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ABSTRACT: Clinical responses to immune checkpoint blockade (ICB) for metastatic melanoma 10 

(MM) are variable, with patients frequently developing immune related adverse events (irAEs). 11 

The role played by myeloid populations in modulating responses to ICB remains poorly defined. 12 

We explored the effect of MM and the response to ICB across a cohort of patients with MM 13 

(n=116) and healthy donors (n=45) using bulk and single cell RNA-seq, and flow cytometry. 14 

Monocytes from patients with MM exhibit highly dysregulated baseline transcriptional profiles, 15 

whilst ICB treatment elicits induction of interferon signaling, MHC class II antigen presentation 16 

and CXCR3 ligand expression. Although both combination (cICB - anti-PD-1 and anti-CTLA) 17 

and single-agent (sICB - anti-PD1) ICB therapy modulates a shared set of genes, cICB displays a 18 

markedly greater magnitude of transcriptional effect. Notably, we find increased baseline 19 

monocyte counts correlate with a monocyte proliferation signature and risk of early death, whilst 20 

a gene-signature corresponding to a subset of platelet-binding classical monocytes conversely 21 

associates with improved outcome. This work demonstrates a central role for monocytes in the 22 

modulation of treatment response to ICB, providing insights into inter-individual variation in 23 

immune responses to ICB and further highlighting the multifarious immunological consequences 24 

of ICB treatment.  25 
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 26 

Main text 27 

Immune checkpoint blockade (ICB) with single-agent anti-PD1 (sICB) or combination anti PD-28 

1/anti-CTLA4 (cICB) monoclonal antibodies has transformed the clinical outlook for patients with 29 

metastatic melanoma (MM)1. However, clinical responses are variable and many patients develop 30 

immune-related adverse effects (irAEs)2,3. Whilst the relationship between peripheral CD8+ T cell 31 

characteristics and clinical response of MM to ICB therapy is well described4,5, myeloid responses 32 

to ICB remain poorly defined. Existing work suggests that the circulating monocyte population 33 

can modulate response to ICB, with an expanded monocyte population typically associated with 34 

impaired clinical response to anti-PD1 therapy in both MM6 and non-small cell lung cancer 35 

(NSCLC)7. Monocytes are conventionally categorised into three subsets: CD14+CD16- classical 36 

monocytes, CD14+CD16+ intermediate monocytes and CD14dimCD16+ non-classical monocytes8. 37 

In MM, small cohort studies have described relationships between monocyte subset counts to 38 

response to both anti-PD1 and anti-CTLA4 treatment9,10. There has been limited analysis of the 39 

impact of standard-of-care combination anti-CTLA-4/anti-PD-1 treatment however, whilst the 40 

impact of ICB on monocyte gene expression and relationships with clinical outcomes are similarly 41 

unexplored. 42 

We hypothesised that transcriptomic analysis of peripheral monocytes may provide 43 

prognostic information and novel insights ICB-treatment response in patients with MM. We 44 

assessed monocyte responses to ICB in isolated cells using bulk RNA-sequencing (RNA-seq) 45 

across 116 individuals from a cohort of MM patients receiving ICB as well as samples from 45 46 

healthy controls. We find MM is associated with distinct pro-inflammatory changes in monocyte 47 

gene-expression, the extent of these correlating with baseline monocyte count and having 48 

prognostic value. Treatment with either cICB or sICB therapies evokes shared patterns of gene 49 
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expression but no consistent change in counts of conventional subsets. We further characterised 50 

heterogeneity in peripheral monocyte subsets in MM with scRNA-seq and flow cytometry, noting 51 

relationships with clinical outcome, observing positive outcomes to be associated with an 52 

expanded platelet binding subset whereas monocyte proliferation is associated with risk of early 53 

death. 54 

 55 

RESULTS  56 

Circulating monocytes in patients with metastatic melanoma have a distinct transcriptomic 57 

profile 58 

To identify MM-associated signatures in circulating monocytes at baseline, we performed 59 

differential gene expression (DGE) across monocytes from patients with MM versus healthy 60 

donors (HD) (C1 n = 114 samples; HD n = 45 samples). This identified 1,774 significantly 61 

differentially regulated transcripts in patient derived monocytes (Padj <0.05; Figure 1A, 62 

Supplementary Table 1), including 871 upregulated, and 903 suppressed. Of note, genes encoding 63 

the chemokine receptors CXCR1 and CXCR2, which bind to pro-inflammatory cytokine and 64 

neutrophil chemoattractant IL-8, implicating pathways previously found to be associated with a 65 

less favorable response to ICB12, were markedly upregulated in MM patients (Figure 1B). 66 

Interrogation of the Gene Ontology Biological Processes (GOBP) database13 identified key 67 

expression pathways enriched in patient samples including chemotaxis (GO:0006935, Padj = 68 

0.0014; GO:0060326, Padj = 0.0096), neutrophil degranulation (GO:0043312, Padj = 5.4x10-14), 69 

response to lipopolysaccharide (GO:0032496, Padj = 0.00027), and vascular endothelial growth 70 

factor (VEGF) signaling (GO:0048010, Padj = 0.02) (Figure 1C, Supplementary Table 2). Given 71 

increasing monocyte count is associated with poorer clinical outcome in melanoma6 and non-small 72 

cell lung cancer (NSCLC)7, we examined the relationship between baseline monocyte gene 73 
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expression and pre-treatment hospital measured monocyte count. Strikingly, increasing monocyte 74 

count was associated with markedly divergent expression profile, with 1,344 transcripts associated 75 

with pre-treatment monocyte count (88 C1 samples, Padj<0.05; Figure 1D, Supplementary Table 76 

3), of which 694 transcripts were positively associated with count, the most significant being 77 

FAM20A, encoding a pseudokinase with putative roles in haematopoiesis14 (Figure 1E). 78 

Conversely, increasing counts were negatively associated with 650 transcripts, most significantly 79 

IMPDH2, encoding a gene involved in purine metabolism in response to hematopoietic stress15 80 

(Figure 1E). Pathways positively correlated with monocyte count included neutrophil 81 

degranulation (GO:0043312, Padj = 4.6x10-20), as well as heterotypic cell-cell adhesion 82 

(GO:0034113, Padj = 2.5x10-3) and VEGF signaling (GO:0048010, Padj = 2.9x10-3), whilst 83 

suppressed pathways were mainly involved in rRNA processing (GO:0006364, Padj = 5.7x10-23) 84 

and DNA replication (GO:0006260, Padj = 7.0x10-8) (Supplementary Table 4). Of particular 85 

significance to cancer immunology was the negative association of IFNG regulated MHC class II 86 

gene expression, crucial in antigen presentation, including HLA-DRA (Padj = 0.0005), HLA-DMA 87 

