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12 Abstract 

13 In recent years, numerous methods have been introduced to predict glucose levels using machine-learning techniques on 

14 patients' daily behavioral and continuous glucose data. Nevertheless, a definitive consensus remains elusive regarding modeling 

15 the combined effects of diet and exercise for optimal glucose prediction. A notable challenge is the propensity for observational 

16 patient datasets from uncontrolled environments to overfit due to skewed feature distributions of target behaviors; for instance, 

17 diabetic patients seldom engage in high-intensity exercise post-meal. In this study, we introduce a unique Bayesian transfer 

18 learning framework using randomized controlled trial (RCT) data, primarily targeting postprandial glucose prediction. Initially, 

19 we gathered balanced training data from RCTs on healthy participants by randomizing behavioral conditions. Subsequently, 

20 we pretrained the model's parameter distribution using RCT data from the healthy cohort. This pretrained distribution was then 

21 adjusted, transferred, and utilized to determine the model parameters for each patient. Our framework's efficacy was appraised 

22 using data from 68 gestational diabetes mellitus patients in uncontrolled settings. The evaluation underscored the enhanced 

23 performance attained through our framework. Furthermore, when modeling the joint impact of diet and exercise, the synergetic 

24 model proved more precise than its additive counterpart.

25 Introduction

26 The global incidence of diabetes is on the rise, accompanied by escalating severity. This progression entails detrimental 

27 ramifications including compromised quality of life (QoL), multifarious complications, and costly surgical treatment. 

28 Projections indicate a staggering $2.5 trillion global expenditure on diabetes-related medical costs by 2030 [1]. In light of this, 

29 there is an imperative to curtail these expenses while ameliorating QoL by proactively mitigating diabetes severity.

30 Recent national clinical guidelines [34] underscore a fundamental tenet of preventive intervention: the maintenance of blood 

31 glucose levels within the normative spectrum. A pivotal approach to achieving this control involves adopting a balanced 

32 lifestyle encompassing dietary measures, physical activity, and insulin therapy. Technological strides in continuous glucose 

33 monitoring (CGM) apparatus have empowered patients in managing glucose levels via mobile applications in the comfort of 

34 their homes, facilitating self-care [2,3]. However, mastering optimal behavioral adjustments for maintaining normoglycemia 

35 remains a challenge for patients [4]. Hence, a personalized framework is imperative, one that tailors recommendations for 

36 optimal individual behaviors, thereby ensuring the trajectory of future blood glucose levels aligns with the norm. This ambition 

37 necessitates the precise anticipation of how behavioral modifications will influence forthcoming blood glucose dynamics.
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38   To date, various data-driven techniques for predicting glucose, incorporating behavioral factors, have emerged [5,6]. Prior 

39 literature primarily focused on dietary and exercise facets, employing time-series machine learning models like the 

40 autoregressive model [7] and long short-term memory (LSTM) [8] for glucose forecasting. Independent positive impacts on 

41 predictive accuracy have been demonstrated for dietary and exercise factors [6]. Yet, the synergy between these factors in 

42 achieving optimal prediction remains understudied. Recent clinical investigations [9-13] have illuminated that strategic 

43 synchronization of diet and exercise, such as moderate postprandial exercise, holds potential for further glucose reduction 

44 across diabetes profiles. However, the translation of these discoveries into predictive glucose modeling has remained uncharted.

45 When considering the amalgamation of multiple behaviors, a critical hurdle is sidestepping overfitting in learning from an 

46 imbalanced patient dataset collected in unconstrained settings. Taking the instance of diet and exercise integration, the 

47 frequency of intermediate-level post-meal exercise tends to be notably lower than that of minimal or no post-meal exercise 

48 among gestational diabetes mellitus (GDM) patients leading their daily lives [38]. Consequently, an accurate estimation of the 

49 combined impact of postprandial exercise and diet becomes challenging due to sparse data on high-intensity postprandial 

50 exercise.

51   In recent years, an innovative solution has emerged to tackle data imbalance concerns by harnessing extensive patient data 

52 through transfer learning techniques [8,14-16]. This strategy thrives when the feature distributions of other patient data exhibit 

53 a range of values. Yet, when feature distribution across all patients is markedly imbalanced, the risk of extracting and 

54 transferring inaccurate insights escalates. Our preliminary analysis indeed revealed a pronounced imbalance in the feature 

55 distribution of postprandial exercises among 68 gestational diabetes mellitus (GDM) patients observed over 18 days (Fig 7(a)).

56 This paper introduces a novel learning framework (Fig 1) that synergizes transfer learning with supplementary intervention 

57 data from a randomized controlled trial (RCT), harmonizing the distribution of behavioral features. This harmony is 

58 instrumental in predictive modeling of postprandial glucose involving dietary and exercise variables. The framework 

59 commences with an RCT, where behavioral conditions are randomized for a healthy cohort, amassing data with a balanced 

60 distribution. Subsequently, Bayesian parameter learning is executed on the prediction model utilizing the RCT data, yielding a 

61 dependable parameter distribution. Ultimately, this pre-trained distribution is judiciously rescaled and employed as a prior for 

62 each patient's parameter learning utilizing observational data from real-world scenarios. This ensures a robust knowledge 

63 transfer from the RCT domain, curtailing overfitting risks inherent in imbalanced patient data. Empirical validation underscores 
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64 the efficacy of this framework, as evidenced by enhanced prediction performance in postprandial glucose prognosis using an 

65 authentic GDM patient dataset. 

