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Abstract

The success  of  artificial  intelligence  and machine  learning  is  an  incentive  to  develop new
algorithms to increase the rapidity and reliability of medical diagnosis. Here we compared different
strategies aimed at processing microscope images used to detect anti-neutrophil cytoplasmic antibodies,
an important vasculitis marker: (i) basic classifier methods (logistic regression, k-nearest neighbors and
decision tree) were used to process custom-made indices derived from immunofluorescence images
yielded by 137 sera. (ii) These methods were combined with dimensional reduction to analyze 1733
individual cell images. iii) More complex models based on neural networks were used to analyze the
same dataset. The efficiency of discriminating between positive and negative samples and different
fluorescence patterns was quantified with Rand-type accuracy index, kappa index and ROC curve. It is
concluded that basic models trained on a limited dataset allowed positive/negative discrimination with
an efficiency comparable to that obtained by conventional analysis performed by humans (0.84 kappa
score).  More  extensive  datasets  may  be  required  for  efficient  discrimination  between  different
fluorescence patterns generated by different auto-antibody species.

Keywords:  Artificial  intelligence,  ANCA,  immunofluorescence,  vasculitis,  image  analysis,
myeloperoxdase, proteinase 3.

1 - Introduction

The steady growth of the diversity, power and cost of therapeutic tools is an incentive to attempt
at increasing the precision of diagnosis without a parallel increase of expenses. The spectacular 
progress of computer-based methods, referred to as artificial intelligence (AI) or machine learning 
(ML) may be of considerable help in this respect, by allowing to extract maximal information from 
biological data with optimal rapidity and minimal recourse to biological experts. Despite initial 
disappointment met several decades ago along this line [1], the tremendous progress of machine 
learning algorithms resulted in a steady development of the use of AI in medicine [2], be it to process 
large datasets generated by multi-omic methods in order to elaborate general prediction algorithms [3], 
identify new markers of clinical interest [4] or to analyze the output of standard biological tests 
performed on individual patients in order to achieve more rapid, more reliable and less costly diagnosis
[5].
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Indirect immunofluorescence has long been considered as an important tool, and even a so-
called gold standard, to detect anti-nuclear antibodies (ANAs) associated to severe conditions such as 
systemic lupus erythematosus [6][6], or anti-neutrophil cytoplasmic antibodies (ANCAs) that are 
associated to a number of vasculitis-involving syndromes [7]. The basic principle consists of exposing 
fixed cells to patients’ sera, and looking for the presence of auto-antibodies by microscopical 
observation of slides labeled with fluorescent anti-immunoglobulin antibodies. ANAs are usually 
detected on Hep-2 cells, and ANCAs on polymorphonuclear leukocytes. An experienced pathologist is 
required to recognize specific patterns revealing the presence of suspected antibodies. Thus, the 
examination of fluorescence patterns on ethanol-fixed leukocytes may reveal so-called cellular-type 
ANCAs (C-ANCAs) with a cytoplasmic pattern usually associated to anti-proteinase 3 antibodies, or 
perinuclear-type ANCAs (P-ANCAs), usually associated to anti-myeloperoxidase antibodies [8]. Other 
patterns may be due to ANAs or antibodies of other specificities that may be indicative of different 
pathological situations with different therapeutic implications [9] [10]. The well recognized finding  
[11] [12] [13] that inconsistencies may occur between different laboratories is a strong incentive to 
attempt as standardizing the processing of immunofluorescence images [14]. While numerous attempts 
have long been made at developing automatic diagnostic procedures, these methods required the 
definition, measurement and processing of numerous so-called hand-crafted [11] texture parameters 
[15]. It was thus an attractive prospect to take advantage of rapidly developing ML methods that allow 
to build classification algorithms by autonomous treatment of training datasets and met with impressive
success in important domains such as text or facial recognition [16] [17]. Further, the availability of 
these algorithms is strongly increased by the development of open access platforms such as scikit learn 
(http://scikit-learn.org) or tensor flow(https://www.tensorflow.org/), that include exhaustive online 
documentation and the use of which is facilitated by excellent written tutorials [18] [19]. Accordingly, 
these platforms are currently used in state-of-the-art research projects [20] [21].

An essential requirement to foster progress is to make use of objective tools for measuring the 
efficiency of different classification methods. The fraction of accurate predictions, that may be 
designated as predictive accuracy (pa),  is a widely used and fairly intuitive reporter of the efficiency of
binary classification [11] However, it may provide a less appropriate measure of the efficiency of 
multiclass data partition, that may be more precisely represented by parameters such as Rand index 
[22]. Also, a calculated classification accuracy may be deceptive. Indeed, if an algorithm is used to 
detect positive samples in a batch of sera that are mostly negative - a quite common situation - a very 
high accuracy may be obtained by classifying all samples as negative ! A widely used correction [23] 
consists of calculating the accuracy increase provided by a model as compared to random agreement 
following a simple equation, yielding so-called Cohen kappa index.