(Padj = 0.0063), HLA-DPA1 (Padj = 0.00057) and HLA-DPB1 (Padj = 0.0010) with peripheral 88 

monocyte count (Supplementary Table 3). In keeping with this, transcripts anti-correlated with 89 

monocyte count were enriched for pathways including antigen presentation via MHC class II 90 

(GO:0019886, Padj = 0.014) and T cell co-stimulation (GO:0031295, Padj = 0.041) (Supplementary 91 

Table 4). Thus, an expanding circulating monocyte compartment is characterized by polarisation 92 

towards an immature, mitotically active ‘classical monocyte’ phenotype with predisposition 93 

towards heterotypic cell adhesion, VEGF mediated angiogenesis and reduced antigen presentation 94 

function. 95 

 96 

ICB treatment modulates circulating monocyte gene expression 97 
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To address the impact of ICB on monocytes, differential expression analysis between baseline 98 

(pre-treatment, ‘C1’) and post-treatment (‘C2’) samples (n = 96 patients), controlling for age, sex 99 

and treatment type (sICB/cICB) was performed in bulk monocyte RNA-seq data.  This identified 100 

a total of 1,067 significantly differentially modulated transcripts with ICB (758 induced, and 309 101 

downregulated; Padj< 0.05) (Figure 2A & 2C, Supplementary Table 5). ICB treatment robustly 102 

induced type I and II interferon signaling (Figure 2A, Supplementary Table 5) including JAK-103 

STAT pathway members STAT1 (Padj = 2.0x10-7), STAT2 (Padj = 3.0x10-4), and JAK2 (Padj = 1.4x10-104 

6). The CXCL3 ligands CXCL9 (Padj = 8.1x10-9), CXCL10 (Padj = 1.0x10-8) and CXCL11 (Padj = 105 

4.1x10-6) were similarly induced. These IFN-γ induced transcripts are involved in CXCR3-106 

dependent immune cell chemotaxis and TH1 polarisation16,17 and are associated with development 107 

of irAEs18,19. Similarly induced were transcripts encoding the classical complement proteins C1QA 108 

(Padj = 3.6x10-5), C1QB (Padj = 9.8x10-5) and C1QC (Padj = 4.4x10-5); MHC class II molecules 109 

including HLA-DRA (Padj = 1.6x10-4) and HLA-DPB1 (Padj = 1.9x10-5), as was CD274 (Padj = 110 

2.8x10-9), encoding PD-L120,21 (Figure 2A, Supplementary Table 5). Correspondingly, ICB 111 

induced transcripts were enriched across multiple pathways including IFN-γ-signaling 112 

(GO:0060333, Padj = 2.5x10-21), type I interferon-mediated signaling (GO:0060337, Padj = 9.8x10-113 

12), antigen presentation via MHC class I (GO:0002479, Padj = 2.5x10-21) and class II 114 

(GO:0019886, Padj= 0.0069), and T cell co-stimulation (GO:0031295, Padj = 1.5x10-4) (Figure 2D, 115 

Supplementary Table 6). Expression of signaling pathways including tumour necrosis factor 116 

(TNF) (GO:0033209, Padj = 2.5x10-10) and NFκB signaling (GO:0043123, Padj = 5.3x10-3) were 117 

also enriched in monocytes following ICB (Figure 2D, Supplementary Table 6).  118 

Comparative analysis of monocyte responses to cICB versus sICB demonstrated that, as per CD8 119 

T cells4, cICB was associated with a greater magnitude of transcriptional modulation, with 2,777 120 

transcripts differentially expressed with cICB (pairwise analysis, n=51 patients) but only 85 121 
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following sICB (pairwise analysis, n=45 patients) (Figure 2B, 2C, Supplementary Figure 1, 122 

Supplementary Tables 7 & 8). There was near complete concordance of the transcripts modulated 123 

by cICB versus sICB (80/85 transcripts) and sICB and cICB demonstrated consistent shared 124 

direction of effect, but greater magnitude of transcriptional modulation with cICB (Figure 2C, 2E). 125 

A total of 352 transcripts (240 induced, 112 suppressed) were preferentially regulated in 126 

monocytes with cICB compared to sICB. Preferentially cICB induced transcripts included CD274 127 

(Padj = 0.0033), CXCL10 (Padj = 6.3x10-3), CXCL11 (Padj = 0.042), and C1QC (Padj = 0.019) 128 

(Supplementary Table 9) and corresponding pathway analysis of these genes again highlighted 129 

enrichment of type I IFN and IFN-γ-related signaling, JAK-STAT and T cell receptor signaling 130 

(Figure 2F, Supplementary Table 10). This suggests that, as with CD8+ T cells4, cICB is associated 131 

with a qualitatively similar but quantitively greater transcriptional effect on peripheral monocytes.  132 

 133 

Peripheral monocyte transcriptomic profiles predict clinical outcome 134 

We then identified monocyte-expressed markers of clinical response by performing differential 135 

expression analysis of bulk RNA-seq data with clinical outcome parameters. Clinical parameters 136 

including risk of death at three, six and twelve months after date of first treatment, and progression 137 

at six-months were used to dichotomise patients, with differential expression analysis controlled 138 

for age, sex and, where applicable, treatment type and cycle. We found a monocyte cycling 139 

signature characterised by expression of proliferation index marker MKI67 to be associated with 140 

death at all three time points (Figure 3A-C, Supplementary Tables 11-13) with 314, 239 and 444 141 

transcripts associated with death at three, six and twelve months respectively (controlling for age, 142 

sex, treatment status and type across 114 C1 and 98 C2 patient samples, Padj<0.05) (Figure 3A-C, 143 

Supplementary Tables 11-13). Transcripts across all time points positively correlated with death 144 

were enriched for pathways associated with the monocyte MM-associated expression signature we 145 
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describe above, including neutrophil degranulation (GO:0043312), platelet degranulation 146 

(GO:0002576) and response to LPS (GO:0032496) (Figure 3E, Supplementary Table 14-16). 147 

Strikingly, when we explored this by treatment status, risk of death was primarily related to pre-148 

treatment samples (Supplementary Figure 2, Supplementary Table 17A-C). We also found 269 149 

transcripts associated with progression at six months (113 C1 samples and 98 C2 controlling for 150 

treatment type, status, age and sex, Padj<0.05) (Figure 3D, Supplementary Table 18A) which were 151 

enrichment for pathways including angiogenesis (GO:0001525) (Supplementary Table 18B). 152 