66

67 Fig 1. Overview of proposed transfer learning framework.

68

69 Related work

70 A. Integrative glucose prediction with diet and physical activity

71 Numerous machine learning techniques incorporate dietary and exercise factors to anticipate blood glucose levels. Jankovic et 

72 al. [7] and Xie [17] introduced an autoregressive model, wherein carbohydrate intake influences and muscular energy 

73 expenditure-driven exercise effects independently impact glucose levels. Likewise, support vector regression [18] and a 

74 physiological model [19] have been advanced for glucose prediction by integrating time-varying dietary and exercise 

75 influences, as computed through ordinary differential equations.

76 However, these methodologies entail training predictive models using individual patient historical data collected in 

77 unconstrained settings. Yet, these uncontrolled data settings introduce model misspecifications. This stems from the inherent 

78 imbalance in dietary or exercise feature distribution, attributed to each patient's distinct and established lifestyle. Consequently, 

79 limitations in data volume per patient compound the issue.

80 B. Glucose prediction with transfer learning

81 The primary hurdle in blood glucose level prediction lies in the scarcity of both the quality and quantity of patient data necessary 

82 for robust model training. Particularly, sophisticated deep learning techniques demand substantial training data volumes. In 

83 recent times, various strategies employing transfer learning to address this challenge have emerged. Transfer learning endeavors 

84 to construct an apt model for a target domain (referred to as a target task) by extrapolating model knowledge acquired from 

85 other domain datasets (termed source tasks) [20].

86 For instance, Faruqui et al. [8] suggested an approach entailing initial model learning using population data from a patient 

87 group as a source task, followed by transferring the model for individual patient-specific learning. Other studies have filtered 
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88 a subset of population data based on its resemblance to a target patient, employing it as training data for either a source task [8] 

89 or a target task [15]. Furthermore, to facilitate knowledge sharing among patients, a multitasking learning strategy [21] was 

90 proposed, addressing individual model learning for all patients in parallel. Additionally, for harnessing data from diverse patient 

91 groups, adversarial transfer learning [14] was proposed, which pre-aligns feature presentations between patient groups.

92 Diverging from these approaches, the introduced framework (Fig 1) takes a distinct stance. Primarily, while prevailing methods 

93 seek to augment individual data volume by integrating other patient data, our approach focuses on enhancing observational 

94 data quality through leveraging data from randomized controlled trials (RCTs). Secondly, our framework stands apart by 

95 proactively intervening to procure high-quality data, with experimental conditions randomized based on the target model 

96 structure intended for learning.

97

98 Methods

99 In this section, we elucidate the problem's context, expound on the modeling of dietary and exercise impacts for postprandial 

100 glucose prediction, and subsequently detail the implementation of transfer learning utilizing the RCT dataset.

101 A. Problem setting

102 Our model is based on an interpretable Bayesian regression model, as shown in Fig 3. We aimed to develop a predictive model 

103 that integrates the intertwined influences of both diet and exercise. Consequently, our study concentrated on forecasting 

104 postprandial glucose levels within the context of concurrent dietary and exercise effects on blood glucose. The anticipation of 

105 postprandial glucose levels assumes paramount significance in furnishing optimal behavioral suggestions, given the consistent 

106 post-meal surge in glucose levels, prone to deviations from the norm [22,23]. 

107   Consider now postprandial glucose levels with regard to the patient’s diet. When the start time of the diet is 𝜏∗, the target 

108 postprandial glucose level is represented as time series 𝒚𝜏∗+1 :𝜏∗+𝑇 of the target patient. Because the glucose level within 1 h 

109 after a diet is of clinical importance, we set T = 90 min. In addition, it is well known that carbohydrate intake (CI) increases 

110 glucose, energy expenditure (EE) from exercise lowers glucose immediately, and the features of CI [24] and EE [7] perform 

111 well for glucose prediction. Suppose, we have three types of observation variables from the patient: (i) the glucose level history 

112 before the diet 𝒚ℋ
1:𝜏∗, (ii) the CI sequence 𝐱1:𝑀 from the diet and the corresponding intake timing sequence 𝝉𝐱1:𝑀, and (iii) the EE 
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113 sequence 𝐳1:𝑁 from an exercise around a diet and the corresponding exercise timing sequence 𝝉𝒛1:𝑁. N and M denote the number 

114 of carbohydrate intakes and exercises, respectively, within one diet. Accordingly, as illustrated in Fig 2, we aim to solve a time-

115 series regression problem to predict the target variable 𝒚𝜏∗+1:𝜏∗+𝑇 from observable variables 𝒚ℋ
1:𝜏∗ ,𝐱1:𝑀,𝐳1:𝑁,𝝉𝐱1:𝑀,𝝉𝒛1:𝑁. In the 

116 following part, these observable variables are represented without the subscript such as 𝒚,𝒚ℋ,𝐱, 𝐳,𝝉𝐱,𝝉𝒛 respectively.

