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Understanding the genomic basis of human proteomic variability provides powerful tools to probe 
potential causal relationships of proteins and disease risk, and thus to prioritise candidate drug 
targets. Here, we investigated 6432 plasma proteins (1533 previously unstudied in large-scale 
proteomic GWAS) using the SomaLogic (v4.1) aptamer-based technology in a Scottish population 
from the Viking Genes study. A total of 505 significant independent protein quantitative trait loci 
(pQTL) were found for 455 proteins in blood plasma: 382 cis- (P < 5x10-8) and 123 trans- (P < 6.6x10-

12). Of these, 31 cis-pQTL were for proteins with no previous GWAS. We leveraged these pQTL to 
perform causal inference using bidirectional Mendelian randomisation and colocalisation against 
complex traits of biomedical importance. We discovered 42 colocalising associations (with a 
posterior probability >80% that pQTL and complex traits share a causal variant), pointing to plausible 
causal roles for the proteins. These findings include hitherto undiscovered causal links of leukocyte 
receptor tyrosine kinase (LTK) to type-2 diabetes and beta-1,3-glucuronyltransferase (B3GAT1) to 
prostate cancer. These new connections will help guide the search for new or repurposed therapies. 
Our findings provide strong support for continuing to increase the number of proteins studied using 
GWAS.   
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Genome-wide association studies (GWAS) are set to significantly impact the rapidly evolving domain 
of personalized medicine. This specialized area is dedicated to recognising the genetic and other 
variation among individuals, guiding the way towards precise risk evaluations and subsequent 
therapies tailored to distinct genetic (and other) profiles1.  

The field of proteomics adds another dimension to our understanding. The proteome participates in 
virtually every biological process, playing a critical role in both health and disease, with proteins 
serving as structural components, enzymes, signalling molecules, and more. Elucidating the genetic 
determinants of protein abundance is essential for understanding the complex interplay of genes, 
proteins, and their downstream effects on human physiology and disease susceptibility. This paves the 
way for the development of new prognostic markers2, drug repurposing3, and Precision Medicine4 
approaches. 

Recent advances in technology have dramatically increased the number of proteins that can be 
quantified to over 10,0005, with single proteomics studies exceeding sample sizes of 50,0006. The 
competing aptamer, antibody and mass spectrometry technologies differ in their mode of action, 
throughput, and the number of protein targets. Enabled by these innovations, GWAS, Mendelian 
Randomisation (MR) and comparison of local genetic architectures (colocalisation) are employed to 
unravel the complex relationships between circulating plasma protein levels and phenotypes such as 
disease risk. Leveraging naturally occurring genetic variants as instruments allows the assessment of 
the effects of lifelong exposure to altered protein levels on disease susceptibility, in a conceptually 
comparable way to performing a randomized control trial. 

In this study, we present GWAS of 6432 proteins, representing one of the most comprehensive protein-
centric association analyses to date7. We then use the resulting 31 cis associations from a little-studied 
1533-protein subset and explore connections with medically relevant traits and diseases. Post-GWAS 
analyses resulted in 43 promising links between protein abundance and phenotype, 7 of which we 
highlight due to their potential therapeutic relevance for future in-depth follow-up. Our primary aim 
is to identify novel genetic loci associated with protein abundance, thereby uncovering new regulatory 
mechanisms, and shedding light on the interplay between genetic variants and disease, mediated by 
the human proteome. 

 

Results 

Discovery of pQTLs. We performed genome-wide association analysis of over 10.5 million imputed 
autosomal single nucleotide polymorphisms (SNPs) in 200 individuals using 7595 aptamers targeting 
6432 blood plasma proteins measured with the SomaLogic v4.1 assay. Two different genome-wide 
significance thresholds were used: p<5x10-8 for cis associations, defined as being within 1 Mb from the 
gene encoding the targeted protein) and p<6.58x10-12 for trans associations, defined as all non-cis 
associations. After pruning SNPs with low allele frequency (MAF<0.05, due to low sample size), we 
identified a total of 1478 significant associations for the levels of 455 proteins. This corresponded to 
505 independent “sentinel” SNPs, as determined by clumping (Fig. 1). 76% (382/505) of the sentinel 
SNPs were cis associations (Supplementary Table 1). In total, 333 proteins had only cis associations, 
117 only trans, with 5 proteins having at least 1 cis and trans signal. The level of genomic inflation was 
well controlled for all 7595 aptamers, with the median λ value of 1.005, standard error 0.015.  

The majority, 82% (412/505), of the independent, sentinel SNPs were associated with a single protein. 
6 genomic regions were associated with 5 or more protein measurements (Fig. 2, vertical lines). These 
regions contained the CFH, HRG, BCHE, ABO, VTN and APOE genes, which have already been 
discovered as pleiotropic hubs or hotspots in previous proteomics studies8, 9, 10.  

Our analysis reveals 31 novel cis-pQTL, such as those for B3GAT1 (beta-1,3-glucuronyltransferase 1), 
DCC (Deleted in Colorectal Cancer netrin 1 receptor) and LTK (leukocyte receptor tyrosine kinase), 
allowing instrumentation of these proteins in Mendelian randomisation analyses.  
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Fig. 1 Miami plot of the 455 proteins with genome-wide significant associations. In two shades of 
blue (denoting odd and even chromosomes) are the associations of proteins that have previously been 
reported in large-scale proteomics papers10, 11, 12, 13, 14, 15 (Supplementary tables 2, 3). Proteins that were 
not found in aforementioned studies are coloured in red. Cis associations (upper part of the graph) are 
defined as being within 1 Mb of the transcription start site of the targeted protein, meanwhile all other 
associations are labelled as trans (lower part of the graph). Dashed lines represent the multiple-testing 
adjusted genome-wide significance thresholds, p ≤ 5x10-8 for cis and p ≤ 6.6x10-12 for trans 
associations. 