These observations indicate previously undescribed mechanisms through which the prognostic 153 

effects of peripheral monocytes and elevated counts are mediated.  154 

 155 

Dissecting heterogeneity in monocyte subgroup responses to ICB 156 

Monocytes are heterogeneous in composition but are conventionally categorized into three subsets: 157 

CD14+CD16- classical monocytes, exhibiting prominent chemotactic properties, CD14dimCD16+ 158 

non-classical monocytes implicated in antibody dependent cellular cytotoxicity (ADCC)23; and 159 

CD14+CD16+ intermediate monocytes, characterized by prominent MHC class II expression24. We 160 

used flow-cytometry to explore monocyte populations pre and post ICB, finding no significant 161 

change in any subset size with treatment (n = 53 paired samples) (Figure 4A), this observation 162 

remaining when performing sICB and cICB specific analysis (Supplementary Figure 3). Notably, 163 

survival analysis showed that a larger proportion of cytometry-identified non-classical monocytes 164 

at both baseline and following treatment was associated with prolonged overall survival (OS) (at 165 

baseline C1 P = 0.0079; post-treatment C2, P = 0.0016, log-rank tests) and extended progression 166 

free survival (PFS) (P = 0.014 at C1, post-treatment C2: P = 0.02, log-rank test) (Figure 4B). 167 

Conversely, consistent with the hospital blood monocyte count, increasing monocyte proportion 168 

as a total of peripheral blood mononuclear cells (PBMCs) pre-treatment was associated with 169 
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reduced OS (pre-treatment, P= 0.014, log-rank test), and post-ICB reduced PFS and OS (post-170 

treatment PFS P = 0.028; OS, P= 0.031, log rank test) (Figure 4C). In keeping with previous 171 

studies25, a higher lymphocyte to monocyte ratio (LMR) at baseline was associated with extended 172 

OS (p = 0.035, log-rank) (Supplementary Figure 3). 173 

 174 

Characterising peripheral monocytes with scRNA-seq 175 

To further characterize the predictive role of monocyte subsets, we performed scRNA-seq of 176 

monocytes from peripheral blood both pre- and post-ICB treatment from eight patients with MM, 177 

as well as three healthy donors (Supplementary Figure 4). Unsupervised clustering of cells across 178 

all conditions was performed to a high resolution i.e. ‘overclustering’, and comparison with 179 

publicly available annotated expression datasets using SingleR (Supplementary Figure 4) was 180 

performed. Monocyte groups present across all conditions/patients were selected for downstream 181 

analysis (Supplementary Figure 5) and a total of 22,116 cells were analysed. Two main monocyte 182 

subsets were identified: those aligned to a classical monocyte annotation, and those annotated as 183 

an intermediate/non-classical FCGR3A-expressing ‘CD16+ monocyte’ group (Figure 5A, 184 

Supplementary Figure 5). The large classical-like monocyte cluster was characterised by markers 185 

including CD14 (Padj= 5.3x10-251), and genes involved in adhesion and migration including 186 

CLEC4E29 (Padj= 6.6x10-67), VCAM30 (Padj < 1x10-300), CCR229,31 (Padj= 2.0x10-66) and SELL29 (Padj. 187 

= 1.0x10-94) (Supplementary Figure 6, Supplementary Table 20). Pathway enrichment included 188 

response to lipopolysaccharide (GO:0032496) and response to wounding and wound healing 189 

(GO:0009611, GO:0042060) (Supplementary Figure 6, Supplementary Table 22). CD16+ 190 

monocytes were defined by expression of FCGR3A (Padj < 1x10-300), TNF (Padj= 6.2x10-52), 191 

classical complement genes C1QA (Padj= 2.2x10-167), C1QB (Padj= 1.51qx10-116), and C1QC (Padj= 192 

4.7x10-83) and interferon-induced genes including IFITM1 (Padj= 5.8x10-181), IFIT2 (Padj= 2.2x10-193 
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22), and IFIT3 (Padj= 7.3x10-73) (Supplementary Table 20), these genes being enriched for T cell 194 

co-stimulation (GO:0031295), T cell receptor signaling (GO:0050852), and antigen processing 195 

and presentation via MHC-class II pathways (GO:0019886) (Supplementary Table 22) pathways.  196 

 197 

We did not identify a distinct intermediate monocyte population on high-level unsupervised 198 

clustering, however unsupervised clustering of the large classical monocyte compartment revealed 199 

further heterogeneity within it. We found the classical monocyte compartment could be further 200 

divided into four distinct sub-clusters:  ‘Classical1’ characterised by high expression of alarmin 201 

complex genes S100A8/A9 ; ‘Classical2’ with high expression of CD14 and EGR1, a key inhibitory 202 

regulator of myeloid populations28; ‘Classical3’ with robust expression of an IFN-response 203 

associated signature including GBP1, GBP2, and STAT1; and ‘Classical4’ which had a distinct 204 

monocyte-platelet aggregate (MPA)-like classical profile with high expression of platelet-205 

associated genes including PPBP (Padj = 9.5x10-159) which encodes chemokine and 206 

CXCR1/CXCR2 ligand CXCL7 in activated platelets26, and GP9 (Padj = 2.3x10-38), a von 207 

Willebrand factor receptor required for clotting27 (Figure 5A & 5B, Supplementary Table 19).  208 

Pathway enrichment analysis of group-defining markers demonstrated overlap between groups, 209 

but Classical1 was characterised by enrichment of antimicrobial humoral response pathway, 210 

Classical2 for phagocytosis, Classical3 for defense response to virus, antigen processing via MHC 211 

class II and T cell co-stimulation (Figure 5C, Supplementary Table 21) whilst Classical4 was 212 

enriched for platelet activation and blood coagulation pathways (Figure 5C, Supplementary Table 213 

21). Notably, although power to detect ICB related subset size changes was limited, we found no 214 

significant change in the proportion of classical, CD16+ or classical subgroups (Classical1 – 215 

Classical4) with ICB (Supplementary Figure 7), in keeping with flow-cytometry observations. 216 

 217 
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 10 

We performed analysis of monocytes according to expression of gene sets consisting of the most 218 

significantly associated transcripts of a candidate ‘hub gene’ (Supplementary Figure 8). Both 219 

antigen-presentation and complement module scores comprised genes characteristic of non-220 

classical monocytes such as FCGR3A, CDKN1C and MHC Class II genes (Supplementary Tables 221 