117

118 Fig 2. Illustration of each variable for predicting postprandial glucose.

119

120 B. Bayesian predictive model for postprandial glucose

121 Our model is based on an interpretable Bayesian regression model, as shown in Fig 3. This preference is rooted in the model's 

122 inherent transparency and traceability in contrast to complex machine learning constructs like LSTM. This transparency holds 

123 paramount significance in ensuring effective quality control for the model's real-world applications. 

124

125 Fig 3. Graphical model of postprandial glucose. Parameter sets of both healthy group and patient group are estimated 

126 separately with this same model.

127   Following this approach, our model is based on a cutting-edge Bayesian model for glucose prediction [25], wherein 

128 forthcoming blood glucose levels are prognosticated as a summation of the time-series response under a treatment—like 

129 carbohydrate intake—and a baseline glucose level, with Gaussian noise introduced. Our study delves into two variants: an 

130 additive model and a synergistic model, both designed to account for combined effects. In the former, dietary and exercise 

131 responses are discretely generated and linearly aggregated, aligning with preceding research [7,17]. Conversely, the latter 

132 model embraces interdependency between dietary and exercise responses in a synergistic manner. This is substantiated by 

133 contemporary medical insights that highlight how the impact of postprandial exercise on glucose reduction is contingent upon 

134 carbohydrate intake levels [26] and the elevation in postprandial blood glucose [27]. Our supposition in the synergistic model 

135 postulates that such interactive impacts manifest through the multiplication of dietary and exercise effects. Furthermore, for 

136 performance benchmarking, we also explore a solitary-effect model relying solely on dietary effects, as previously addressed 

137 [25].
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138   Specifically, the single-effect, additive-effect, and synergetic-effect models are represented by the following equations:

139

140

141 where 𝒚,𝓡𝒅, and 𝓡𝒆 are time series, and  𝑦base represents the baseline blood glucose level, excluding the effects of diet and 

142 exercise. Since the time range for focusing on postprandial blood glucose is quite short, we assume that 𝑦base is constant and 

143 substitute the median value of the history of preprandial blood glucose 𝒚ℋ from 15 min before the meal. 𝓡𝑑 indicates the 

144 dietary effect of increasing glucose levels, and 𝓡𝑒 indicates the exercise effect of decreasing glucose levels. 𝑒 represents the 

145 Gaussian noise following 𝑁(0,𝜎). Fig 3 shows a graphical representation of the synergistic model.

146   Furthermore, 𝓡𝑑 and 𝓡𝑒 are represented as time-series responses to each CI or EE treatment. Since patients occasionally have 

147 successive meals within 90 min and often perform postprandial exercise multiple times, 𝓡𝑑 and 𝓡𝑒 are modeled as the 

148 summation of responses for multiple treatments in the same way as below.

149

150 where N and M denote the numbers of meals and exercise sessions, respectively. Here, we adopt a bell-shaped function as the 

151 response function, following [25], because of its interpretability and smaller number of parameters. In this function, 𝜏𝐱,𝑖 and 

152 𝜏𝒛,𝑗 represent the times when CI and EE start to occur, respectively. In addition, the functions are amplified by the treatment 

153 dose, that is, the amount of CI (x𝑖) of i-th intake or the amount of EE (𝑧𝑗) of j-th exercise, for each. 𝛽𝑑 and 𝛽𝑒 are parameters 

𝒚  =   𝑦base + 𝓡𝑑(𝐱,𝝉𝐱) + 𝑒 #(1)

𝒚  =   𝑦base +  𝓡𝑑(𝐱,𝝉𝐱) + 𝓡𝑒(𝐳,𝝉𝒛) + 𝑒#(2)

𝒚  =   𝑦base +  𝓡𝒅(𝐱,𝝉𝐱) + 𝓡𝒆(𝐳,𝝉𝒛) + 𝐶𝓡𝒅(𝐱,𝝉𝐱) ∘ 𝓡𝒆(𝐳,𝝉𝐳) + 𝑒#(3)

𝓡𝑑(𝐱,𝝉𝐱) =
𝑁

𝑖=1
ℎ𝑑𝑖𝑒𝑥𝑝( ―0.5(𝜟𝑖 ― 3𝛼𝑑)2

𝛼2
𝑑

) ,   ℎ𝑑𝑖 = 𝛽𝑑 𝑥𝑖, 𝜟𝑖 = 𝒕 ― 𝜏𝐱,𝑖#(4)

𝓡𝑒(𝐳,𝝉𝒛) =
𝑀

𝑗=1
ℎ𝑒𝑗𝑒𝑥𝑝( ―0.5(𝜟𝑗 ― 3𝛼𝑒)2

𝛼2
𝑒

) ,    ℎ𝑒𝑗 = 𝛽𝑒 𝑧𝑗,  𝜟𝑗 = 𝒕 ― 𝜏𝒛,𝑗#(5)
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154 representing the strength of the above amplification for each treatment dose, while 𝛼𝑑 and 𝛼𝑒 are parameters representing the 

155 response speed to each treatment. Examples of 𝓡𝑑 and 𝓡𝑒 are shown in Fig 4. Furthermore, to enable synergistic effect model 

156 in Eqs. 3, we introduce the adjustment parameter C for weighting the synergetic effect represented by 𝓡𝑑 ∘ 𝓡𝑒, where ∘  means 

157 the element-wise product.