 

Notably, some of the genome-wide significant associations were likely due to a degree of amino-acid 
sequence homology between the aptamer-targeted protein of interest and its paralogues. The 
strongest non-hub trans-pQTL detected in this study was on chromosome 6 (rs11155297, p=5.4x10-55, 
Fig. 2, Supplementary table 1) was associated with FUCA1 (alpha-L-fucosidase 1) protein levels. 
However, the pQTL maps within the genomic region of FUCA2 (alpha-L-fucosidase 2) on chromosome 
1, the gene product of which shares 55% amino-acid sequence homology with the measured FUCA1 
protein, when analysed with Clustal-O16. Meanwhile, there was no suggestive association detected 
within the FUCA1 cis genomic region (p > 1x10-5). Hence, we conclude that in these examples 
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Fig. 2 pQTL distribution across the genome. 505 pQTL are plotted against the locations of the genes 
encoding those protein targets. Both the size and the colour of the points show the significance of the 
genetic association. Pleiotropic regions (hubs) are marked with vertical lines and the genes underlying 
the associated regions are named at the top. Only the pleiotropic regions with at least 5 trans 
associated proteins are shown as hubs. pQTL – protein Quantitative Trait Locus 

 

the aptamer might not be able to distinguish between the two paralogous proteins and therefore the 
observed strong trans association might in fact be a cis association of a mislabelled protein. 

Furthermore, two different aptamers targeting FCGR2B (Immunoglobulin G Fc Gamma receptor IIb) 
also had significant cis-associations in the vicinity of the nearby FCGR2A (Fc gamma receptor IIa) and 
FCGR2C (Fc gamma receptor IIc) coding regions, while exhibiting 73% and 89% amino-acid sequence 
homology with the encoded proteins, respectively (Supplementary Fig. 3). The connection between 
FCGR2B and FCGR2C may also be due to linkage disequilibrium (LD), with top SNPs, rs17413015 and 
rs61801833 (73 kb apart), exhibiting an LD r² value of 0.56, as evaluated with LDproxy17. In contrast, 
the sentinel SNPs, rs17413015 and rs4657041, in FCGR2B and FCGR2A, respectively, show a lower LD 
r² of 0.06, across the 166 kb between them. 

As in other studies9, 18, an inverse relationship between the minor allele frequency and the absolute 
effect size was observed for both cis and trans associations. Overall, trans associations displayed both 
smaller effect sizes and were less detectable at lower allele frequencies (Fig. 3A). Moreover, there was 
a strong influence of the distance from the transcription start site on the effect size of the cis-pQTL, 
with both the number of associations and their effect size rapidly decreasing outside the 0.15 Mb range 
(Fig. 3B). 

We next annotated our sentinel pQTLs with the functional consequence information by considering 
the most severe consequence of any variant that is in r²>0.8 with our sentinel variants. 32 out of 505 
variants in this study have a high impact (loss-of-function) on the protein structure (e.g. stop/start 
gain/lost, frameshift). These were not distinguishable in their protein-level variances explained from 
the 229 protein-altering variant group of moderate impact (in-frame insertion/deletion, 
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Fig. 3A SNPs with lower minor allele frequency tend to have larger absolute effect sizes. Cis (in red) 
and trans (in blue) associations are coloured separately to show the same L-shaped distribution. Cis-
pQTL are both more detectable and have higher effect size at lower allele frequencies than trans-pQTL. 
Variants with minor allele frequency <0.05 were excluded from this analysis. Effect sizes (beta) were 
calculated on rank-based inverse normal transformed protein level data. B. Distribution of cis-pQTL 
association p-values by distance to the transcription start site of the gene encoding the protein. 
Closer to the TSS, pQTLs tend to be more significant, with a corresponding increase in effect size. TSS, 
Transcription Start Site, pQTL – protein Quantitative Trait Locus 

 

missense), p=0.731. High and moderate impact genetic variants showed a significantly stronger effect 
on protein levels compared to 235 low-impact variants, with p-values of 2.21x10-3 and 2.98x10-8, 
respectively. This effect was observed for both cis and trans associations (Supplementary Fig. 2).  

Protein – disease links. To assess possible causal connections between plasma protein levels and 
disease outcomes or risk, we next performed bidirectional two-sample Mendelian Randomisation 
(MR). We focused on the proteins that have not yet been reported in large-scale proteomic MR studies, 
by cross-referencing the proteins targeted by the SomaLogic v4.1 assay with those measured with the 
SomaLogic v4.0 and Olink Explore 153615 assays. 1533 of the 6432 proteins quantified with the 
SomaLogic v4.1 assay were not measured in previous large-scale proteomics studies10, 11, 12, 13, 14, 15  
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Fig 4. LocusZoom plots showcasing notable potentially causal protein level and disease associations. 
A, B - B3GAT1 and prostate cancer. LocusZoom plots show a visual colocalization comparison between 
the local association architecture for circulating B3GAT1 protein levels in our study (A) and that for ebi-
a-GCST006085, a case-control prostate cancer study (B). The two studies colocalise in this locus with 
posterior probability of colocalisation (H4) = 0.91. C, D - LTK and type 2 diabetes. Colocalization 
comparison between the local association architecture for circulating LTK protein levels in our study 
(C) and that for ebi-a-GCST006867, a case-control type 2 diabetes study (D). The two studies colocalise 
in this locus with H4 = 0.95. The legends indicate Linkage Disequilibrium (LD) patterns between the 
sentinel SNP and others in the region. 

