kmplot.com/analysis/index.php?p=service&cancer=colon), which provided survival analysis for 1,296 

patients with colon cancer from 16 datasets based on their gene expression and survival information [40]. For 

each gene, patients were divided into two groups, using an automatic classification with the optimal cutoff in gene 

expression. This method aimed to achieve the lowest log-rank p-value for recurrence-free survival (RFS) between 

the groups, and based on which, a Kaplan-Meier (KM) plot was generated for each gene. When multiple probes 

corresponded to the same gene, the probe with the smallest p-value was selected as the representative. 
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Connectivity Map analysis 

We used Connectivity Map[41] online tools to retrieve potential compounds and perturbations for genes of 

interest. A text file namely compoundinfo_beta.txt containing a full list of perturbagens and their target genes 

was downloaded via https://clue.io/data/CMap2020#LINCS2020. 

 

Discussion  
 
 
In this study, the innovative integration system we developed and employed represents a significant leap forward 

in the field of rectal cancer (RC) research and current treatment modalities, where the backbone of treatment has 

remained the same (even for resistant tumors) for more than 70 years.  Our data is particularly important relative 

to better understanding and predicting chemotherapy response. This system highlights the strengths of using 

matched tumor tissue and  PDO models with advanced computational analysis, specifically through the Moonlight 

tool to uncover pivotal oncogenic mediators (OMs) influencing chemotherapy response.  

     The remarkable alignment in gene expression patterns between RC tumors and their derived PDOs, as 

evidenced in our study, underscores the robustness and translational fidelity of the PDO model. This fidelity is 

not merely a quantitative match of gene expression levels, but reflects a deeper, more nuanced replication of the 

tumor microenvironment and its inherent genetic complexities. The substantial positive correlation in gene 

expression between primary tumor tissues and their corresponding organoid samples, as indicated by 97.1% of 

genes showing a positive Spearman’s rho (16,918 out of 17,418 genes), reinforces the reliability of the organoid 

model in reflecting the genetic landscape of individual tumors. Notably, a significant number of these genes 

(6,514) not only showed positive correlation but also reached a level of statistical significance (Spearman’s rho > 

0.5, P-value < 0.05). This underscores the organoids' ability to accurately replicate the gene expression patterns 

of the original tumor tissues, as further evidenced by the consistent high correlation across all patient samples in 

our analysis. 

      This congruence is of paramount importance, particularly considering the challenges posed by intratumoral 

heterogeneity and the dynamic nature of tumor evolution. Traditional in vitro models and cell lines have often 

fallen short in capturing this heterogeneity, leading to gaps in translation from bench to bedside. However, the 

matched gene expression data from RC tumors and PDOs in our study bridge this gap, offering a more accurate 

and clinically relevant model for studying tumor biology and drug response. 

     Moreover, the consistency in gene expression profiles reinforces the reliability of PDOs not only in reflecting 

the genetic makeup of the primary tumor, but also in their potential to predict therapeutic responses. This 

predictive capacity is crucial for precision medicine, where understanding the individual behavior of each tumor 

can guide tailored treatment strategies, potentially improving patient outcomes. 

      Furthermore, the matched gene expression data provide an invaluable resource for exploring the molecular 
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underpinnings of RC. They enable a detailed dissection of oncogenic pathways, identification of potential 

biomarkers, and elucidation of drug resistance mechanisms. This depth of understanding is instrumental in 

advancing the development of targeted therapies and improving the efficacy of existing treatment modalities. 

     In our study, the utilization of Moonlight as an analytical tool has significantly enhanced our understanding of 

the complex gene regulatory networks involved in rectal cancer. The ability of Moonlight to dissect extensive 

gene expression data and pinpoint pivotal oncogenic mediators (OMs) has been instrumental in unveiling the 

intricate molecular interactions that govern tumor behavior and chemotherapy response. This computational tool 

goes beyond traditional differential expression analysis, offering a nuanced perspective by identifying regulator-

regulon groups and mapping out the landscape of biological processes implicated in cancer progression. The 

insights gained from Moonlight analysis are not merely of academic interest; they hold profound implications for 

the development of targeted therapies. By spotlighting the key OMs within the regulatory networks, Moonlight 

provides actionable targets for therapeutic intervention, potentially ushering in a new era of precision medicine 

in rectal cancer treatment where strategies are tailored based on the unique molecular signature of each tumor.         