158

159 Fig 4. Illustration of dietary response (left) and exercise response (right) to glucose level.

160   Each of these parameters is patient-specific. Moreover, we introduce a hierarchical prior distribution of patient-specific 

161 parameters, enabling stable parameter learning by sharing parameter knowledge across individuals. We assume this hierarchical 

162 prior follows Gaussian centered on 𝚯 = (𝛼𝑑,𝛽𝑑, 𝛼𝑒,𝛽𝑒) for an additive model and 𝚯 = (𝛼𝑑,𝛽𝑑, 𝛼𝑒,𝛽𝑒,𝐶) for a synergetic model. 

163 These hyperparameters are common to each person in the same group (healthy or patient group) and are learned for each group, 

164 as shown in Fig 3. 

165 C. Bayesian transfer learning with prior rescaling from RCT data

166 Free-environment patient data are imbalanced in the distribution of the amount of each treatment (e.g., moderate-intensity 

167 exercise after a diet is significantly infrequent), which causes overfitting of the above hyperparameter set 𝚯. To address this 

168 challenge, in our proposed framework, a hyperparameter set 𝚯 of patient group domain is learned through transfer learning 

169 with RCT data actively collected from healthy group domain. 

170   Initially, we direct our attention towards enlisting healthy individuals as participants for the randomized controlled trial (RCT). 

171 This choice stems from their comparative acceptability to be intervened owing to fewer underlying health issues. To achieve 

172 balanced dose distributions for each treatment, data collection is structured to randomize treatment conditions systematically. 

173 Following this, leveraging the distributional insights garnered from the acquired RCT data, we facilitate effective learning 

174 within the patient group domain by applying and adapting the knowledge embedded in the learned hyperparameter set. 

175   In addition, our target parameters of knowledge transfer are limited to only the exercise-related hyperparameter set 𝚯𝑒 = (𝛼𝑒,

176 𝛽𝑒,𝐶) from a set of 𝚯, because the principle of the dietary effect to increase glucose differs between the diabetic group and the 

177 healthy group due to the significant difference in insulin sensitivity. In our RCT, we control only for the amount of exercise 

178 after the diets for each participant in the healthy group. The experimental procedure is described in the next section.
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179   Based on the above premise, in the context of transfer learning, our source task is to learn the exercise-related hyperparameter 

180 set 𝚯𝕊
𝑒 in the healthy group domain with interventional data under RCT, and our target task is to learn the hyperparameter set 

181 𝚯𝕋
𝑒  in the diabetic group domain with observational data under free environments.

182   In this study, we adopt a comprehensive framework for prior rescaling as introduced by Xuan et al. [20] in the context of 

183 Bayesian Transfer Learning (BTL). This framework entails learning the probability distribution of parameters within the source 

184 task, subsequently rescaling this learned distribution, and employing it as an informative prior within the target task, as depicted 

185 in Fig 5(b). Pertaining to this rescaling process, a technique [28] was put forth, specifically addressing the scaling of variance 

186 parameters using pre-estimated coefficients for the target task, while preserving the mean parameter. Notably, adapting this 

187 framework to our specific challenges presents intricacies. To elucidate, the influence of exercise on glucose dynamics within 

188 the healthy cohort might diverge from that within the diabetic group. Evidently, differences in the efficacy of glucose uptake 

189 in leg muscle tissues between healthy and diabetic groups emerge [29]. Consequently, this underscores the need for a mean 

190 parameter shift operation for our cross-domain prior prior to rescaling. 

191

192 Fig 5. Extended framework for transfer learning. In each transfer method, only relationships between variables 

193 represented as bold line are used for parameter learning.
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194 In this context, we propose extending the general framework to robustly shift the mean of the pretrained distribution of the 

195 parameter set 𝚯𝑒 based on clinical domain knowledge in prior rescaling, as shown in Fig 5(c). We aim to realize the distribution 

196 shift by introducing a new adjustment parameter 𝛈 to modulate the mean of the parameter 𝛽𝑒 representing the strength of the 

197 exercise effect on the glucose trajectory. For this, 𝜂 = 0.5 is suitable because the experimental results in the Ref. [29] show that 

198 the glucose uptake efficiency of the leg muscle in the diabetic group was about half that of the healthy group. 𝜂 for the other 

199 exercise effect parameters 𝛼𝑒 and 𝐶 in 𝚯𝑒 are assumed to 1. Furthermore, another adjustment parameter 𝛌 is introduced to 

200 robustly stabilize this distribution shift in the actual training process, and this parameter 𝛌 is used to reduce the variance of each 

201 parameter. Adding this control prevents the overfitting triggered by imbalanced exercise data in the target domain. To manage 

202 the uncertainty in setting 𝛈 and 𝛌, we introduce hyperpriors for these parameters. We then use Hierarchical Bayesian estimation 

203 with the patient dataset to determine their optimal values. Based on this, prior rescaling for the target parameter set 𝚯𝕋
𝑒  in the 

204 target task is represented by the following equation:

205

206 The parameter set 𝚯𝑒 follow Gaussian distribution with a diagonal matrix 𝚺 where a variance for each parameter element is 

207 independent of each other. And 𝛈 follow Gaussian hyperprior where mean parameters correspond to 0.5 for 𝛽𝑒 and 1 for others. 