 

(Supplementary tables 2, 3) and did not have associations uncovered through GWAS that could be 
used as instrumental variables.

We further restricted our selection of instrumental variables to cis sentinel pQTL, which are near the 
genes encoding their respective proteins. This approach was intended to mitigate the impact of 
pleiotropy on our findings, as a genetic locus in cis is less likely to influence multiple unrelated 
phenotypic traits, thereby simplifying the interpretation of resulting causal relationships. In addition, 
the focus on cis pQTL effectively reduced the multiple testing burden. 

31 of the 1533 proteins had cis associations and were used as exposures in forward MR, while a curated 
list of diseases and risk factors (see Methods) from the MRC IEU OpenGWAS database19 were used as 
outcomes. We found statistically significant associations (FDR < 0.01) for 17 (out of 31) proteins and 
95 outcomes (149 protein-outcome pairs). Next, we assessed the possibility of reverse causality by 
running reverse MR, with the outcomes as exposures and the proteins as outcomes. There was no 
evidence of reverse causality (reverse MR p-value > 0.01) for any of the 149 significant protein-
outcome pairs (Supplementary table 6). 

 

Given that only a single instrumental variable was used for each of these proteins (their cis-pQTL), to 
further validate our findings we next performed a colocalisation analysis, using the “coloc” R package20. 
Colocalisation compares the local architecture of association for each trait in a Bayesian framework to 
assess whether the same underlying causal variant is responsible for the association with protein levels  
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Table 1. Noteworthy cis-pQTL associations with colocalising Mendelian Randomisation outcomes. 
The table showcases causal associations identified in this study between pQTL, protein levels and 
diseases or health outcomes that may be of medical interest. pQTL – protein Quantitative Trait Locus, 
MR – Mendelian Randomisation. Coloc PP.H4, posterior probability of colocalisation. Proteins 
represented: B3GAT1 – Beta-1,3-Glucuronyltransferase 1, LTK – Leukocyte Receptor Tyrosine Kinase, 
NIF3L1 – NGG1 Interacting Factor 3 Like 1, NTAQ1 – N-Terminal Glutamine Amidase 1, AAMDC – 
Adipogenesis Associated Mth938 Domain Containing protein, BCL7A – BAF Chromatin Remodelling 
Complex Subunit BCL7A, COMMD10 – COMM Domain-Containing Protein 10. 

 

and the association with the outcome (disease risk). Of the 149 exposure (pQTL) – outcome (disease) 
pairs, 43 showed strong evidence of colocalisation (PPH4 > 0.8), suggesting direct genetic influences 
on disease via specific proteins, highlighting targets for future therapeutic intervention. 14 out of the 
17 proteins with statistically significant forward MR associations had at least one association passing 
this sensitivity test (Supplementary Table 7). Among the 43 colocalising protein-disease outcome pairs, 
a few of the most interesting associations will be discussed in greater detail (Table 1). 

The genes harbouring each of the pQTLs passing MR and sensitivity tests were checked in the genebass 
database of aggregate associations of rare variants, but no significant aggregate associations with any 
medical phenotype in the UK Biobank were found21.

B3GAT1 and prostate cancer. We found that genetically decreased levels of B3GAT1 (CD57; beta-1.3-
glucoronyltransferase 1) are associated with increasing risk for prostate cancer (MR effect size = -0.080, 
MR p = 1.9x10-7). The reverse MR is not significant and the coloc posterior probability H4 is 0.91 (Fig. 
4A, 4B). Notably, the cis-associated rs78760579 (effect allele G, effect size = -0.80, p = 3.7x10-8) is in LD 
(r2 > 0.8) with a recently reported variant, rs878987 (p = 2.7x10-6 in this study), detected as the lead 
variant in large case-control prostate cancer GWAS22, 23 (p = 4.8x10-8). 

cis pQTL Gene Colocalising 
MR Outcome 

Coloc 

PP.H4 

GWAS  

-log(p) 

GWAS 
Effect size 

MR  

-log(p) 

MR 
Effect 
size 

rs78760579 B3GAT1 Prostate 
cancer 

0.91 7.4 -0.80 6.7 -0.080 

rs1473781 LTK Type 2 
diabetes 

0.95 12.1 0.69 5.2 0.054 

rs10931931 

 

NIF3L1 Early age-
related 
macular 
degeneration 

0.81 11.2 0.88 5.7 -0.11 

rs13258747 

 

NTAQ1 Total 
Testosterone 

0.88 10.8 -0.62 5.5 -0.02 

rs72941336 AAMDC Intrinsic 
epigenetic age 
acceleration 

0.90 14.6 -0.99 5.0 0.22 

rs1169084 BCL7A Systolic blood 
pressure 

0.85 9.7 0.68 5.5 0.23 

rs56953556 COMMD10 Parental 
longevity 
(mother's 
attained age) 

0.90 11.1 -1.34 5.4 -0.016 
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LTK and diabetes. We have shown that rs1473781 is a cis-pQTL (effect allele A, effect size = 0.69, p = 
7.75x10-13) for LTK (leukocyte receptor tyrosine kinase). This SNP was shown to causally affect type-2 
diabetes risk, mediated by LTK (MR effect size 0.054, MR p = 6.4x10-6), there is no effect in reverse MR, 
and the association passed the colocalisation sensitivity test with a posterior probability of 
colocalisation (H4) of 0.95 (Fig. 4C, 4D).  