ka =  (pa - random pa)/(maximum pa - random pa) [1]

where ka is for kappa index, random pa is he precision accuracy corresponding to a random choice, 
and maximum pa the precision provided by a fully exact model. This index was used in numerous 
reports of diagnostic accuracy [24] [25] [12]. It was suggested to consider the agreement as moderate, 
substantial or perfect when kappa index is respectively higher than 0.4, 0.6 and 0.8 [23]. It must be kept
in mind that this index is dependent on diagnostic criteria as well as the specific features of the sample 
population used to perform the comparison between a given model and a gold standard. It may thus be 
appropriate to mention "kappa-type measures" [23]and give detail on the exact algorithm used to 
calculate kappa index.  Further, a more exhaustive account of the efficiency of a method is provided by 
plotting sensitivity (i.e.  the fraction of positive samples that are classified as positive) versus one minus

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2024. ; https://doi.org/10.1101/2024.01.26.24301725doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301725


3/19

specificity (where specificity is the fraction of negative samples that are classified as negative). This is 
called the receiver-operator-characteristic (ROC) curve [26], and the model efficiency is expressed as 
the area under the curve (auc) that is expected to be comprised between 0.5 (corresponding to a random
classification) and 1 (corresponding to a perfect classification. It is important to recall that this curve is 
dependent on the population used to perform the comparison. In a recent metaanalysis of 56 reports 
[27], the minimal auc value required for a test to be considered as good or very good ranged between 
0.75 and about 0.95. Also, it may be useful to use an index suited for both binary and multilabel 
classification. A Rand-type index corrected for random agreement elaborated by the scikit-learn tem 
was found convenient in a recent study [28]. This index will be designated here as corrected predictive 
accuracy (cpa). As shown below, this was found to be tightyly related to pa, kappa index and auc (see 
section 2.1 and Figure 2).

In view of the diagnostic importance of ANA or ANCA detection, automatic methods have long
been  elaborated  to  obviate  the  aforementioned  problems  associated  with  visual  microscopic
examinations  [29]. The starting point was the use of image analysis and procedures such as image
segmentation and texture quantification. This allowed to develop commercially available systems that
reliably performed simple tasks such as discrimination between positive and negative samples  [30].
Thus,  a  simple  algorithm elaborated  in  our  laboratory  allowed safe  discrimination  between ANA-
positive and negative samples with a kappa coefficient of 0.92 [25] comparable to values obtained with
a number of commercial  systems  [30]. However,  the recognition of specific patterns appears more
challenging with a recognition efficiency of some commercial systems varying between about 40% and
85% [30]. As recently reviewed [11], numerous reports dealt with the application of recent ML tools to
the recognition of ANA patterns. However, ANCA detection may be considered as more demanding
since neutrophils display more complex nucleus shapes than Hep-2 that are used for ANA detection
[24] [29]. Further, a limitation of commercial systems is that is is difficult to freely improve available
tools due to the complexity and limited availability of the algorithms they use. 

The aim of the present report was to present a detailed description of the potential of currently
available machine learning tools to classify immunofluorescence images used for ANCA detection. We
first built a dataset including 1733 cell images obtained by processing 137 sera. Two strategies were
followed.  First,  microscopic  images  were  used  to  extract  four  features  suggested  by  biological
experience, and assess the capacity of basic machine learning tools including logistic regression, K
neighbor classifier and decision tree. Secondly, cell images (2500 pixels) were  subjected to individual
analysis with aforementionded models and more complex neural networks. It is concluded that, while
kappa scores higher than 0.8 were easily obtained for discrimination between positive and negative
samples,  more  work  and more  extensive  datasets  are  required  to  allow pattern  classification.  The
promise and pitfalls of several development strategies are exemplified by preliminary data.

2 -  Methods

2.1 - Patients.
This  retrospective  study  was  performed  on  137  sera  processed  in  the  immunology  laboratory  of
Marseilles public hospitals for detection of antineutrophil cytoplasmic antibody (ANCAs), as requested
by  clinical  departements.  All  serum  samples  were  part  of  Marseilles  Biobank  (registered  as  DC
2012_1704) and the study was approved by the medical evaluation board and health data committee of
Assistance Publique-Hôpitaux de Marseille, Marseille, France and fulfilled local requirements in terms
of data collection and protection of data (GDPR 2019-133).
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2.2 - Immunofluorescence
ANCA and their staining pattern (perinuclear, cytoplasmic) were detected by IF on ethanol-

fixed  human  neutrophil  slides  (Immuno  Concepts,  CA,  USA)  [31].  Serum  samples  diluted  in
phosphate-buffered saline were added for 30 minutes at room temperature (RT). After washing, bound
antibodies were labeled by incubation with fluorescein isothiocyanate (FITC)-conjugated sheep anti-
human immunoglobulin (Immuno Concepts, CA, USA) for 30 minutes at RT. Slides were then washed
and  embededded  with  a  4,6-diaminophenylindol  (DAPI)  containing  medium  (Vectashield,  Vector
laboratories inc, Burlingame, Ca) for nuclear staining.

For each patient, two images of a same central microscopic field were automatically captured
with 20x objective at two different excitation wavelengths: 480 nm for FITC stain and 360 nm for
DAPI stain.  We used  a fully robotized fluorescence microscope (Axio Imager M2, Carl Zeiss, Jena,
Germany) equipped with an automated 200-slide handling system (SlideExpress, Märzhäuser, Wetzlar,
Germany) and with 360 nm and 480 nm LEDs for excitation (Colibri 2 LED illumination system, Carl
Zeiss, Jena Germany). Images with 1360 × 1024 pixels resolution were captured using a monochrome
CCD camera (ProgRes® MF Cool camera, Jenoptik, Germany) with pixel size of 6.45 μm 2 . Exposure
times for FITC and DAPI captures were 70 ms and 200 ms respectively. All captured grayscale
images  were 8 bit-depth and have  been saved in  Tagged Image File  Format  (TIFF) as  previously
described [14]. Representative images are shown on Figure 1. 