208 Also, 𝛌 follow Gaussian hyperprior with setting mean parameter to 0.1 respectively. The learning process for practical 

209 parameter learning is performed in two steps. The first step is we pre-train Gaussian parameters 𝛍𝕊,𝚺𝕊 for the distribution of 

210 𝚯𝕊
𝑒 with RCT data in the source task. The second step is we rescale this estimand 𝛍𝕊, 𝚺𝕊 as in E.q 7, and then we perform 

211 learning all hyperparameter sets 𝚯𝕋
𝑒 ,𝚯𝕋

𝑑 with observational patient data, in conjunction with learning individual parameters 𝚯𝕋
𝑒

212 ,𝚯𝕋
𝑑 for each diabetes patient. These parameter learnings are performed by executing a Markov Chain Monte Carlo (MCMC) 

213 simulation with the No U-Turn Sampler implemented in RStan [35].

214 Experimental setup

215 This paper addresses two pivotal research questions.

𝚯𝕋
𝑒  ~ 𝑁(𝛍𝕋,𝚺𝕋)#(6)

     𝛍𝕋 =  𝛈 𝛍𝕊,  𝚺𝕋 = 𝛌 𝚺𝕊#(7)
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216 (i) How should the utilization of an RCT dataset for transfer learning be structured to acquire a predictive glucose model 

217 from an imbalanced patient dataset?

218 (ii) How can the fusion of diet and exercise be effectively modeled to optimize the prognostication of postprandial glucose 

219 levels?

220 To answer these questions, we built multiple patterns of predictive models with multiple patterns of transfer learning and 

221 compared their performance based on dedicated metrics using a real-world clinical dataset of GDM patients.

222 A. Evaluation policy

223 First, for question (i), we compared the performance of each predictive model built with and without normal or extended 

224 transfer learning described in ‘Methods B’ subsection. Second, for question (ii), we evaluated and compared the performance 

225 of the single effect model [25], the additive model, and the synergetic model described in ‘Methods A’ as a predictive model. 

226 Finally, we compared the performance of the following seven models:

227  ℳ𝑏𝑎𝑠𝑒 :  Single-effect model

228  ℳ𝑎𝑑𝑑 :  Additive model without transfer learning

229  ℳ𝑠𝑦𝑛 :  Synergistic model without transfer learning

230  ℳ𝑎𝑑𝑑+𝑡𝑟𝑎𝑛𝑠 :  additive model with normal transfer learning

231  ℳ𝑠𝑦𝑛+𝑡𝑟𝑎𝑛𝑠 : Synergistic model with normal transfer learning

232  ℳ𝑎𝑑𝑑+𝑡𝑟𝑎𝑛𝑠_𝑒𝑥𝑡 :  additive model with extended transfer learning

233  ℳ𝑠𝑦𝑛+𝑡𝑟𝑎𝑛𝑠_𝑒𝑥𝑡 : Synergistic model with extended transfer learning

234   In cases without transfer learning, we substituted a non-informative prior for the hyperparameter set 𝚯𝕋
𝑒 . Notably, for any 

235 model pattern, knowledge of exercise-related parameters is still shared among all patients in learning through the hierarchical 

236 prior (‘Methods A’ subsection). Furthermore, note the additive model has limited exercise-related parameters 𝚯𝑒 = (𝛼𝑒,𝛽𝑒) 

237 which are a subset of the parameters of the synergetic model (See Eq. 2 and 5).

238 B. Clinical data

239 The clinical data used for our performance evaluation were from a real-world free-environmental dataset of 72 patients with 

240 GDM, including continuous glucose levels, physical activity levels, and dietary records. This dataset, sourced from real-world 
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241 environments, emerged from a clinical trial orchestrated by the authors [4]. This trial was granted ethical sanction by the Ethics 

242 Committee of Helsinki and the Uusimaa University Hospital District. The recruitment effort targeted patients with GDM within 

243 the gestational window of 24–28 weeks, sourced from maternity clinics in the Helsinki metropolitan area between March 10 in 

244 2021 and December 12 in 2022. Written informed consent was obtained from all patients, and from both parents on behalf of 

245 the infant. Data acquisition occurred across 3-day intervals in monthly sessions leading up to childbirth. It's important to note 

246 that this analysis represents a secondary examination of the eMoM GDM study [4].

247 Throughout each session, a continuous glucose monitoring (CGM) system (Guardian Connect System, Medtronic Ltd.) 

248 facilitated 5-minute interval glucose tracking for every patient, illustrated in Fig 6. Concurrently, data related to physical 

249 activity were collected through a wrist-worn activity tracker (Vivosmart3, Garmin International Ltd.). Energy expenditure 

250 during exercise was automatically computed via the tracker. Dietary information encompassed nutrient quantities, including 

251 carbohydrate intake (CI), ingested at each temporal juncture, sourced from patients' manual food logs via a food tracking 

252 application developed by Helsinki University Hospital. Nutritional data integrity was fortified through nutritionist validation 

253 calls. Further information on the experimental protocol can be found in [4].

254

255 Fig 6. Demonstration of train and test data in a 3-days session.

256 C. Preprocessing

257 Given our focus on postprandial blood glucose as the prediction target, we partitioned the continuous glucose data and 

258 accompanying variables around each mealtime, as depicted in Fig 6. Each segment encompassed a time span of 15 minutes 

259 preceding a meal, extending to 90 minutes post-meal. Segments with absent continuous glucose data were omitted from 

260 analysis, leading to the exclusion of 4 patient datasets. As a result, 1619 segment of data were obtained from 68 patients. 