NIF3L1 and Macular Degeneration. In the NIF3L1 (transcriptional activator NGG1 Interacting Factor 3 
Like 1) GWAS, the cis sentinel SNP, rs10931931, (effect allele T, effect size = 0.87, p = 6.3x10-12) was 
found to be causally linked to macular degeneration and decrease its risk (MR effect size -0.11, MR p 
= 2.0x10-6), with no effect in reverse MR. This association passed the colocalisation test (H4 = 0.81). 

Other notable associations. A cis sentinel SNP, rs13258747, (effect allele T, effect size = -0.62, p = 
1.7x10-11) for NTAQ1 (N-terminal glutamine amidase 1; also known as WDYHV1), showed an effect on 
the levels of testosterone (MR effect size 0.026, MR p = 4.6x10-7). Finally, we found a cis SNP, 
rs72941336, (effect allele T, effect size = 0.13, p = 2.7x10-15) for AAMDC (Adipogenesis Associated 
Mth938 Domain-Containing protein) to be involved with intrinsic epigenetic age acceleration related 
to DNA methylation (MR effect size 0.22, MR p = 1.0x10-5). Neither of these showed significant 
evidence for reverse causality and both colocalised (PPH4>0.8). 

Discussion 

The application of broad-capture proteomic profiling and linking that to genomics holds great potential 
to increase our understanding of biology and the mechanisms underlying various diseases. In this study 
we present the results of one of the most comprehensive proteomic GWAS, encompassing 6432 blood 
plasma proteins of the SomaScan v4.1 assay, of which 1533 have not been measured in any large-scale 
proteogenomic study to date. A total of 505 pQTL were identified for 455 proteins, 76% of which were 
in cis (within 1Mb of the gene encoding that protein). These results include unexplored associations 
with 58 proteins, 31 (53%) of which were categorised as cis. As for trans associations, we observed 
that 49% of them (60 out of 123) are linked to one of the trans CFH, HRG, BCHE, ABO, VTN or APOE 
hubs (Figure 2, Supplementary Table 1). Notably, this group of 6 genes has a marked enrichment in the 
regulation of coagulation and proteoglycan binding (Supplementary Table 8 GOEnrichment). A 
comparable enrichment pattern was also observed in another plasma proteomics study, utilising a 
different proteomics assay24, though not noted in other tissues25. These findings suggest that these 
hubs may represent true biological effects or, alternatively, be artifacts related to the plasma sample 
preparation process. 

Overall, we observed a higher proportion of cis signals compared to 10-31% in other large-scale 
proteomics studies10, 12. This is in accord with the idea that the smaller cohort size of this study (n=200) 
only allows for detection of proteomic GWAS signal with higher effect size, which are more likely to be 
in cis9. Furthermore, cis associations reach a plateau with increasing sample size, while the number of 
trans associations continues to rise6. 

Consistent with patterns noted in both molecular and whole-organism characteristics26, we have 
identified an inverse correlation between allele frequency and effect size (Fig. 3A). Remarkably, this 
trend holds even though we omitted rare variants (MAF < 0.05) from our analysis, due to the 
constraints of a smaller sample size. Similarly, an inverse correlation between the cis-pQTL association 
strength (p-value/effect size) and distance to the transcription start site is observed (Fig. 3B), as in 
previous proteomics studies9, 24. Notably, only 2 out of 382 cis-pQTL identified herein fell outside the 
500 kb range of the transcription start site for that protein. This is in agreement with previous 
theoretical research27 and suggests interpreting pQTL outside of this range as cis with caution. Finally, 
we have observed that when the pQTL were categorized based on their predicted protein-altering 
properties, there were significant differences in the explained variance of protein abundances. 
Specifically, the variants predicted to have a high or moderate impact played a more significant role in 
contributing to changes in protein abundance, consistent in both cis and trans associations 
(Supplementary Graph 2A, B).  
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In our analysis, we have identified notable cases with FCGR2B and FUCA1 where other proteins 
(FCGR2A, FCGR2C, and FUCA2, respectively) exhibit extensive similarity in their amino acid sequences. 
This high level of homology can lead aptamers to bind incorrectly to proteins they were not meant to 
target, creating false or misleading associations. With 70.5% of human genes having at least one 
paralog, 71.4% of which are located within 1 Mb28, future research in proteomics should exercise 
caution when interpreting results due to misidentification and amino-acid sequence similarity for both 
cis and trans associations29. 

We then followed up the 31 cis-pQTL for the hitherto unexplored protein group with Mendelian 
Randomisation, incorporating a reverse MR filter to address reverse causation. This enabled us to 
assess the potential causal role of the levels of these proteins in disease, uncover new biology and 
potential drug targets. After extracting traits categorised as medically relevant (see methods, 
Supplementary Tables 4, 5) from the OpenGWAS19 database, we have identified 149 significant 
protein-outcome associations passing both forward and reverse MR tests for 16 distinct proteins. Of 
these, a total of 43 colocalising protein-outcome pairs for 14 proteins and 39 medically relevant 
outcomes were observed. We highlight 7 protein-disease associations with newly discovered pQTL. Of 
these, B3GAT1, LTK and NIF3L1 have been researched more thoroughly in pre-existing literature and 
are discussed in more detail here. 