23-28). The chemotaxis score comprised a classical expression signature. CD16+ monocytes had 222 

higher expression antigen-presentation, complement production, and IFN signaling modules, 223 

whilst classical monocytes exhibited higher expression of chemotaxis-associated gene modules 224 

(Figure 5D). Expression module scoring revealed a continuum of activation states across the 225 

classical subgroups, with Classical1 and Classical2 exhibiting low complement and antigen 226 

presenting expression module scores, and Classical3 expressing higher expression of these 227 

modules (Figure 5D).  228 

 229 

Having defined monocyte transcriptional heterogeneity with scRNA-seq in a subset of patients, 230 

we determined to explore the clinical correlates of the identified subset associated expression 231 

signatures across the full cohort. Intriguingly, we found that expression above the median of the 232 

MPA expression signature (Classical4) at baseline was associated with improved clinical outcomes 233 

to ICB with significant associations to PFS (p = 0.011, log-rank median PFS low MPA:  5.5 mnths 234 

(95% CI 15.2 – 30.2), median PFS high MPA: 35.1 mnths (95% CI 28.1 – 43.1)  and  OS (P = 235 

0.025, log-rank, mean OS low MPA: 25.0 mnths (95% CI 28.1 – 43.1), median OS high MPA: 236 

53.3 mnths (95% CI 38.4 – 52.3))  (Figure 5E).  237 

 238 

DISCUSSION  239 

Cancer has been associated with altered transcriptional profiles in monocytes with upregulation of 240 

chemotaxis pathways32–35, impaired cytotoxicity36, polarisation towards an immature phenotype37 241 
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and altered metabolic pathways9,32. Here we show in the analysis of a large patient cohort that MM 242 

likewise has distinct effects on monocyte expression profiles, with induction of chemotaxis, 243 

adhesion and angiogenesis-associated pathways. An elevated monocyte count has been associated 244 

with poor prognosis across cancer types38–41. For the first time we show that a raised monocyte 245 

count is accompanied by profound changes in monocyte transcriptional profiles, indicating 246 

mechanisms through which the prognostic effects of elevated monocytosis may be mediated. 247 

Specifically, as well as increased expression of mitotic factors, there is upregulated VEGF 248 

expression, indicating the emergence of a cycling, immature pro-angiogenic ‘classical-type’ 249 

expression profile.  250 

We provide novel insights into the effects of ICB treatment on immunity. Using bulk monocyte 251 

RNA-seq data from a large MM cohort we demonstrate that ICB promotes a monocyte 252 

transcriptional profile in keeping with a T cell costimulatory phenotype, with upregulation of 253 

antigen presentation via MHC class II pathways, classical complement and pro-inflammatory 254 

cytokines. Notably, CXCL9, CXCL10 and CXCL11 are all robustly upregulated in monocytes by 255 

ICB. The CXCL9-11/CXCR3 axis is implicated in immune migration and the development of Th1 256 

cells17 whilst the myeloid CXCR3-CXCL9/10/11 axis has a key role in modulating CD8+ T cell 257 

responses in the context of ICB42.  Induction of this axis in macrophages following cICB is also 258 

described, with CXCL9-expressing macrophages required for CD8+ T cell infiltration and for 259 

effective clinical response43. Here we extend these observations from murine tumour based 260 

myeloid cells, demonstrating activation of this axis in circulating monocytes in patients, indicating 261 

that monocytes may play an early role in modulating peripheral CD8+ T cell recruitment. Notably, 262 

as in CD8+ T cells, although it is qualitatively concordant the magnitude of transcriptional response 263 

is far greater with cICB versus sICB4. Given the dosing of nivolumab in cICB is 1mg/kg as 264 

opposed to fixed monthly dosing of 480mg, patients typically receive much less anti-PD-1 265 
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treatment at the outset of this regimen. This marked divergence in transcriptional responses 266 

between sICB and cICB attests to a highly significant synergistic effect of the addition of 267 

ipilimumab and may reflect the greater propensity for cICB to both induce irAEs as well as long-268 

term durable disease control. Interestingly, despite marked transcriptional changes, consistent 269 

shifts in the size of monocyte proportion or classical and non-classical populations were not seen 270 

in response to ICB in our dataset, potentially indicating a peripheral ‘steady state’ following ICB 271 

in early post-treatment timepoints.  272 

 273 

Expansion of circulating monocytes is associated with a less favourable clinical outcome across 274 

different malignancies44–47. In keeping with previous reported associations, we find that a smaller 275 

monocyte population both before and after ICB is associated with better clinical outcome, as is a 276 

higher pre-treatment lymphocyte to monocyte ratio. However, intra-compartmental heterogeneity, 277 

polarization and activity also appears significant. We show that a monocyte cycling signature 278 

(inferred by MKI67 expression) with enrichment of MM-associated ‘classical-type’ signature at 279 

baseline is predictive of early death. We also explore the role of monocyte subsets in this context. 280 

A larger non-classical monocyte subset, both at baseline and following treatment, is associated 281 

with a more favourable prognosis. This suggests that response to ICB is determined in part by 282 

baseline characteristics in circulating monocytes, with an immature classical ‘cycling’ signature a 283 

poor prognostic signature, and a non-classical population associated with more favourable 284 

response to ICB. This may be underpinned by the T cell co-stimulatory phenotype and effects of 285 

pro-inflammatory non-classical monocytes.  286 

We use scRNA-seq to dissect the roles of monocyte subsets in predicting response to ICB. Whilst 287 

there are three conventionally recognised monocyte subsets, scRNA-seq studies are notable for the 288 

discrepancy and variety of described subsets48–51. However, in keeping with most studies, we 289 
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identify a large classical subset, and smaller CD16+ subset. We isolated monocytes for scRNA-290 

seq with magnetic bead sorting using CD14 antibodies, and this potentially enriched for classical 291 

monocytes, allowing us to describe the transcriptional heterogeneity within this compartment. In 292 

keeping with this, our unsupervised clustering of scRNA-seq data identifies four sub-clusters 293 

within the classical subset. Notably, we observe one, Classical4, with expression profiles 294 

consistent with an MPA-associated signature. Applying the expression signature of this subset 295 

cohort-wide across the bulk monocyte RNAseq data demonstrates that increased pre-treatment 296 

expression of this geneset is associated with a more favourable prognosis. Whether this reflects a 297 

genuine subset of increasingly reactive monocytes or alternatively, is a proxy marker for anti-298 

tumour monocyte or platelet activity is unclear and requires analysis in larger single-cell datasets 299 

currently being generated. Notably MPA are described across multiple conditions and have been 300 

associated with poor prognosis in cardiovascular disease52 and COVID-1953. Monocyte-platelet 301 

adhesion enhances CD16 expression and promotes a pro-inflammatory phenotype in circulating 302 

monocytes54. In the context of cancer this monocyte ‘stickiness’ at baseline may predict propensity 303 

to polarisation towards a pro-inflammatory myeloid response with T cell costimulatory effects.  304 