261 Subsequently, the segment data in the first two days of each session were used as the training data 𝓓𝕋
𝑡𝑟𝑎𝑖𝑛, and the segment data 

262 in the last day were used as the test data 𝓓𝕋
𝑡𝑒𝑠𝑡. The predictive model was trained in each session and its evaluation was 

263 performed within that session. This is because the segment data of the next month's session are heterogeneous from that of the 

264 current month, as the condition of a pregnant woman changes drastically after one month, even for the same individual [39].

265 D. Randomized controlled trial
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266 The RCT data for our source task were collected from additionally recruited 4 healthy subjects (Aalto University students) in 

267 a six-days session with the same data collection as that in the clinical trial. The recruitment period was from February 1 in 2023 

268 to April 30 in 2023. Written informed consent was obtained from all the participants for data collection and utilization. The 

269 purpose of the RCT was to obtain a segmented dataset in which the distribution of EE during postprandial exercise enables 

270 robust learning of the exercise-related parameter set 𝚯𝕊
𝑒. Therefore, the postprandial exercise conditions during data collection 

271 were randomized for each participant. In practice, the subjects were instructed to follow different conditions, as follows (See 

272 Fig 1).

273  Low-intensity condition (Day 1 & Day 4)

274  Eat almost same amount of carbohydrate at lunch (or dinner)

275  Don't perform an exercise until two hours after eating.

276  Moderate-intensity condition (Day 2 & Day 5)

277  Eat almost same amount of carbohydrate at lunch (or dinner)

278  30 minutes after starting eating, walk continuously at a pace of 100 step/min for 20 minutes.

279  After walking, don't perform an exercise until two hours after eating.

280  High-intensity condition (Day 3 & Day 6)

281  Eat almost same amount of carbohydrate at lunch (or dinner)

282  30 minutes after starting eating, walk continuously at a pace of 130 step/min for 20 minutes.

283  After walking, don't perform an exercise until two hours after eating.

284   The above exercise conditions were designed based on clinical findings of the effect of exercise on glucose. Specifically, 

285 according to the literature [30], the appropriate timing of exercise for decreasing blood glucose was reported to be 30 min after 

286 the start of meals, when the exercise content was continuous walking for 20 min. 

287   While the exercise condition differed between the days, the dietary condition was controlled to be the same for all days for 

288 each subject, as shown in Fig 1. This is because by equalizing the dietary effect on postprandial glucose among all days in a 

289 subject, the learning of targeted exercise parameter sets 𝚯𝕊
𝑒 can be facilitated more in our source task. Additionally, the 

290 participants were asked to choose breakfast or lunch as the target diet for each day.
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291   The RCT and data preprocessing resulted in 24 segments of data 𝓓𝕊
𝑡𝑟𝑎𝑖𝑛. Fig 7 shows the actual distribution of the EE in the 

292 interventional RCT and observational GDM datasets. This confirms lesser imbalance in the distribution from the RCT dataset 

293 compared to that from the GDM dataset.

294

295 Fig 7. Actual distribution of energy expenditure (EE) in postprandial exercise.

296 E. Parameter learning and prediction

297 The posterior of the overall parameter sets involved in each model among the seven patterns was estimated by MCMC 

298 simulation using both the observational training data 𝓓𝕋
𝑡𝑟𝑎𝑖𝑛 of the GDM group and the interventional RCT data 𝓓𝕊

𝑡𝑟𝑎𝑖𝑛 of the 

299 healthy group. Subsequently, we obtained the point estimation values 𝚯𝕋
𝑒 ,𝚯𝕋

𝑑 which are a set of a posteriori medians for each 

300 parameter for each patient. Then, the predicted future postprandial glucose trajectory 𝒚𝜏∗+1:𝜏∗+𝑇 was obtained by applying the 

301 model embedded with 𝚯𝕋
𝑒 ,𝚯𝕋

𝑑 to the observed variable values 𝒚ℋ,𝐱,𝒛,𝝉𝐱,𝝉𝐳 in the test data 𝓓𝕋
𝑡𝑒𝑠𝑡 of the GDM group.

302 F. Metrics

303 The most important evaluation criterion is the extent to which the predicted glucose series 𝒚 is coincident with the actual 

304 observation series 𝒚. Therefore, we evaluated (1) the root mean squared error (RMSE) of the predicted series and (2) the mean 

305 absolute error (MAE). Additionally, we evaluated the degree of coincidence of (3) the area under the curve (AUC) and (4) the 

306 postprandial maximum value of the glucose series because these are well-known glycemic indicators for diabetes research [36]. 
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307

308   After calculating each metric following the above equations for all segment data included in the test data 𝓓𝕋
𝑡𝑒𝑠𝑡, the average 

309 of the metric values among all segments was used as the final metric score.