The B3GAT1 protein is an enzyme that participates in the biosynthesis of glycosaminoglycans - long, 
unbranched polysaccharides found on the cell surface and in the extracellular matrix that play a part 
in cell signalling30 and adhesion31. B3GAT1 knockdown in human tissues and mice experiments have 
been previously shown to moderate glycosaminoglycan structure, inhibiting spreading of tumour cells 
and increasing the survival of the animals30. Other studies have shown that human prostate luminal 
cell tumours continue expressing B3GAT1 (CD57) upon turning malignant and that this differentiation 
is among the most common prostate cancer phenotypes32, 33. Taken together, these results show that 
while B3GAT1 was shown to be involved in prostate cancer, this is the first time the causal role of the 
protein in the disease has been suggested. 

The LTK (Leukocyte Tyrosine Kinase) protein is a receptor tyrosine kinase that belongs to the insulin 
receptor superfamily. Its specific function is not fully understood, but it is believed to play a role in 
neuronal development, immune response and cancer34. LTK variants also have evidence of being 
involved in lupus erythematosus, an autoimmune disease35, 36. Despite its name, LTK is primarily 
internally expressed in adipocytes37. Annotation of LTK via STRING38 for protein-protein interactions 
has elucidated two potential pathways through which LTK may be participating in Type 2 diabetes. 
PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1), a protein facilitating insulin signal 
transduction, mutations of which have been shown to trigger insulin resistance39, has been shown to 
be essential in for LTK signal transduction through co-immunoprecipitation40. In contrast, IRS1 (insulin 
receptor substrate 1), a protein in which mutations are also well-documented to lead to type 2 
diabetes41, does not have biochemical data on interactions with LTK in humans. Instead, they are linked 
through text mining36. Finally, LTK was found to be associated with asthma, dermatitis, and cardiac 
arrhythmia in the FinnGen database, but not with type 2 diabetes42. 

NIF3L1 (NGG1 Interacting Factor 3 Like 1) is a little-studied protein that is broadly expressed in most 
tissues, including the retina43, and involved in transcriptional regulation37. A recent study utilizing 
single-cell RNA sequencing has highlighted NIF3L1 as actively transcribed across multiple retinal cell 
types44. However, their exclusive investigation into the non-coding region was unsuccessful in 
identifying a causal variant responsible for risk of age-related macular degeneration or any other eye 
disease tested. The complex Linkage Disequilibrium pattern observed (Supplementary Fig. 4) 
encompasses 7 other genes and further research is necessary to see if the sentinel variant rs10931931 
identified in this study is indeed driving the causal relationship between NIF3L1 and age-related 
macular degeneration.  
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As for drug repurposing, 8 out of 14 proteins identified to be linked to a medical trait in this study have 
approved or investigational drugs in DrugBank45. This illustrates the utility of pQTL in both discovering 
potential new drug targets and reimagining existing targets for different diseases.  

Only a single other GWAS study has used the SomaLogic v4.1 panel, to date. The study focused on 466 
chronic kidney disease patients of African American descent, performing Mendelian Randomisation 
on estimated Glomerular Filtration Rate and colocalisation with 778 phenotypes from the UK Biobank8. 
In contrast to the previous study, we have analysed a healthy European population and have 
broadened our research to encompass a comprehensive range of 3772 medically relevant traits 
available in the OpenGWAS database.  

The main limitation of this study is its relatively low sample size, with proteomic profiling being 
performed in 200 individuals. While the sample size falls short of the standard typically required for 
GWAS with effect sizes of organismal-level traits26, it has proven sufficient for analysing molecular 
traits. Specifically, we detect pQTL with large effect sizes, consistent with earlier molecular phenotype 
studies with maximum trait variance explained by the QTL reaching 22 – 39%26, 46, 47. Similarly, other 
proteomics studies using SomaLogic technology, albeit with a much larger sample size, were able to 
uncover pQTL that explained up to 75% of the variance in the observed protein levels12. 

Clearly, an increased sample size would enable discovery of variants with smaller effects. For instance, 
in this study only 4.6% of the proteins had a genome-wide significant cis association, while the largest 
proteomic studies report >90%18. Increasing the sample size would help not only with identifying 
smaller cis associations, but would also allow detection and pathway analysis of more trans 
associations, as their number increases and exceeds that of cis associations as the study power 
grows15. A better powered proteomics association study would in turn increase power in the 
downstream MR, allowing further causal protein-disease connection discovery. Nevertheless, studies 
of this size (n=200) are manifestly able to identify the strongest proteomics MR instruments. This 
approach to proteomics may serve as an alternative, yet complementary strategy to large-scale studies 
toward cost-effective instrumentation of more human proteins. 

The other limitation of the study is that we focused exclusively on the common variation in the genome 
(MAF > 0.05), again due to sample size. As shown in Figure 3a, rarer variants are more likely to have a 
larger effect size and therefore a potentially increased risk for disease. 