Figure 1. Representative Microscopic images. Ethanol fixed neutrophils were processed for immunofluorescence with a
serum positive for C-ANCA (A-B) or P-ANCA (C-D) and the localization of DAPI (A-C) or FITC (C-D) was revealed by
fluorescence microscopy.

2.3 - Elisa testing.
The specificity of samples classified as positive was checked by looking for anti-myeloperoxidase or
anti-proteinase-3  antibodies  by  Enzyme-linked  immunoassay  (ELISA,  Euroimmune,  Lübeck,
Germany).

2.4 - Image processing
2.4.1 - calculation of overall quantitative indices.
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Images were first processed with a previously described software (ICARE) [25]written in java as a 
plugin to Image J [32], using an additional custom-made plugin allowing automatic determination of 
four quantitative indices that were felt relevant to the presence of ANCAs. Briefly, the DAPI image was
used to define cell surface as the set of pixels with an intensity at least fourfold higher than the first 
peak on the intensity histogram. Unexpectedly, while this matched the nucleus on Hep-2 cells (used for 
ANA detection), it filled whole neutrophil surfaces, likely due to the contorted nucleus shape and 
possibly particular cytoplasmic staining properties or this cell population. This was used as a basis for 
the determination of the following four indices :
- Index i1 is the ratio between the mean intensity on FITC images of pixels  classified as "inside" and
"outside pixels". This was expected to allow discrimination between positive and negative samples.
- Index i2 is the ratio between the mean FITC intensity of pixels defined as "inside" and the first peak
intensity of the histogram of FITC image.
- Index i3 is similar to i2, but inside is defined on DAPI histograms as pixels with intensity 16-fold
higher than that of the first  background. It  was expected that this region might be closer to actual
nuclear regions.
- Index i4 is the correlation between FITC and DAPI pixel intensities in regions defined as "inside" on
DAPI images. It might be hoped that the correlation would be highest with ANA, lowest with C-ANCA
and intermediate with P-ANCA.

Images were simultaneously classified by an experienced pathologist as negative (0), C-ANCA 
(1), P-ANCA (2) or atypical/ANA type (3) and processed by ICARE [25]. A file including 137 samples 
with 4 indices each was thus prepared for ML processing. This allowed to build a dataset including 137
samples (102 negative, 9 C-ANCA, 21 P-ANCA, 5 atypical/ANA).

2.4.2 - Building individual cell images.
Individual  cell  images  were  built  out  of  whole  microscopic  fields  with  both  following

treatments:
- First, cell region was defined on DAPI images with a threshold-based algorithm that we used for 
decades as a software that was first written in assembly language [33], then translated into C++ [34] 
and finally as a java plugin for Image J [32].
- Secondly, areas limited with DAPI-determined boundaries were resized to 50x50 pixel images by
plain homothety with a custom-made python program and stored as csv files for further treatment. This
allowed to build a dataset of 1733 individual cell images (513 negative, 309 C-ANCA, 789 P-ANCA,
122 atypical/ANA).

2.5 - Machine learning.
2.5.1 - Classification based on "hand-crafted" parameters.

The 137-sample csv file was processed as a four-parameter numpy array with four standard 
models provided by scikit-learn as previously described [28]: logistic regression classifier, k nearest 
neighbor classifier, decision tree classifier and multilayer perceptron as a simple neural network. Since 
the datasets were not extensive enough to allow hyperparameter optimization, we essentially used 
default values with minimal changes that were found suitable for a low feature number dataset (this 
was 4 as indicated above) [28]. For each method, the dataset was splitted 100 times into a training set 
and a test set and classification efficiency was obtained by calculating prediction accuracy (pa), 
corrected prediction accuracy (cpa, a modified rand type score corrected for chance, as calculated with 
scikit-learn adjusted_rand_score function, Cohen kappa score  and area under roc score (auc) when 
positive/negative discrimination was studied. 
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2.5.2 - Analysis of individual cell images.
-  Individual  cell  images  (2500  pixels)  were  first  subjected  to  a  scaling  procedure  (scikit-learn
RobustScaler method) to ensure that all parameters displayed similar median and quartile distribution.
In some cases, data reduction was performed with principal component analysis.

- Images were analyzed with aforementioned standard algorithms (logical regression, k-next neighbors
or decision tree and neural networks). In addition to aforementioned multilayer perceptron classifier,
we used convolutive networks, since they are thought to be well suited for image analysis  [11] [19].
Tensorflow platform was used, taking advantage of keras application programming interface.

Under all conditions, efficiency parameters were calculated by random splitting of  datasets between 10
and 100 times between a train set (about 75% of samples) and a test set  (about 25% of samples).
Classification efficiency was then calculated on the train and test set after training models on train sets.

As shown on Figure 2, when 32 different models and model settings were used to calculate all four
indices on the same dataset of 1733 cells, a tight correlation was found between these indices.