310 Result

311 Table 1 presents the conclusive average metric scores for each model across segments both with and without postprandial 

312 exercise. Within this context, an exercise segment is delineated by an energy expenditure (EE) exceeding 60 kcal. Focusing 

313 initially on segments involving postprandial exercise, we observe that the synergetic model, trained through extended transfer 

314 learning with RCT data, achieves the highest performance. Additionally, the augmentation of performance is evident across 

315 both the additive and synergetic models due to extended transfer learning, affirming its efficacy. Notably, this enhancement is 

316 particularly pronounced in the synergetic model, attributed to its more intricate model structure. Conversely, across segments 

317 devoid of postprandial exercise, the metrics remain largely consistent across all models. This consistency aligns with 

318 expectations, given that the exercise effect (Re) within the additive or synergetic model approximates zero in the absence of 

319 postprandial exercise. Consequently, the forecasted glucose trajectory converges with that of the single model (Eq. 1-3).

320

321 Table 1. Average metric scores with standard error.

(1) 𝑅𝑀𝑆𝐸 =
1
𝑇

𝜏∗+𝑇

𝑡=𝜏∗+1

(𝑦𝑡 ― 𝑦𝑡)2

(2) 𝑀𝐴𝐸 =
1
𝑇

𝜏∗+𝑇

𝑡=𝜏∗+1

|𝑦𝑡 ― 𝑦𝑡|

(3) 𝐸𝑅𝑅𝐴𝑈𝐶 = | 𝜏∗+𝑇

𝑡=𝜏∗+1

𝑦𝑡  ―

𝜏∗+𝑇

𝑡=𝜏∗+1

𝑦𝑡|
(4) 𝐸𝑅𝑅𝑀𝐴𝑋 = |max

𝑡
𝑦𝑡  ― max

𝑡
𝑦𝑡|
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322

323   The variations in the projected glucose trajectory by the synergetic model for each training scheme are depicted in Fig 8. 

324 Instances of (a) no transfer and (b) regular transfer reveal discrepancies between the projected value (dark pink line) and the 

325 actual value (black dot). This discord stems from an overestimation of the exercise effect, which hampers the glucose response 

326 induced by diet (light pink line) subsequent to exercise events (green bar). In contrast, Fig 8(c) showcases the efficacy of 

327 extended transfer learning, encompassing a distributional shift from the RCT dataset. This approach ensures an appropriately 

328 calibrated exercise effect in terms of intensity and timing, consequently yielding ameliorated prediction errors.

329

330 Fig 8. Difference in predicted glucose trajectory with each training pattern.

331   Furthermore, Fig 9 illustrates instances of projected trajectories by the single, additive, and synergetic models. Notably, the 

332 glucose surge projected by the single model (a) exhibits a pronounced delay compared to the actual rise. This delay is likely 

333 attributed to overfitting of dietary parameters due to the omission of the exercise effect. Contrastingly, the combined models 

334 (b) and (c) aptly replicate the glucose elevation, demonstrating their success in addressing this aspect.

335

336 Fig 9. Examples of trajectory predicted by each glucose model.

337   These results demonstrate the effectiveness of our transfer learning framework with RCT data and the synergistic modelling 

338 of dietary and exercise effects on glucose.

339 Discussion

With postprandial exercise
(N=23)

Without postprandial exercise
(N=528)

Model

𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝐸𝑅𝑅𝐴𝑈𝐶
𝐸𝑅𝑅𝑀𝐴𝑋 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝐸𝑅𝑅𝐴𝑈𝐶 𝐸𝑅𝑅𝑀𝐴𝑋

ℳ𝑏𝑎𝑠𝑒
0.93 

(±0.15)
0.72 

(±0.12)
62.64 

(±13.30)
    0.83 
(±0.21)

0.89 
(±0.02)

0.68 
(±0.02)

54.37 
(±2.03)

0.98 
(±0.03)

ℳ𝑎𝑑𝑑
0.92 

(±0.14)
0.70 

(±0.11)
55.63 

(±13.17)
0.78 

(±0.17)
0.90 

(±0.02)
0.70 

(±0.02)
55.35 

(±2.11)
1.01 

(±0.04)

ℳ𝑎𝑑𝑑+𝑡𝑟𝑎𝑛𝑠
0.92 

(±0.14)
0.70 

(±0.11)
59.22 

(±13.03)
0.81 

(±0.19)
0.90 

(±0.02)
0.70 

(±0.02)
55.27 

(±2.11)
1.00 

(±0.04)

ℳ𝑎𝑑𝑑+𝑡𝑟𝑎𝑛𝑠_𝑒𝑥𝑡
0.86 

(±0.14)
0.66 

(±0.11)
55.42 

(±12.61)
0.79 

(±0.20)
0.90 

(±0.02)
0.69 

(±0.02)
55.21 

(±2.08)
1.00 

(±0.03)

ℳ𝑠𝑦𝑛
1.18 

(±0.25)
0.87 

(±0.17)
84.19 

(±19.50)
0.87 

(±0.18)
0.91 

(±0.02)
0.70 

(±0.02)
55.99 

(±2.16)
1.02 

(±0.04)
ℳ𝑠𝑦𝑛+𝑡𝑟𝑎𝑛𝑠 0.99 

(±0.14)
0.76 

(±0.11)
68.14 

(±13.02)
0.95 

(±0.21)
0.90 

(±0.02)
0.70 

(±0.02)
55.50 

(±2.15)
1.02 

(±0.04)
ℳ𝑠𝑦𝑛+𝑡𝑟𝑎𝑛𝑠_𝑒𝑥𝑡 0.85 

(±0.13)
0.65 

(±0.10)
53.57 

(±11.65)
0.77 

(±0.19)
0.90 

(±0.02)
0.70 

(±0.02)
55.34 

(±2.09)
1.00 

(±0.04)
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340 An intrinsic strength of the proposed methodology lies in the transparency and visibility of the trained models and their 

341 parameters, as depicted in Fig 3. This transparency facilitates seamless incorporation into the formulation of personalized 

342 behavioral recommendations for individual patients. Moreover, the integration of transfer learning with randomized controlled 

343 trial (RCT) data notably amplifies this capability by refining model parameters with heightened precision. For example, if the 

344 absolute value of exercise parameter 𝛽𝑒 in Eq. Five is estimated to be small in some patients, the exercise effect 𝓡𝑒 is not likely 

345 to appear easily, implying that recommendations regarding postprandial exercise should be of moderate (or higher) intensity. 