Finally, the sample used in this study is of exclusively European heritage, representing the predominant 
ancestry of populations where the majority of current discoveries have been made. As is the case with 
disease studies48, deploying proteomic GWAS to populations of diverse continental ancestries will 
reveal further components of the genetic architecture, due to the different variants segregating. 
Indeed, our analysis suggests that proteomic GWAS of even relatively modest sample sizes from 
diverse populations may be a fruitful strategy to increase the number of proteins that can be used as 
instruments for MR.  

Our findings provide strong support for continuing to increase the number of proteins under study in 
genome-wide association, so that many hitherto unstudied proteins will have genetic evidence 
available in drug development pathways. We further show that studies of modest sample sizes can 
reveal highly significant, novel pQTL. Deployment of this approach across multiple ancestries may be 
a cost-effective way to maximise the number of proteins for which genetic instruments are available. 
Finally, we identify new connections between proteins and disease risk which illuminate mechanisms 
and will help pave the way for new or repurposed therapies.  

 

Methods 
Study participants. The Viking Health Study – Shetland (hereafter VIKING1) is a geographically defined 
cohort with grandparents from the Shetland Isles, north of Scotland, which seeks to identify genetic 
factors influencing cardiovascular and other disease risk49. High levels of historical endogamy are 
reflected in the distinct gene pool of the VIKING1 cohort, as indicated by both common and rare 
genetic variants that set it apart from the rest of the British Isles and Europe50, 51. Recruitment of 2105 
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volunteers took place between 2013 – 2015. Each participant completed a health survey questionnaire 
and attended a 2-hour measurement clinic. Following that, overnight fasting blood samples were 
collected and frozen for downstream analyses. All participants gave informed consent, and the study 
was approved by the Southeast Scotland Research Ethics Committee, NHS Lothian (reference: 
12/SS/0151). 

A subsample of 200 participants was chosen for this study, with all 4 grandparents originating from the 
Shetland Isles and with minimal kinship to the rest of the n=200 sub-cohort. The highest genomic 
relatedness in this sub-cohort was 6%. Ages ranged from 19 – 91 (mean 52.6, s.e. 16.0), with females 
composing 53.5% of the sub-cohort. 

Plasma samples and protein measurement. Following standard processing protocols (clotting, 
centrifugation and aliquoting), EDTA-treated fasting blood plasma samples were immediately frozen 
at -40°C and thereafter kept at -70°C for long-term storage. Frozen aliquots (500 μl) were shipped on 
dry ice to SomaLogic Inc. (Boulder, Colorado, USA) for proteomic analysis. All 200 blood plasma 
samples were measured with the SomaScan assay, version 4.1 (SomaLogic Inc.). The assay is specifically 
designed for human plasma analysis and measures protein levels using 7596 aptamers, covering 6432 
unique human protein targets. Protein concentrations are measured in relative fluorescent units that 
are proportional to the actual amount of target protein in the plasma sample across a large dynamic 
range spanning 10 orders of magnitude in concentration52. 

Data quality control. Quality control of the assay results was performed both by SomaLogic and using 
in-house methods. In brief, SomaLogic quality control used hybridisation controls, median signal 
normalisation, and calibrator samples to account for the variability in target-aptamer hybridization and 
to allow a between-run comparison. This process altogether marked 289 aptamer measurements as 
inconsistent.  

We performed further quality control based on the overlap (>5%) of observed signal data points 
between calibrator (plasma-free) and the actual samples. This may indicate a lack of sensitivity or 
specificity in the aptamer binding, considering that most (7526 out of 7596) aptamer signals do not 
overlap with the calibrator signal. Aptamers were also flagged for targeting non-human proteins or 
having no specified target at all. A total of 595 aptamers were marked this way, with an overlap of 33 
with the SomaLogic quality control. The flagging system was only used descriptively to track the 
robustness of downstream analysis. 
Protein abundances were then filtered by removing outliers outside the three interquartile range from 
the median raw measurement of each protein level. This resulted in GWAS having differing sample 
sizes with a median of 198 (min 174, max 200). 

Protein-phenotype and technical covariate associations. Confounding factors are variables that can 
influence measured protein levels in the samples. These can be either inherent (e.g. sex, age), or 
technical (e.g. blood plasma sample storage time or co-ordinates on measurement plate). Technical 
artifacts, such as batch effects and some confounding factors can be accounted for to improve power 
and decrease the risk of false associations53, 54. For each aptamer, we performed multiple regression 
with the following covariates: biological sex, age, sample storage time in the freezer, season of the year 
when the plasma sample was taken, 96-well measurement plate number, row, and column. Forward 
stepwise selection with a likelihood ratio test (scipy 1.9.1, python 3) was performed to determine the 
influence of these covariates on each of the measured aptamer levels. All previously described 
covariates, except for sampling season had a statistically significant (P<0.05/7596 = 6.58 x 10-6, 
Bonferroni corrected for 7596 aptamers) effect on at least one of the measured protein levels. 
Therefore, all covariates except for sampling season were included in the GWAS model as fixed effects. 