     The identified four OMs, RAD51AP1, NAT2, and LAX1, have demonstrated a marked association with 

extended recurrence-free survival (RFS), suggesting their potential as prognostic markers for favorable treatment 

outcomes. Notably, RAD51AP1, known for its role in DNA repair and maintenance of genomic stability, 

underscores the critical interplay between DNA damage response mechanisms and chemotherapy efficacy. The 

correlation of RAD51AP1 with improved RFS aligns with its function in facilitating accurate DNA repair, a 

process that, when compromised, can lead to therapy resistance. 

Similarly, NAT2, with its involvement in drug metabolism, highlights the importance of individual genetic 

variations in modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic agents. The 

association of NAT2 with RFS reflects the potential impact of metabolic pathways on drug response, pointing to 

the need for personalized therapeutic strategies that consider metabolic profiling. 

The association of LAX1 with chemotherapy response and RFS introduces intriguing questions about its role in 

cancer biology. While less is known about LAX1 compared to RAD51AP1 and NAT2, its correlation with 

treatment outcomes invites further investigation into its biological function and potential as a therapeutic target. 

Interestingly, NCKAP1L demonstrated a significant association with RFS, but displayed a trend opposite to that 

observed in the drug response analysis. This paradoxical finding indicates the complex nature of cancer biology 

and the multifaceted roles that genes can play in different contexts of tumor development and treatment response. 

These findings emphasize the intricate relationship between oncogenic mediators and chemotherapy response in 

RC. The identified OMs not only offer insights into the molecular underpinnings of drug sensitivity and resistance, 
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but also hold promise for the development of novel therapeutic targets and treatment strategies. By focusing on 

the unique genetic makeup of individual tumors and considering the functional roles of these OMs, we can pave 

the way for more personalized and effective treatment approaches, ultimately improving patient outcomes in 

rectal cancer. 
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Figure 1  The workflow of the study. It consists of (A) tissue-organoid analysis for screening genes associated to drug-response, (B) Moonlight-
based analysis for discovering oncogenic regulator-regulons groups of colorectal cancer, and (C) the integrated analysis for identifying oncogenic 
mediators as potential indicators of drug responsiveness. 
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Figure 2  Reproducibility of patient-derived organoid and tissue-organoid correlation. (A) Sample-wise correlation based on 21 organoid samples 
derived from seven patients. (B) Principal component analysis (PCA) of 18 tissue and 32 matched organoid samples based on gene expression data. 
(C) Histograms of gene-wise based on expression data of all genes, and (D) sample-wise correlation coefficients based on all genes (blue) and top-
5000 variable genes selected from organoid (orange) of 18 tissue-organoid matched patients. 
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Figure 3  Identification of drug responsiveness genes. (A) Venn’s diagram of drug-related genes (P < 0.05) identified from organoid (green, n = 
819) and tissue (yellow, n = 660) samples. (B) Histograms of sample-wise correlation coefficients based on top-5000 variable genes (orange) and 
819 drug-related genes (blue) identified from organoid samples. (C) Heat map of gene expression of 75 drug-related genes (P < 0.05 in both tissue 
and organoid samples), sorted by descending order based on log-IC50 values of Folfox treatment in sample-wise. 
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Figure 4  Identification of potentially oncogenic mediators via (A) Moonlight and (B) integrated analysis. (C) Boxplots of six genes as potential 
indicators for drug response, and (D) four genes out of the six showing significant association with recurrence-free survival (RFS) among colon 
cancer patients (n = 1,296) from multiple datasets. 
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Figure 5 | Heatmap showing availability of perturbagens from the Connectivity Map in columns and their target drug-related genes in rows from 
(A) Moonlight-based oncogenic mediators and (B) tissue-organoid analysis with P < 0.15. 
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