A limitation of this work is the extent to which the changes we observe in monocyte expression in 305 

response to ICB therapy reflect ICB induced T cell activation, versus direct modulation of 306 

monocytes on T cell activation. Our analyses of CD8+ T cells in patients with MM has provided 307 

critical insights into how T cell responses and clonal dynamics reflect clinical response to ICB and 308 

confirmed the potential role for peripheral immune signatures as clinical predictive biomarkers4,5. 309 

Further work to dissect this interaction in larger datasets at single-cell resolution will be key to 310 

fully understanding the mechanism of immune modulation of ICB treatment across individuals 311 

and the relationship with clinical response. Nonetheless, our analysis describes favourable 312 

associations with clinical outcome of increased counts of non-classical monocyte subsets as 313 
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defined by flow-cytometry. Conversely, we find that the increased monocytosis frequently 314 

observed in MM is associated with profoundly pro-inflammatory and pro-angiogenic expression 315 

profiles of monocytes in this state, with a presumed pro-tumourogenic effect, and indicating a 316 

causal role in impaired response to ICB and early death in MM.  317 

 318 

MATERIALS AND METHODS 319 

Samples 320 

Peripheral blood samples were obtained from patients >= 18 years old with metastatic melanoma 321 

(MM) treated with immune checkpoint blockade (ICB). This included patients treated with 322 

ipilimumab/nivolumab (anti-CTLA-4/PD-1) combination immune checkpoint blockade (cICB), 323 

and with single-agent pembrolizumab or nivolumab (anti-PD-1) immune checkpoint blockade 324 

(sICB). All patients provided prior written informed consent for samples to be donated to the 325 

Oxford Radcliffe Biobank (Approved by South Central – Oxford C Research Ethics Committee 326 

12th April 2019, REC Reference 19/SC/0173 with internal Oxford Centre for Histopathology 327 

Research ethical approval, 16/A019, 18/A064) to be used for research. Peripheral blood samples 328 

were obtained prior to the first treatment dose (cycle ‘C1’, day0), and then just before the second 329 

dose (cycle 2, C2, day21). ICB treatment regimes were according to standard treatment protocols. 330 

For patients receiving cICB this involved administration of ipilimumab and nivolumab every three 331 

weeks for up to four doses. For patients treated with sICB, pembrolizumab was administered once 332 

every three weeks, or every four weeks for nivolumab. Up to 50 ml of peripheral blood was 333 

collected per sample in ethylenediaminetetraacetic acid (EDTA) tubes. Control samples were 334 

obtained from the Oxford biobank after informed written consent was obtained. Samples were 335 

collected with local ethical approval (REC 06/Q1605/55). 336 

 337 
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Clinical Data 338 

Clinical outcome data across the cohort was obtained, including parameters such as progression at 339 

six months, time-to-progression, overall survival (OS), progression free survival (PFS) and death 340 

status. OS was defined as the time between the start date of ICB treatment to death, whilst PFS 341 

was defined as time between the first ICB dose and disease progression according to either death 342 

or disease progression on imaging. Clinical outcome data was available for 114 samples at baseline 343 

(C1) and 98 post-treatment (C2) samples.  344 

 345 

Bulk RNA Sequencing 346 

Bulk RNA-seq was carried out on CD14+ cells from 45 healthy donors, and 116 MM patients 347 

treated with ICB. Patients receiving adjuvant ICB were excluded from analysis. A total of 114 C1 348 

(day0) and 98 C2 (day21) samples were sequenced, including from 91 patients with paired pre and 349 

post treatment data. Bulk RNA-seq libraries were sequenced in three batches. The first RNA cohort 350 

was sequenced using 75 bp paired-end sequencing on an Illumina Hiseq-4000 platform. The 351 

second cohort was sequenced using the Illumina NovaSeq platform with 150 bp paired-end 352 

sequencing. The third batch of samples was run on a NovaSeq6000 platform using 150 bp paired-353 

end sequencing. The bulk RNA-seq was performed at the Oxford Genome Centre, Wellcome 354 

Centre for Human Genetics. HISAT255 was used to align reads in FASTQ files to the GRCh38/hg38 355 

genome build. Adequately mapped reads were identified according to MAPQ score with bamtools. 356 

Picard was used to remove duplicate reads. HTseq56 was used to generate read count data.  357 

 358 

Differential expression analysis 359 
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Differential expression analysis of bulk RNA-seq data was carried out using DESeq211. DESEq2 360 

was used to normalise read counts. The ComBat-seq57 package was used to remove the effect of 361 

batch sequencing.  362 

For differential expression analysis of transcripts expressed across healthy donors (‘HD’ or ‘C’) 363 

versus pre-treatment samples, variables including sex and sex were included in the DESEq2 design 364 

argument (i.e. design = ~ sex + age + cycle). Transcripts were filtered and only those with a mean 365 

count > 10 were selected for differential expression analysis. Differential expression analysis was 366 

performed using a binomial Wald test. The Benjamin-Hochberg (BH) method was used to correct 367 

for multiple testing to identify significantly differentially expressed transcripts (Padj<0.05).  368 

To identify transcripts in CD14+ cells associated with clinical outcome parameters, differential 369 

expression analysis was used, dichotomising clinical outcome data, either into those who had 370 

disease progression at six months, versus those who did not progress; and those who died three, 371 

six and twelve months after starting ICB treatment, versus those that did not. DESEq2 was used to 372 

perform differential expression analysis, controlling for treatment state and type (sICB or cICB) 373 

where applicable, as well as age and sex. 374 

 375 

Pathway enrichment analysis 376 

The XGR58 package was used for pathway enrichment analysis using interrogation of the GOBP 377 

database. Unless otherwise stated, induced/suppressed or positively/negatively associated 378 

transcripts were analysed separately.  379 

 380 

scRNA-seq samples 381 

scRNA-seq library preparation and sequencing was performed as previously described4,5. In the 382 

first batch, CD8+ and CD14+ cells were isolated from PBMCs from peripheral blood from four 383 
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patients treated with ipilimumab/nivolumab combination-immune checkpoint blockade (cICB) 384 

and four treated with pembrolizumab single-immune checkpoint blockade (sICB). Samples were 385 

obtained before (C1, day0) and after (C2, day21) the first treatment cycle. Healthy donor samples 386 

from three individuals were pooled prior to library preparation and sequenced in a second batch.  387 