Figure 2. Relationship between classification efficiency indices. A series of 1733 cell images were classified with two
models  (k  neighbors  classifier  and  multilayer  perceptron  classifier)  using  different  hyperparameters  and  differerent
preprocessing procedures  (data scaling with or without dimensional reduction based on principal  component analysis).
Prediction accuracy, area under roc score and Cohen-kappa score were plotted versus corrected prediction accuracy as
shown.

3 - Results.

3.1 - Combination of biologically inspired indices and machine learning.
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Data were used first to perform a binary classification between ANCA-positive and negative samples.
Secondly, we try to discriminate between immunofluorescence patterns.

3.1.1 - Discrimination between positive and negative samples with full image-related indices.
First, full images (encompassing entire microscopic fields) generated with individual sera were 

processed to derive four quantitative indices that were felt with a possible relevance to ANCAs as 
explained in section 2.4.1. This yielded a dataset including 137 samples that were classified as negative
(102/137) or positive (35/137) by conventional observation. This dataset was randomly split 100 times 
into a training set (102 samples) and a test set (35 samples). As suggested by a previous comparison of 
the efficiency of eight standard algorithms to analyze limited datasets [28], we used three fairly simple 
algorithms : logistic regression (LR), k nearest neighbors (kNN) and decision trees (DT). The 
prediction accuracy (pa), corrected prediction accuracy (cpa) and area under roc curve (auc) obtained 
on train and test sets after training on train set are shown on Table 1. 

Table 1
Discrimination between Anca-positive and negative sera by processing a 4-parameter dataset

Analytic tool Data set prediction accuracy
(pa)

corrected prediction
accuracy (cpa)

area under roc curve
(auc)

Logistic Regression train 0.92 +/- 0.002 0.68 +/- 0.006 0.95 +/- 0.001
test 0.91 +/- 0.004 0.64 +/- 0.014 0.95 +/- 0.004

Nearest Neighbors
(3 neighbors)

train 0.93 +/- 0.002 0.73 +/- 0.007 0.88 +/- 0.003
test 0.89 +/- 0.005 0.56 +/- 0.015 0.81 +/- 0.007

Decision Tree
(maximum depth: 3)

train 0.96+/- 0.002 083 +/- 0.006 0.94 +/- 0.003
test 0.89 +/- 0.005 0.56 +/- 0.016 0.84 +/- 0.007

137 sera  were assayed for  ANCAs with indirect  immunofluorescence  and classified  as  negative  (102/137) or  positive
(35/137) after conventional reading by an experienced biologist. Digitized images of microscopic fields were processed
with a computerized algorithm yielding 4 quantitative parameters. The obtained dataset  was then randomly split 100 times
between a training set (102 images) and a test set (35 images). The classification efficiency of three standard classifiers was
then assayed on the train and test sets after training on the train set. Mean results of accuracy indices are shown +/- standard
error of the mean.

While  classification  efficiency  might  be  considered  as  fairly  good  as  compared  to  other  studies,
efficiency parameters  were  significantly  lower  than  one  and it  was  important  to  explore  different
possibilities of improving this situation.

i) When we tried a simple neural network (multilayer perceptron) as a more elaborate model, 
classification efficiency was not improved (test cpa=0.59, test auc=0.83), in accordance with our 
earlier conclusion that simple ML models were better suited to process limited datasets [28].

ii) Since ML is considered as fairly "data hungry"[35], it was of interest to ask whether an insufficient 
dataset size  (137 samples) might be an important cause of prediction errors. This question was 
addressed by measuring the LR classification efficiency on a series of randomly built subsets. As 
shown on Figure  3, index-based classification efficiency was only weakly dependent on the dataset 
size.
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Figure  3.  Dependence  of   index-based  classification efficiency  on dataset  size.  A dataset  of  137  serum samples  was
randomly reduced to 20, 40, 60, 80, 100 or 120 samples and the efficiency of positive/negative discrimination by LR was
calculated. This process was repeated 100 times for each data size and mean cpa is shown. Vertical bar length is twice the
SEM.

iii) The behavior of ML algorithms is dependent on so-called hyperparameters that are often ignored
since default values are usually satisfactory. It was checked that the classification efficiency of LR
could not be improved by changing LR regularization parameter C (not shown) . As expected, the
default value (C=1) was found satisfying. Reducing regularization resulted in significant increase of
training cpa, with a decrease of test cpa, which was indicative of overfitting. Increasing regularization
resulted in concomitant decrease of cpa on training and test datasets (not shown).

iv) Aforementioned results  strongly suggested that classification efficiency was limited by intrinsic
capacity of indices used to quantify images. Since the the first index was derived from our experience
of automatic detection of anti-nuclear antibodies  [25] [14], we tested the discrimination provided by
this sole index, based on empirical determination of a threshold value separating positive from negative
samples. Our dataset was randomly split 100 times between and training set (102 samples) and a test
set (35 samples). The average cpa parameters obtained on train and test sets were respectively 0.705 +/-
0.004  SE  and  0.701  +/-  0.013  SE  which  were  slightly  but  significantly  higher  than  efficiency
parameters shown on Table 1. 
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3.1.2 - Automatic discrimination between several fluorescence patterns.
It was felt of interest to determine whether ML could help us discriminate between different

fluorescence patterns. We investigated the possibility of automatic discrimination between the 9  C-
ANCA positive and 26 P-ANCA or ANA positive images yielded by the 35 positive sera included in
our dataset. Interestingly, a preliminary study revealed that none of the four aforementioned indices
individually allowed any discrimination between both groups : indeed, the efficiency parameter  cpa
obtained by separating both groups was respectively  0.0447 +/- 0.1530 SD, 0.0545 +/- 0.2101 SD,
0.0300  +/-  0.2127  SD and  0.0252+/-  0.1542  SD with  indices  i1  to  i4.  However,  when  the  four-
parameter  dataset  was  processed  with  three  ML algorithms,  a  poor  but  significant  discrimination
between C-ANCA and P-ANCA was obtained. Results are displayed on Table2.