Similarly, principal components (PC) of the Genomic Relatedness Matrix (GRM) were used to correct 
for population stratification55. The GRM was created, and PC1-20 extracted for the whole 2005 
individuals in the VIKING1 cohort using PLINK56. PCs were computed using parameters --maf 0.0025 
and --nonfounders for autosomal variants. 
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For the 200 individual sub-cohort with proteomic data, the PC1-20 were analysed using multivariate 
regression one at a time via nested models for each aptamer. No principal components were significant 
(P<0.05/(7596*20)=3.29x10-7, Bonferroni corrected for 7596 aptamers and 20 PCs) for all aptamer 
measurements and most of the aptamers exhibited a unique combination of significant PCs. However, 
due to the small sample size and limited degrees of freedom, in addition to the Scree plot having a 
clear Inflection Point (Supplementary Fig. 1), we decided to include only PC1-3 for all aptamers. As 
further post-GWAS analysis showed, this controlled for population stratification with a median 
genomic inflation control factor λ = 1.005, s.e. 0.015 (min 0.945, max 1.127) across all GWAS. λ of 44 
out of 7596 GWAS performed in this study fell outside the accepted 0.95 - 1.05 range, with 2 yielding 
genome-wide significant pQTL. These pQTL were not considered for further post-GWAS analysis. 

Genotyping and imputation. Individuals were genotyped using the HumanOmniExpressExome8 v1-
2_A (Illumina) platform. Data was called with Beadstudio-Gencall v3.0 (Illumina). SNP genotype quality 
control (QC) was carried out using PLINK 1.956. Only high-quality variants were selected: those with 
Hardy-Weinberg Equilibrium test P>1x10-6, SNP call rate >98%, individual call rate >97%. In addition, 
we detected and removed Mendelian errors by using cohort pedigree information and removed 
monomorphic SNPs. After initial Quality Control, 611,836 autosomal SNPs remained in the dataset. 
We then imputed SNPs to the Haplotype Reference Consortium (HRC) panel v1.1 using the Sanger 
Imputation Service57. Imputed variants with low imputation quality scores (INFO < 0.4) were removed 
prior to downstream analysis. 

Genome-wide association study. Due to skewness in the distributions, the relative protein detection 
levels of all 7596 aptamers were independently rank-based inverse normal transformed prior to GWAS. 
GRAMMAR residuals were computed by first regressing out the fixed effect covariates: sex, age, the 
previously described technical covariates and PC1-3 of the genetic relationship matrix (Supplementary 
Fig. 1), before modelling the relationship matrix as a random effect (GenABEL58). The resulting 
GRAMMAR residuals were then divided by the Gamma factor (GRAMMAR-Gamma)[citing 
https://www.nature.com/articles/ng.2410] and tested against genotypes using RegScan v0.559.  

Following the GWAS, due to low sample size we removed variants with minor allele frequency (MAF) 
< 0.05. 

Gene enrichment analysis. Gene enrichment analysis was conducted using the PANTHER 18.0 
Overrepresentation Test60, 61 with the GO Ontology database, version 2023-05-1062, 63. The analysed 
dataset contained trans hub genes identified in this study (CFH, HRG, BCHE, ABO, VTN and APOE), 
compared against a reference list of 20592 human genes. Fisher's Exact Test was utilized to identify 
significant overrepresentations, with False Discovery Rate (FDR) correction applied for multiple testing 
adjustments (Supplementary Table GOEnrichment). 

Cis- and trans-associations. An association was defined as cis if the associated SNP was within 1 
Megabase (Mb) of the transcription start site of the gene encoding the protein that was targeted by 
that aptamer. Conversely, associations found outside this region or on another chromosome were 
defined as trans associations. To assess the proximity of a particular pQTL to the gene encoding the 
protein, we extracted the transcription start sites for the aptamer protein targets using Ensembl 
Biomart (build GRCh37), accessed in July 202264. We used two different thresholds to define 
significance of the association: 5x10-8 for cis-pQTL, where there is prior expectation of an association, 
and 6.58x10-12 (5x10-8/7596, number of aptamers) for trans associations. 

Independent associations and LD proxies. To identify independent association signals (sentinel SNPs) 
we used clumping, as implemented in PLINK 1.965, with a window of ±250kb around the significant 
variants, and LD r2<0.01 against a reference panel of a random subset of 10,000 unrelated genomically 
British individuals from UK Biobank66, 67. PLINK options used were –clump-kb 250 --clump-r2 0.01 --
clump-p1 0.00000005 --clump-p2 0.0000025.  

For proteins with multiple genome-wide significant cis associations, further filtering was performed 
since some genomic regions have long-range Linkage Disequilibrium (LD) patterns. Such associations 
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were not considered independent if their clumping windows overlapped and only the SNP with the 
lowest p-value was retained.  

The LDproxy17 API was then used to define LD proxies in the regions of the genome-wide significant 
results. Proxies were selected if they were in LD with associated variants, using European 1000 
Genomes Project populations (CEU, TSI, GBR, IBS), with r2 > 0.8 within a 1 Mb window. LDproxy and its 
associated databases were accessed in August 2022. 

pQTL and their linked proxies were annotated using Variant Effect Predictor (VEP) for their 
consequences on the protein structure64. The consequences were divided into three categories – High, 
Moderate, and Low-Modifier. Only the most severe consequence(s) for each SNP was retrieved from 
the database and only the most severe consequence category was retained for the SNPs in LD with the 
sentinel variants in Supplementary Table 1. 

The genome-wide significant results were then assessed for novelty. Proteins targeted in the most 
comprehensive proteomics studies using the SomaLogic v4.0 protein assay were not considered novel. 
Proteins from the Olink Explore 1536 panel were also treated as non-novel15. 

Subsequent analyses were only performed on the proteins that were not reported in the largest 
published proteomics study using the SomaLogic v4.0 assay12, were not present in the Olink Explore 
1536 panel and had at least one genome-wide significant cis signal in our study (Supplementary table 
3). 