 388 

scRNA-Seq library preparation 389 

The Chromium 10x platform was used for scRNA-seq library preparation. scRNA-seq data was 390 

prepared in two batches. In the first batch, 6000 of both CD8+ and CD14+ cells were combined3 391 

in suspension (total number 12,000 cells). In the second batch, 2000 CD14+ cells from each of 392 

three healthy donors were mixed in suspension in a single well. 5’ transcriptome processing was 393 

performed using the Chromium 10x system. Samples were processed according to standard 394 

manufacturer’s protocols59. This involved initial barcoding with a unique tag, reverse transcription, 395 

cDNA amplification and library preparation. 396 

For the first batch, 5’ transcriptome library sequencing was performed using a HiSeq platform with 397 

75bp paired-end sequencing with a depth of at least 50,000 reads per cell. The healthy donor 398 

control samples were sequenced using a NovaSeq 6000 platform with 150 bp paired-end 399 

sequencing with a mean sequencing depth of 78,000 reads per cell.  The Cellranger package was 400 

used to process scRNA-seq data60. The Cellranger mkfastq was used to produce FASTQ files from 401 

the Illumina BCL files. Cellranger count was then applied to each FASTQ file to produce a feature 402 

barcoding and gene expression library. Cellranger mkfastq, count and aggr were used to combine 403 

samples for merged downstream analysis. 404 

 405 

scRNA-seq quality control 406 
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For quality control (QC), the scater package61 was used to remove outliers, and scran62 package 407 

was used to remove doublets. Cells were then selected based on CD14 expression, with those cells 408 

expressing CD8A, CD3D, CD3E, CD3G, CD56, CD19 or CD20 removed from downstream 409 

analysis to remove possible contaminants. QC was then performed by removing cells that had 410 

fewer than 300 different features (genes), fewer than 500 UMIs (transcripts) and those whereby 411 

more than 20% of expressed genes were mitochondrial. Genes expressed in fewer than five cells 412 

were also removed from downstream analysis. 413 

 414 

Clustering analysis 415 

The Seurat63 package in R was used for downstream analysis of the scRNA-seq data. The raw gene 416 

expression matrix was normalised and then subject to FindVariableFeatures function63. Both 417 

untreated and treated samples were merged following normalisation. Integration anchors between 418 

MM patient and Healthy donor (Control) data sets were identified using FindIntegrationAnchors 419 

and integration of the patient and Control datasets was performed with IntegrateData function. 420 

Data was then scaled, and then a principal component analysis was run using the first 13 421 

dimensions. This level of dimensionality was chosen as it was the level at which the variation 422 

between consecutive principal components was minimal as seen on an Elbowplot. Unsupervised 423 

clustering was performing using the FindClusters function and the clusters visualised using a 424 

uniform manifold approximation and projection (UMAP) plot.  425 

The clustree64 package was used to visualise monocyte clustering trees at resolutions of 0.1, 0.2 426 

0.25, 0.5, 0.75, 1,2 and 3 (at 13 dimensions). To perform annotation of monocyte clusters with 427 

published gene sets the singleR65 package was used to compare the scRNA-seq data to annotated 428 

expression datasets including the Human Primary Cell Atlas dataset66, MonacoImmune dataset67, 429 

Immune Cell Expression data set68 and scRNA-seq data published by Villani et al48. Only groups 430 
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found across all conditions and patients were used for downstream analysis. As such, cluster 5 was 431 

removed from downstream analysis as it was present only in patient ID7 post-treatment and in 432 

controls. 433 

 434 

Identification of cluster-defining markers 435 

To identify genes differentially expressed in monocyte cluster the FindAllMarkers function was 436 

used to find differentially expressed genes between a single subset and the remaining data, 437 

selecting only positively expressed transcripts with the default Wilcoxon signed-rank sum test. 438 

The logFC threshold was set to -Inf and a method based on Bonferoni adjustment was used to 439 

correct for multiple testing.  440 

 441 

Gene expression module scoring 442 

To calculate the phenotype scores (e.g. immaturity, complement, antigen presenting scores), the 443 

Seurat AddModuleScore function was utilised to assign a score indicating the average expression 444 

of a defined gene set per single cell. The gene sets used for module scoring applied to each cell 445 

were identified by selecting the top 50 genes most significantly correlated with hub genes of 446 

interest such as CD14, C1QA, and HLA-DR expression. To identify significantly correlated 447 

transcripts, Pearsons correlation analysis was performed across all single cells and across Variable 448 

feature genes (n=2000) using the Hmisc package in R, adjusting for multiple testing using the 449 

Holm’s method with the RcmdrMisc function. Hub genes were selected based on association with 450 

a particular phenotype or function. For example, FCGR3A was selected as a hub gene indicative 451 

of non-classical phenotype. 452 
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 453 

Subset scoring in bulk RNA-seq data 454 

We identified the 20 most highly expressed genes identified using FindAllMarkers definitive of 455 

each monocyte cluster and the geometric mean score of this gene set across each DESEq2-456 

normalised bulk RNA-seq patient sample was calculated. Association between this expression 457 

signature and clinical outcome data was performed using the survminer and survival packages to 458 

perform survival analysis.  459 

 460 

Flow cytometry 461 

Following separation, PBMCs were stored in liquid nitrogen in 90% FCS and 10% dimethyl 462 

sulfoxide (DMSO). Samples were thawed and then 1x106 PBMCs were placed into a solution of 463 

HBSS with 5% FCS on ice. After 30 mins cells were fixed in 2% formaldehyde. Samples were 464 

stained using a fixable amine-reactive viability dye (LIVE/DEAD Fixable Near-IR Dead Cell Stain 465 

Kit). The appropriate antibodies were added to the sample as outlined below. The flow cytometry 466 

was carried out with a LSRII (Becton Dickinson) platform. FlowJo software was used to analyse 467 

cells blinded to clinical outcome data. For gating, myeloid cells were identified using FSC-A and 468 

SSC-A, excluding doublets. Dead/dying cells were removed via the selection of viability stain 469 

negative cells. Monocytes were then selected based on CD14 expression, and then classical, 470 

intermediate and non-classical monocytes were gated according to relative CD14/CD16 471 

expression. 472 

 473 

Antibody/stain Fluorochrome Clone Dilution Source 

Live/Dead cell stain kit Near-IR n/a 1000 ThermoFisher Scientific 

CD14 PE/Cy7 M5E2 50 BioLegend 
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CD16 FITC 3G8 50 BioLegend 