Table 2
Discrimination between cytoplasmic and nuclear patterns  by ML processing of 4 indices

Analytic tool Data set prediction accuracy Corrected accuracy area under roc curve
(auc)

Logistic Regression train 0.84 +/- 0.006 0.32 +/- 0.024 0.79 +/- 0.006
test 0.77 +/- 0.013 0.17 +/- 0.030 0.78 +/- 0.030

Nearest Neighbors
(3 neighbors)

train 0.85 +/- 0.004 0.39 +/- 0.016 0.71 +/- 0.008
test 0.79 +/- 0.011 0.23 +/- 0.028 0.66 +/- 0.015

Decision Tree
(maximum depth: 3)

train 0.94 +/- 0.004 0.73 +/- 0.016 0.91 +/- 0.006
test 0.68 +/- 0.014 0.04 +/- 0.018 0.57 +/- 0.017

35  Anca-positive  sera  were  concluded  to  yield  a  cytoplasmic  (9/35)   or  perinuclear/nuclear  (26/35)  pattern  after
conventional  reading  by  an  experienced  biologist.  Digitized  images  of  microscopic  fields  were  processed  with  a
computerized algorithm yielding 4 quantitative parameters. The obtained dataset was then randomly split 100 times between
a training set (26/35) and a test set (9/35) . The classification efficienty of three standard classifiers was then assayed. Mean
results of accuracy indices are shown +/- standard error of the mean.

Finally, ML was used to process the whole 137 sample dataset in order to try and discriminate
between four groups of interest: negative (102/137), C-ANCA (9/137), P-ANCA (21/137) or atypical
patterns due to ANAs (5/137). As shown on Table 3, a significant discrimination was obtained.

Table 3
Discrimination between four fluorescence patterns by processing a 4-parameter dataset

Analytic tool Data set prediction accuracy
(pa)

corrected prediction accuracy (cpa)

Logistic Regression train 0.87 +/- 0.002 0.66 +/- 0.005
test 0.82 +/- 0.005 0.61 +/- 0.012

Nearest Neighbors
(3 neighbors)

train 0.90 +/- 0.002 0.75 +/- 0.006
test 0.81 +/- 0.006 0.56 +/- 0.014

Decision Tree
(maximum depth: 3)

train 0.90 +/- 0.002 0.80 +/- 0.005
test 0.79 +/- 0.007 0.57 +/- 0.013

137 sera  were  assayed  for  Ancas  with  indirect  immunofluorescence  and  categorized  as  negative  (102/137),  C-ANCA
(9/137), P-ANCA (21/137) or anti-nuclear (5/137) after conventional reading by an experienced biologist. Digitized images
of microscopic fields  were  processed  with a  computerized  algorithm yielding 4 quantitative parameters.  The obtained
dataset  was then randomly split 100 times between a training set (102 images) and a test set (35 images). The classification
efficiency of three standard classifiers was then assayed on the train and test sets after training on the train set. Mean results
of accuracy indices are shown +/- standard error of the mean.
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The relatively small difference between performance parameters obtained with three different 

algorithms and impossibility to improve agreement with hyperparameter adaptation suggested that the 
limitation was essentially due to an insufficient discriminative power of the four-feature description 
used to account for image properties. However, these results were consistent with the widespread 
hypothesis that a simple strategy for achieving automatic classification of ANCA-related images might 
consist of adding an increasing number of texture parameters and automatically combining them with 
simple ML algorithms. Indeed, ANA pattern analysis was performed with a commercial system 
involving 1400 object-describing parameters [36]. However, recent progress of AI was an incentive to 
look for a fully autonomous way of analysing immunofluorescence images. Results obtained along this 
line are show below.

3.2 - Use of AI for autonomous analysis of fluorescence images.

Two strategies were considered : i) combining data reduction with fairly simple ML algorithms. ii)
using neural networks for complete analysis.

3.2.1 - Use of data reduction to process invidual cell images.
The description of analyzed microscope fields with only four global parameters was replaced with the
use of a 2,500 parameter set (50x50 pixel intensities) to account for each cell image contained in a
given microscope field. Fifty one sera were used to build a dataset of 1,733 individual cell images (513
negative, 309 C-ANCA, 789 P-ANCA and 122 atypical patterns that could be ascribed to ANAs).

In a first step, the capacity of aforementioned three standard ML algorithms to analyse these
images without any data reduction was studied.  As shown on Table 4,  parameter  cpa obtained for
positive/negative discrimination was fairly low. Since the important difference between train and test
cpa was indicative of overfitting that might be ascribed to an excessive number of features as compared
to the sample number, we used principal component analysis as a standard way of reducing the number
of parameters. As shown in Table 4, this resulted in significant increase of efficiency parameters since
the highest test auc was raised from 0.86 to 0.92 and the highest test cpa was increased from 0.35 to
0.46.