Mendelian randomisation. Bidirectional two-sample Mendelian randomisation (MR) was performed 
to assess potentially causal associations between proteins (using cis sentinel SNPs as instrumental 
variables) and diseases and risk factors from the OpenGWAS19, 68 database. The MR was performed 
using the TwoSampleMR (0.5.6) R package68, with the Wald ratio method. TwoSampleMR proxy search 
was enabled if the sentinel SNP in our study was absent in the referenced studies with default 
parameters (1000 Genomes reference, rsq = 0.8, palindromes = yes, maf_threshold = 0.3). In the two 
cases when the TwoSampleMR integrated proxy search failed to find a proxy for the sentinel SNP, the 
next strongest association within LD>0.8 from our GWAS was supplied to the pipeline instead. Because 
of their pleiotropy and complex LD structure, we excluded SNPs that fall within the ABO (build GRCh37 
chr9: 136.1311 – 136.1506 Mb) and HLA (build GRCh37 chr6: 2.9645 – 3.3365 Mb) regions. 
A subset of OpenGWAS19, 68 datasets was used: ieu-a, ieu-b, ebi-a, ukb-b (database accessed April 
2023). These datasets were further filtered for medically relevant traits and outcomes by employing a 
large language model (LLM), ChatGPT 4 (version July 20). The LLM was asked to categorise each 
outcome in the OpenGWAS database on whether they are of medical importance. After five repeats, 
the resulting categorisation (yes/no/ambiguous) for each trait was assigned a numeric value (1, 0 and 
0.5, respectively). If the five-round sum was 2.5 or higher, the corresponding trait was designated as 
exhibiting medical relevance and was selected for further study. The traits with resulting scores of less 
than 2.5 were manually curated for medical relevance before being discarded from the study 
(Supplementary Tables 4, 5).  

First, we performed forward MR, with protein levels being used as exposures and disease and risk 
factors as outcomes. To distinguish causal effects from reverse causality, the significantly associated 
(FDR < 0.01; equalling p < 1.67x10-5 in this study) 231 protein-disease pairs from the forward MR were 
used for reverse MR69, where disease/risk factors were used as exposures and protein levels as 
outcomes using the “extract_instruments” function of TwoSampleMR68. We considered there to be no 
evidence for reverse causality if the reverse MR association was non-significant (p > 0.01). 

Colocalisation. Robust associations passing the bidirectional MR sensitivity test were then tested for 
colocalisation using the R coloc 5.1.0 package20, 70. This method is used for analysis of two potentially 
related traits or diseases to investigate whether they share common underlying causal genetic 
variant(s), based on shared local genetic architectures of association. It involves testing five 
hypotheses: H0 (no causal variants for either trait), H1 and H2 (causal variant for one trait only), H3 (two 
independent causal variants, one for each trait), and H4 (a single shared causal variant influencing both 
traits). 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.01.29.24301808doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.29.24301808
http://creativecommons.org/licenses/by/4.0/


  

14 
 

A 300 kb window around each sentinel SNP was selected for the test with default priors using the 
“coloc.abf” function. Default package prior probabilities (priors) were used, with Hypotheses 1 and 2 
being assigned 1x10-4 and Hypothesis 4 1x10-5. MAF unfiltered summary statistics were used for the 
colocalisation tests. Colocalisation was declared for tests for which the posterior probability of 
colocalisation (H4) > 0.8. 

Association annotation. Clinically important associations passing all sensitivity tests described 
previously were manually assessed for recapturing known biology. The databases and tools used 
include the text-mining DISEASES platform36, The Human Protein Atlas proteinatlas.org71, GWAS and 
functional genomics database Open Targets Genetics72, 73, drug database DrugBank45, and the protein-
protein interaction network database STRING38. 

Protein sequence alignment was investigated using clustalo v1.2.416. 

Cumulative impact of multiple rare genetic variants for the protein and a linked disease outcome was 
investigated using genebass (gene-based association summary statistics)21. Burden (overall burden of 
multiple variants) and SKAT-O (incorporates weighting for rare variants) test outcomes were checked 
for phenotype-wide significant associations in all Burden sets – putative loss of function, missense and 
synonymous. 

Data availability. The summary association statistics for all proteomic GWAS in this study have been 
deposited in the DataShare repository (available under 
https://datashare.ed.ac.uk/handle/10283/705) There is neither Research Ethics Committee approval, 
nor consent from individual participants, to permit open release of the individual-level research data 
underlying this study. The datasets generated and analysed during the current study are therefore not 
publicly available. Instead, the research data and/or DNA samples are available by managed access 
from accessQTL@ed.ac.uk on reasonable request, following approval by the QTL Data Access 
Committee and in line with the consent given by participants. Each approved project is subject to a 
data or materials transfer agreement (D/MTA) or commercial contract. The UK Biobank genotypic data 
used in this study as a LD reference panel were approved under application 19655 and are available to 
qualified researchers via the UK Biobank data access process. 

Code availability. All analyses were conducted using publicly accessible software tools, which are 
detailed both in the main text and within the Methods section.  

Data handling was done in Python 3. Main modules used include pandas (v1.4), scipy (v1.4), numpy 
(v1.20) for data transformation and statistical analysis, requests (v2.22) for data download via API, and 
matplotlib (v3.2) for creating graphs. Scripts will be made available upon request. 
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