346 Here, Fig 10 shows actual examples of the posterior of the parameter 𝛽𝑒 estimated for each healthy participant on the top and 

347 each patient on the bottom. As the example in Fig 8 belongs to patient P1 in Fig 10, we can confirm the overestimation of 𝛽𝑒 

348 from Fig 10(a) and (b) at the bottom. In the context of practical recommendation scenarios, this tendency results in excessively 

349 optimistic and potentially detrimental suggestions, assuming a minor exercise could significantly enhance the patient's glucose 

350 profile. Yet, as depicted in Fig 10(c), this misalignment is rectified through extended transfer learning, facilitated by prior 

351 rescaling via the incorporation of shifting and shrinking operations outlined in Eq. 7. This underscores the efficacy of the 

352 proposed transfer learning technique, enabling the formulation of exercise recommendations that genuinely optimize 

353 postprandial glucose reduction for individual patients, thanks to the precise acquisition of parameters. 

354

355 Fig 10. Estimated distribution of parameter 𝛽𝑒 for each patient.

356    An additional advantage offered by the proposed transfer learning technique is its intrinsic ability to automatically establish 

357 a fitting prior distribution. Practical Bayesian modeling often entails substantial reliance on domain-specific knowledge for 

358 setting informative priors [31]. Nevertheless, acquiring such requisite knowledge for training intricate time-series models is 

359 notably challenging, given the nascent state of corresponding medical insights in numerous cases [32]. In response to this 

360 challenge, our approach empowers the creation of prior distributions with minimal domain knowledge, achieved through 

361 leveraging RCT data acquired via active intervention. Furthermore, due to the inherent simplicity of our devised framework 

362 (Fig 1), its applicability extends to glucose prediction for diverse patient cohorts and other complex prognostication tasks within 

363 the healthcare domain.

364 However, an intriguing and contentious issue revolves around determining the requisite volume of data for a dedicated RCT 

365 within our framework. Guided by the Law of Large Numbers, the greater the volume of RCT data amassed, the more balanced 

366 the target distribution becomes, consequently bolstering the robustness of parameter learning. Nevertheless, amassing a 
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367 substantial quantity of high-quality RCT data necessitates significant time and resources, given the demand for large-scale 

368 experimental endeavors.

369  Therefore, in practice, the amount of RCT data should be determined flexibly depending on the results of the convergence 

370 diagnosis in parameter learning. Here, the values of convergence indicator 𝑅 [31] for each parameter in 𝚯𝕊 = (𝛼𝑑,𝛽𝑑,𝛼𝑒,𝛽𝑒,𝐶) 

371 were (1.0001, 1.0040, 1.0017, 1.0008, 1.0013) for each, in our source task. Because 𝑅 < 1.1 is conventionally considered that 

372 parameter learning converges, and the number of RCT could be sufficient to specify the posterior distribution of the parameters. 

373   In our exploration of exercise's impact, our focus thus far has centered on the immediate reduction of glucose levels owing to 

374 muscular fatigue. However, insights gleaned from prior medical investigations [33] underscore a persistent, longer-term 

375 influence of exercise on enhancing insulin sensitivity and adeptly regulating blood glucose responses through repeated vigorous 

376 physical activity in patients' daily routines. In forthcoming endeavors, we aim to integrate these enduring exercise effects into 

377 our glucose prediction model, striving for optimal predictive accuracy and the formulation of tailored behavioral 

378 recommendations for patients. It's worth noting that other variables such as stress, sleep patterns, time zone disparities, dietary 

379 history, and medical conditions also exert influence on glucose trajectories [6,23,37]. To refine our predictions and model 

380 training, we intend to encompass these additional factors within our glucose modeling framework in future research.

381 Conclusion

382 We present an innovative transfer-learning framework utilizing randomized controlled trial (RCT) data for postprandial glucose 

383 prediction, integrating both dietary and exercise behaviors. The effectiveness of this framework was assessed using real-world 

384 data collected from 68 patients with gestational diabetes mellitus (GDM) in their everyday settings. The evaluation conclusively 

385 demonstrates performance enhancement in postprandial glucose prediction through the implementation of our proposed transfer 

386 learning approach. Our findings also underscore the superior accuracy of the synergetic model compared to the additive model 

387 in modeling combined factors. Moving forward, our research aims to incorporate the prolonged glycemic impact of exercise 

388 routines to forge a superior predictive model for tailored recommendations. Additionally, we will extend the application of this 

389 framework to various prediction tasks to gauge its adaptability and versatility in future.
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