 474 

Survival analysis 475 

The survminer and survival packages were used to perform survival analysis (exploring 476 

association with OS and PFS) and visualise Kaplan-Meier curves.  Samples were dichotomised 477 

into two subsets according to variable of interest e.g expression score, being above or below the 478 

median value. A log-rank test was used to determine statistical significance.  479 

 480 

Statistical analyses 481 

All statistical analyses were performed within the R package (v 4.2.2). Plots were created using 482 

ggplot2. Boxplots demonstrate the upper and lower quartiles, with the line in the middle indicating 483 

the median, and Tukey’s whiskers indicating the range. Unless otherwise states, a Wilcoxon 484 

signed-rank test was used to test for significance.   485 

 486 

Figure 1: Peripheral monocytes exhibit distinct transcriptomic profiles in patients with 487 

metastatic melanoma 488 

1A)Volcano plot to show significantly differentially expressed genes between MM patients at 489 

baseline (‘C1’) and healthy donors (HD) (114 C1 samples, 45 healthy controls, DESEq2 analysis 490 

controlling for age and sex (Padj <0.05). B) Boxplot to show log2(CXCR1) and log2(CXCR2) 491 

expression in monocytes in MM patients at baseline (C1) versus healthy donors (HD). C) Dot plot 492 

to show key enriched and suppressed GOBP pathways in monocytes in MM patients versus healthy 493 

controls (Padj <0.05). D) Volcano plot to show monocyte expressed transcripts associated with 494 

baseline peripheral monocyte count (DESEq2 analysis, controlling for age and sex, 88 C1 495 
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samples, Padj<0.05). E) Scatterplot to show correlation between monocyte expression of FAM202 496 

and IMPDH2 and peripheral monocyte count at baseline (C1) (Pearson’s correlation).  497 

 498 

Figure 2: Transcriptional responses to ICB in circulating monocytes 499 

Volcano plot to show differentially regulated transcripts in response to: A) ICB across cICB and 500 

sICB treated patients (DESEq2 controlling for age, sex and treatment type (sICB or cICB), n = 96 501 

patients, Padj<0.05) and B) cICB (DESEq2 pairwise analysis, 51 patients). C) Barplot to show 502 

number of induced/suppressed transcripts with ICB (Both sICB and cICB treated patients, n = 96 503 

patients, sICB n=45 patients and cICB n= 51 patients). D) Dot plots to show key significantly 504 

enriched GOBP pathways induced and suppressed with ICB across all patients (Padj<0.05). E) 505 

Plot to show correlation between log2 fold change (FC) of transcripts significantly differentially 506 

expressed with cICB (‘log2FC_cICB’) versus the log2 fold change of those same transcripts 507 

following sICB (‘log2FC_sICB’) (Pearson’s correlation). F) Dot plot to show key preferentially 508 

enriched GOBP pathways with cICB versus sICB (Padj<0.05). 509 

 510 

Figure 3: Transcriptional correlates of clinical response in peripheral monocytes 511 

Volcano plot to show transcripts associated with death at: A) three months; B) six months and C) 512 

twelve months after the date of commencing of the first cycle of ICB treatment (DESeq2 analysis, 513 

controlling for age, sex, treatment status and treatment type, 114 C1 patients, 98 C2 patients, Padj 514 

<0.05). D) Volcano plot to show transcripts associated with disease progression at six months 515 

(DESeq2 analysis, controlling for age, sex, treatment status and treatment type, 113 C1 patients, 516 

98 C2 patients, Padj <0.05). E) Dot plot to show selected GOBP pathways enriched across 517 

transcripts associated with risk of death at three months (Padj<0.05).  518 

 519 
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Figure 4: Monocyte heterogeneity and immune checkpoint blockade responses 520 

A)Boxplots to show monocyte subsets (classical, intermediate and non-classical) as a proportion 521 

of the total peripheral monocyte population as assessed by flow cytometry across 53 paired C1 522 

and C2 patient samples (paired Wilcoxon signed-rank test). Points are coloured by treatment type 523 

(cICB = red, sICB = blue). B) Kaplan-Meier curve to show non-classical monocyte subset size as 524 

a proportion of monocyte population above/below median) and overall survival (OS) (C1, n=57, 525 

C2, n=59) and progression free survival (PFS) (57 C1, 59 C2 samples) (log-rank test). C) Kaplan-526 

Meier curve to show total monocyte subset size as a proportion of all PBMCs on flow cytometry 527 

above/below median) and OS at baseline at C1 (n = 57 patients, log-rank tests), and C2 (n=59 528 

patients, log-rank test) and progression free survival (PFS) at C2 (n = 59, log-rank test).  529 

 530 

Figure 5: Characterising monocyte subsets in the context of immune checkpoint blockade 531 

A) (Left) UMAP plot to show monocytes from eight patients receiving ICB at baseline (C1, d0) and 532 

at d21 post-treatment (C2), plus three healthy donors) and Classical clusters 1-4 and CD16+ 533 

monocytes (total cells n=22,116). (Right) UMAP plot to show monocytes coloured according to 534 

classical and CD16+ cluster annotation assignment. B) Expression heatmap showing gene 535 

expression profiles for Classical1, Classical2, Classical3, Classical4 and CD16+ monocytes 536 

groups. Genes were selected to include the ten genes per classical group with the greatest log2 fold 537 

change. C) Dotplot to show key GOBP pathways enriched in Classical1-4 and CD16+ monocyte 538 

groups. D) Gene expression module score for each monocyte subgroup. Score is average of 539 

expression of top 50 subgroup-defining genes for each monocyte subgroup. Positive value infers 540 

expression is higher than expected, and negative value lower. F) Kaplan-Meier curve to show 541 

Classical4 expression score in bulk RNA-seq data above/below median expression score) at C1 and 542 

OS (n = 113 patients, log-rank test) and PFS (n = 113 patients, log-rank test).  543 
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 544 

Supplementary Figure 1: Differentially expressed transcripts with sICB 545 

Volcano plot to show differentially regulated transcripts in response to sICB (DESEq2 pairwise 546 

analysis, 45 patients). 547 

 548 

Supplementary Figure 2: Transcriptional correlates of clinical response in peripheral 549 

monocytes from patients at baseline  550 

Volcano plots to show transcript expression at baseline before treatment (C1) associated with 551 

death at: A) three months; B) six months and C) twelve months after the date of commencement of 552 

first cycle of ICB treatment (DESeq2 analysis, controlling for age, sex, and treatment type, 114 553 