The possibility of discriminating beween nuclear/perinuclear and cytoplasmic fluorescence was
also studied.  As shown on Table  5,  standard algorithms displayed a  poor  capacity  to  discriminate
between both patterns, since the maximum cpa value was about 0.10, when determined on full images
or on the first 20 principal components.
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Table 4
Discrimination between Anca-positive and negative sera by processing 2,500 pixel images

number of
parameters

discrimination
parameter

Logistic Regression Nearest neighbors 
(3 neighbors/scaling)

Decision tree
(maximum depth 3)

2,500 (no pca)
cpa train 1.0 +/- 0.0 0.65 +/- 0.019 0.64 +/- 0.030
cpa test 0.31 +/- 0.038 0.35 +/- 0.046 0.35 +/- 0.047
auc test 0.86 +/- 0.014 0.76 +/- 0.025 0.78 +/- 0.030

20 
cpa train 0.48 +/- 0.015 0.68  +/- 0.019 0.58 +/- 0.018
cpa test 0.45+/- 0.043 0.42 +/- 0.045 0.38 +/- 0.047
auc test 0.92 +/- 0.011 0.80 +/- 0.021 0.80 +/- 0.025

5
cpa train 0.46 +/- 0.015 0.66 +/- 0.018 0.54 +/- 0.024
cpa test 0.45 +/- 0.044 0.39 +/- 0.041 0.40 +/- 0.050
auc test 0.92 +/- 0.001 0.79 +/- 0.020 0.81 +/- 0.031

2
cpa train 0.43 +/- 0.016 0.60 +/- 0.017 0.49 +/- 0.018
cpa test 0.43 +/- 0.043 0.35 +/- 0.039 0.38 +/- 0.0045
auc test 0.91 +/- 0.012 0.77 +/- 0.021 0.80 +/- 0.0027

1733 images from 51 microscope fields were assayed for ANCAs with indirect immunofluorescence and categorized as
negative (513/1733) or positive (1220/1733) after conventional reading by an experienced biologist. Digitized images of
microscopic  fields  (50x50 pixel  were  analyzed  as  2,500 parameter  objects  or  preprocessed  with  principal  component
analysis for retaining the main 20, 5 or 2 components. Datasets were  then randomly split 100 times between a training set
(1299 images) and a test  set  (434 images).   Three simple algorithms were then trained and assayed for discriminative
efficiency. Mean values of corrected predictive accuracy (cpa) for train and test datasets, and area under roc curve (auc) for
test dataset are shown +/- standard deviation

Table 5
Discriminating between cytoplasmic and nuclear patterns  by processing whole cell images

ML algorithm Data set prediction accuracy
(pa)

Corrected accuracy
(cpa)

area under roc curve
(auc)

Logistic Regression
train full 1.00 +/- 0.00 SD 1.00 +/- 0.00 SD 1.00 +/- 0.00 SD
test full 0.67 +/- 0.024 SD 0.04 +/- 0.022 SD 0.54 +/- 0.019 SD
train 20c 0.76 +/- 0.008 SD 0.06 +/- 0.018SD 0.53 +/- 0.009 SD
test 20c 0.75 +/- 0.020 SD 0.03 +/- 0.021 SD 0.52 +/- 0.011 SD

Nearest Neighbors
(3 neighbors,scaling)

train full 0.84 +/- 0.006 SD 0.40 +/- 0.017 SD 0.74 +/- 0.011 SD
test full 0.71 +/- 0.022 SD 0.08 +/- 0.034 SD 0.55 +/- 0.025 SD
train 20c 0.85 +/- 0.007 SD 0.42 +/- 0.023 SD 0.74 +/- 0.012 SD
test 20c 0.73 +/- 0.019 SD 0.11 +/- 0.033 SD 0.58 +/- 0.022 SD

Decision Tree
(maximum depth: 5)

train full 0.83 +/- 0.015 SD 0.34 +/- 0.032 SD 0.68 +/- 0.33 SD
test full 0.73 +/- 0.023 SD 0.09 +/- 0.038 SD 0.56 +/- 0.023 SD
train 20c 0.81 +/- 0.013 SD 0.28 +/- 0.048 SD 0.65 +/- 0.036 SD
test 20c 0.55 +/- 0.023 SD 0.07 +/- 0.036 SD 0.55 +/- 0.023 SD

1220 cell images classified as C-ANCA (309/1220) or with a nuclear/perinuclear pattern (911/1220) after conventional
reading by an experienced biologist were processed with three standard ML algorithms. The obtained dataset was then
randomly split 100 times between a training set (915/1220) and a test set (305/1220) . The classification efficiency of three
standard classifiers was then calculated either on full sets of pixel intensities (2,500 pixels per image) or using the first 20
components yielded by principal component analysis.  Mean results of accuracy indices are shown +/-  Standard Deviation. 
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Since images were expected to include the information required to discriminate between C-ANCA and
P-ANCA, it was of obvious interest to try and determine why standard ML algorithms were unable to
select the relevant information from image. A likely possibility might be that each serum generated a
particular  fluorescence  pattern,  in  addition  to  a  "general"  cellular  or  nuclear  localization.  Training
would thus result in a capacity of a ML model to recognize patterns specific for the particular antibody
set of each tested serum. This possibility was addressed by visualization of the first  two principal
components of images displayed by six sera (3 cANCA, 3 pANCA), as shown on Figure 4  a clearcut
separation could be observed between images generated by different sera of similar (either C-ANCA or
P-ANCA) specificity.

Figure 4 Six microscope images generated with 6 sera (3 C-ANCA, 3 P-ANCA) yielded 190 individual cell images. Pixel
intensities were subjected to principal component analysis, and the first two components are displayed. Clearly, C-ANCA
(blue) and P-ANCA (red) displayed marked orverlap, but images corresponding to a same serum displayed significant
separation.

This supported the need for a more refined ML algorithm allowing precise selection of desired features.
In view of the remarkable success obtained with neural networks in the field of image analysis, it was
deemed appropriate to use a number of neural-networks to analyze our dataset.
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3.2.2 - Analysis of full images with neural networks.
While recent successes met by neural networks in the field of image analysis were an incentive to
explore the potential of this model class, a major problem is that a neural network may involve a high
number of hyperparameters. First, we used Mutilayer perceptron as relatively simple models and the
importance of three major hyperparameters (hidden layer number, hidden layer size, and regularization
parameter) is shown on Fig 5.

Figure 5. Dependence of Mlp efficiency on model settings. A series of neural networks with varying number and size of
hdden layers and regularization parameter were used to discriminate between positive (513) and negative (1200) samples in
a set of 1733 images. For each hyperparameter combination, this set was randomly split between 10 and 40 times into a
trainin and test set. In another series of calculations, PCA was used for data reduction. Mean values of efficiency parameters
are shown. Vertical bar line is twice the standard error.
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The following conclusions were suggested :
-  i)  efficiency  parameters  displayed  limited  change  in  response  to  fairly  extensive  variation  of
hyperparameters, suggesting a moderate dependence of classification efficienty on the choice of model
hyperparameters.
- ii) Parameter  cpa yielded on test sets varied between a minimum value of 0.38 and a maximum of
0.51 (with kappa score and auc respectively equal to 0.67 and 0.85). Neural network performance was
thus better than that achieved with standard ML models (shown on Table 4).
- iii) plots displayed of Figure 5 C&D clearly confirmed the risk of overfitting as a consequence of
insufficient  regularization  (C) or  excessive number of  features  (D) as  compared to  the number of
samples, leading to a high cpa train/cpa test ratio.

These results were an incentive to investigate the capacity of Mlp to discriminated between different
fluorescent patterns. When an dataset of 1220 images with cellular (309) or nuclear/perinuclear (911)
fluorescence localization was studied with a wide range of hyperparameter settings, test  cpa ranged
between 0 and 0.11, suggesting that this dataset was insufficient to allow proper model training, as was
also found with simpler models (Table 5).
An important  point  is  that  high  cpa values  for  positive/negative and pattern  discrimination  of  the
images of training sets were obtained, since the highest values were respectively 0.99 and 0.92. These
results suggested the conclusion that ML models were sufficiently versatile to efficiently discriminate
between all images, but the classification criteria obtained with autonomous training did not match the
biologically significant classification.

A possible reason for the limitation of Mlp efficiency is that the localization of individual pixels might
not be sufficiently apparent in parameter sets organized as 1-dimensional arrays. Indeed, convolutional
neural networks may be considered as better suited than networks including only so-called dense layers
to detect specific image patterns when they are trained with 2-dimensional arrays. Thus, we tentatively
assayed  the  capacity  of  a  series  of  convolutional  neural  networks  to  perform  positive/negative
classification of 1733 images data sets. Test cpa values of 0.52,  comparable with those obtained with
Mlp,  were  obtained.  Also,  no  significant  improvement  of  pattern  classification  was  obtained  with
aforementioned 1200 image dataset.

 A possible explanation for neural network limitation might be that differences between individual sera
and cells  might  generate  fluorescence  variations  overlapping the  effects  of  antibody specificity.  A
simple way of testing this possibility consisted of performing  controlled splitting of image sets by
ensuring that all images generated by a given serum were in the same (training or test) set. Results
obtained with this strategy are shown below.

3.2.3 - Combination of controlled splitting of train and test datasets and serum rather than image
classification.
The following two modifications of processing  were performed: (i) it was ensured that all images
generated by a same serum fell into the same (train or test dataset) ; (ii) after training models on 2500
pixel images as indicated above, sera belonging to test datasets were classified as positive or negative
according to the highest number of individual cell images classified as positive or negative.

As shown on Table 6, controlled splitting did not improve individual cell classification, but the
modified procedure resulted in highly significant improvement of serum classification, since test  cpa
was 0.74 with Mlp  (the corresponding kappa score was 0.84 ). 
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Table 6

Discrimination between ANCA-positive and negative sera by processing of individual cell images

Model feature number Controlled cell
splitting 

prediction
accuracy

(pa) 

corrected
accuracy

(cpa)