C1 patients, Padj <0.05). 554 

 555 

Supplementary Figure 3: Monocyte subsets and response to ICB 556 

Boxplots to show change in monocyte subset proportion with: A) cICB (n= 29 paired patient 557 

samples) and B) sICB (n= 24 paired patient samples) (Paired Kruskal Wallis test). C) Kaplan 558 

Meier curve to show lymphocyte to monocyte ratio as per flow cytometry above/below median) 559 

before treatment, C1, and overall survival (OS) (n = 57 patients) (log-rank test).  560 

 561 

Supplementary Figure 4: Single cell RNA-seq cohort details 562 

 563 

Supplementary Figure 5: scRNA-seq clustering and annotation 564 

A) UMAP plot to show all monocytes (from eight patients receiving ICB at baseline (C1) and day 565 

21 post-treatment (C2), plus three healthy donor individuals (‘C’) clustered into nine subsets 566 

indicated by different colours (total cells n= 24,457) at resolution 0.25 with 13 dimensions. B) 567 

Heatmap to show proportion of assigned cell types according to SingleR annotation using 568 
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expression sets including the Human Primary Cell Atlas, Monaco Immune, Immune Cell 569 

Expression and Villani datasets. SingleR was used to compare the expression of each single cell 570 

to that of an annotated expression set providing classification annotation. Only cell type 571 

annotations comprising at least 1% of the total scRNA-seq population were included. Scale (‘mat’) 572 

indicates proportion of cells in the subset assigned to that cell type with 1 indicating 100%. C) 573 

UMAP plot to show Seurat subset assignment by patient ID.. ‘C’ denotes control samples 574 

(comprises cells from three pooled healthy donor samples). Each point represents a cell and cells 575 

are coloured by Seurat cluster assignment. D) Table to show summary of annotation of Seurat 576 

monocytes clusters (Seurat clusters 0-8) with SingleR.  577 

We removed subset 5 from downstream analysis as it was limited to patient ID7, and control 578 

samples. Patient ID7 was removed completely from comparisons between C1 and C2 monocyte 579 

subgroup proportion sizes.  580 

 581 

Supplementary Figure 6: Characterising monocyte subsets with scRNA-seq 582 

A) Heatmap to show top 20 genes by log2 fold change in classical subset comprising all Classical 583 

groups 1-4 merged (n = 21,276 cells) and CD16+ monocyte (n=840 cells) subgroups. B) Dotplot 584 

to show GOBP pathways most significantly enriched (top 15 most significant pathways, 585 

Padj<0.05) in classical and CD16+ monocyte subgroups. 586 

 587 

Supplementary Figure 7: Table to show hub genes for gene expression module scoring in 588 

scRNA-seq data.  589 

 590 

Supplementary Figure 8: Monocyte population responses to ICB 591 
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A) Boxplots to show percentage of each monocyte group per sample both before (C1) and after 592 

(C2) ICB (n=7 paired patient samples with patient ID7 removed).  B) Barplot to show proportion 593 

of monocyte subgroups by condition across all patients (At C1 n= 9000 cells , at C2 n=9082 cells). 594 

C) Boxplot to show percentage per samples pre and post treatment by monocyte group for sICB 595 

patients (n=4 paired patient samples). D) Boxplot to show percentage per samples pre and post 596 

treatment by monocyte group for cICB patients (n=3 paired patient samples). E) Boxplot to show 597 

percentage of classical and CD16+ monocytes per patient sample (n=7 paired patient samples). 598 

Significance performed by a paired Wilcoxon signed rank test. 599 

 600 

 601 

Table 1: Differentially expressed genes in MM patients versus healthy donors. 602 

Table 2: GOBP pathways enriched comparing MM versus healthy donors. 603 

Table 3: Baseline monocyte count associated expressed transcripts  604 

Table 4: monocyte count associated GOBP pathways 605 

Table 5: Differentially expressed transcripts in circulating monocytes in response to ICB at day 606 

21 (C2) across both cICB and sICB patients.  607 

Table 6: cICB associated differentially expressed transcripts  608 

Table 7: sICB associated differentially expressed transcripts 609 

Table 8: GOBP pathways enriched across induced and suppressed transcripts following ICB at 610 

day 21 (C2). 611 

Table 9: Differentially expressed transcripts preferentially induced at day 21 (C2) in those 612 

receiving cICB versus sICB.  613 

Table 10: GOBP pathways enriched across transcripts preferentially induced in response to cICB 614 

versus sICB.  615 
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Table 11: Transcripts differentially associated with death at three months after starting ICB 616 

(C1&C2, sICB and cICB).  617 

Table 12: Transcripts differentially associated with death at six months after starting ICB 618 

(C1&C2, sICB and cICB).  619 

Table 13: Transcripts differentially associated with death at twelve months after starting ICB 620 

(C1&C2, sICB and cICB).  621 

Table 14: GOBP pathways enriched across transcripts associated with death at three months after 622 

starting ICB (C1&C2, sICB and cICB). 623 

Table 15: GOBP pathways enriched across transcripts associated with death at six months after 624 

starting ICB (C1&C2, sICB and cICB). 625 

Table 16: GOBP pathways enriched across transcripts associated with death at twelve months 626 

after starting ICB (C1&C2, sICB and cICB). 627 

Table 17A: Transcripts differentially associated with death at three months after starting ICB (C1 628 

pre-treatment only, sICB and cICB).  629 

Table 17B: Transcripts differentially associated with death at six months after starting ICB (C1 630 

pre-treatment only, sICB and cICB). 631 

Table 17C: Transcripts differentially associated with death at twelve months after starting ICB 632 

(C1 pre-treatment only, sICB and cICB). 633 

Table 18A: Transcripts differentially associated with six month progression (C1&C2, sICB and 634 

cICB). 635 

Table 18B: GOBP pathways enriched across transcripts associated with disease progression 636 

within six months of starting ICB (C1&C2, sICB and cICB). 637 

Table 19: Transcripts defining monocyte subgroups (Classical1, Classical2, Classical3, 638 

Classical4, CD16+ monocytes). 639 
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Table 20: Transcripts defining classical monocytes versus CD16+ monocytes with scRNA-seq. 640 

Table 21: GOBP pathways enriched across transcripts defining monocyte subgroups (Classical 1-641 

4, CD16+ monocytes) 642 

Table 22: GOBP pathways enriched across transcripts defining merged large classical group and 643 

CD16+ monocytes. 644 

Tables 23-28: to show cohort details for scRNA-seq data and significantly correlated genes across 645 

scRNA-seq data with hub gene (pearson’s correlation, adjusted for multiple testing). 646 
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