Cohen kappa
score

Knn
2500 No 0.77 +/- 0.01 SE 0.28 +/- 0.03 SE 0.45 +/- 0.02 SE

Yes 0.77 +/- 0.02 SE 0.28 +/- 0.05 SE 0.44 +/- 0.05 SE
20 No 0.79 +/- 0.01 SE 0.32 +/- 0.02 SE 0.49 +/- 0.02 SE

Yes 0.89 +/- 0.02 SE 0.57 +/- 05 SE 0.71 +/- 0.04 SE

Mlp
2500 No 082 +/- 0.01 SE 0.39 +/- 0.03 SE 0.54 +/- 0.03 SE

Yes 0.91 +/- 0.02 SE 0.67 +/- 0.06 SE 0.79 +/- 0.04 SE
20 No 0.82 +/- 0.01 SE 0.39 +/- 0.02 SE 0.58 +/- 0.02 SE

Yes 0.94 +/- 0.01 SE 0.74 +/- 0.05 SE 0.84 +/- 0.03 SE

Fifty-one (35 positive, 16 negative) sera were tested for ANCA detection with immunofluorescence: 1,733 cell images were 
processed with two machine-learning algorithms : k-nearest neighbors (Knn, n=3 neigbors) and multilayer perceptron (Mlp,
one 40-neuron hidden layer) for positive/negative discrimination. The image dataset was randomly split either without any 
restriction (no control) or with ensuring that all images generated with a given sera were gathered in the same (training or 
test) group. This process was repeated 25 fold and mean values of efficiency parameters are displayed together with 
standard error of the mean (SE). The prediction accuracy was calculated either for each cell (no control group) or for each 
serum, by classifying each serum as the most frequent classification of corresponding cell images.

It  was investigated whether this  controlled splitting might improve pattern classification.  However,
classification  efficiency  was  not  improved  -  and  was  in  fact  significantly  decreased  -  when  this
controlled splitting was performed (not shown).

4 - Discussion.
The main purpose of this work was to investigate a fairly simple and well-defined problem of

current medical interest to explore the possibility of autonomous building of ML models with sufficient
reliability to assist and possibly replace biological experts in analyzing microscopic images. It was
hoped that this endeavour might help identifying general guidelines, limitations and possible strategies
for future progress.

A first conclusion is that currently available ML algorithms autonomously trained on a 
fairly restricted dataset were able to perform positive/negative discrimination with substantial or even 
good agreement with experienced human analysis (highest kappa score was 0.84). This mere finding is 
of actual clinical interest. Indeed,  automatic positive/negative discrimination would be most useful by 
decreasing current delay is delivering a negative diagnosis or performing Elisa assays.

It must be emphasized that the estimated values of achieved efficiency parameters  may be 
considered as fairly reliable despite the lack of a fully independent validation dataset. Indeed, average 
values of efficiency indices were estimated after repeated - up to 100 fold - splitting of the full data set, 
and results shown on Figure 5 and other tests performed on basic classifiers suggest that these 
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efficiency parameters were not strongly dependent on model hyperparameters, thus making less likely 
the possibility that calculate efficiency indices might be artefactually high due to a strong influence of 
the dataset on parameter choice. In any case, as was recently emphasized [37] [38], safe model 
validation would require to perform additional check on microscopical images obtained under fairly 
independent conditions.

The second conclusion is that our simple approach did not succeed in discriminating between 
different fluorescence patterns. Two non exclusive strategies may be considered to achieve further 
progress: i) using more sophisticated algorithms to match human experience, as was done on ANA 
research  [11] or histopathologic studies [39], which would require to prepare a substantially larger 
databas, or ii) by combining different fixation or staining procedures, to facilitate image analysis, e.g. 
by analyzing both ethanol- and paraformaldehyde-fixed cells [8] . Indeed, C-ANCA might thus be more
easily recognized on a basis of a different fluorescence localization yielded by different fixation 
procedures .

A third conclusion is that simple models, such as kNN may be more rewarding that complex 
neural networks to perform simple classification with limited datasets. Indeed, model settings are easier
to select with simple models, also, results obtained with conceptually simple models may be more 
easily interpreted that those yielded by models as complex as neural networks that may involve more 
than one million parameters [40], which might facilitated further progress. 

As shown in the first part of this report (Table 1), the use of biologically inspired indices is an 
attractive way of combining biological expertise and AI. Indeed, many commercially available systems 
were based on the use of ML to process extensive sets of texture parameters. However, the 
development and continuous improvement of an algorithm involving more than 1,000 parameters [36] 
may be more difficult to perform than the autonomous building of ML models with general strategies 
that did not rely on any specific expertise to determine model architecture.

A general conclusion of our study is that an essential  requirement for further progress will
consist  of  increasing  the  size  of  our  database.  It  would  also  be  useful  to  review  the  individual
classification errors concerning cell  images in order to improve our understanding of the origin of
model limitation. Such an increased database might allow us to build a reliable classification model
yielding at the same time positive/negative diagnosis and discrimination between different fluorescence
patterns that might be indicative of anti-myeloperoxidas, anti-proteinase 3, AN, or hopefully of new
antibody  specificities  indicative  of  other  pathological  situations  requiring  different  therapeutic
management, such as acute infection.

Abbreviations:
AI : artificial intelligence
ANA : anti nuclear antibody
ANCA : anti-neutrophil cytoplasmic antibody
auc : area under roc curve
C-ANCA : cytoplasmic type ANCA
cpa : corrected prediction accuracy
DT : decision tree
kNN k nearest neighbors
LR : logistic regression (classifier)
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ML: machine learning
Mlp: multilayer perceptron
P-ANCA: perinuclear-type ANCA
pa : prediction accuracy
ROC : receiver operator curve
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