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Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor symptoms resulting from

the loss of dopamine-producing neurons in the brain. Currently, there is no cure for the disease which is in

part due to the heterogeneity in patient symptoms, trajectories and manifestations. There is a known genetic

component of PD and genomic datasets have helped to uncover some aspects of the disease. Understanding

the longitudinal variability of PD is essential as it has been theorised that there are different triggers and

underlying disease mechanisms at different points during disease progression. In this paper, we perform

longitudinal and cross-sectional experiments to identify which data modalities or combinations of modalities

are informative at different time points. We use clinical, genomic, and proteomic data from the Parkinson’s

Progression Markers Initiative. We validate the importance of flexible data integration by highlighting the

varying combinations of data modalities for optimal stratification at different disease stages in idiopathic PD.

We show there is a shared signal in the DNAm signatures of participants with a mutation in a causal gene of

PD and participants with idiopathic PD. We also show that integration of SNPs and DNAm data modalities

has potential for use as an early diagnostic tool for individuals with a genetic cause of PD.
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Introduction

Parkinson’s Disease (PD) is a heterogenous, progressive,

multisystem neurological disorder that affects the nervous system.

It is most commonly characterised by a range of motor symptoms,

primarily involving difficulties with movement, however a wide

variety of non-motor symptoms also exist. PD has a complex

pathophysiology, but these disease pathways culminate in the

gradual death of neuronal cells, causing a deficit in dopamine

(Wüllner et al., 2023).

One notable aspect of PD is the variability between individuals

with the disease. PD is characterised by core motor syndromes

of tremor, rigidity, bradykinesia and postural instability. The

onset, trajectory and experience of these symptoms among people

varies significantly. Genetic mutations in individuals account

for approximately 30% of cases, however not everyone with a

mutation will develop the disease (Klein and Westenberger, 2012).

The trajectory of the disease among patients is highly variable,

with some experiencing a rapid progression to disability and

others following a relatively benign course (Severson et al., 2021).

Whether an individual develops all motor and any non-motor

symptoms can vary too. While PD medications do not cure

the disease, they do help with some of the day-to-day motor

symptoms, however the time period for which they are effective

varies between patients also (Davie, 2008).

Identification of mutations in single genes have aided the

understanding of PD. For example, specific variants in the LRRK2,

GBA, and PINK1 genes are associated with PD (Davie, 2008).

This motivates the use of omic measures for uncovering novel

insights into the pathology of PD. Omic data modalities capture

genetic and/or biomolecular profiles; analyses of these data has

resulted in many novel findings in PD. Craig et al. (2021) found

early alterations between the gene expression of PD patients and

healthy individuals. Similarly, Kern et al. (2021) found that non

coding RNA’s can have diagnostic and prognostic power in PD

individuals. Recent Genome Wide Association Studies of PD have

had conflicting results. Walters et al. (2023) found no genome

wide significant loci for PD in the China Kandoori Biobank with

a population of 105,408 Chinese individuals. Conversely, in a

population of 2478 Chinese individuals, Pan et al. (2023) found

19 associations with PD including genome wide significant loci in
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LRRK2, SNCA, andGBA. Currently, there is no known exogenous

or genetic trigger for PD that causally results in the loss of

dopaminergic cells.

It has been hypothesised that the disease mechanisms of PD

change over time and that treatment needs to account for disease

stage as well as individual molecular and disease phenotypes.

(Wüllner et al., 2023). Longitudinal variability poses significant

challenges in both the biological understanding and treatment of

PD. This heterogeneity necessitates a flexible approach that can

incorporate multiple sources of information at a given stage of

PD. The Parkinson’s Progression Markers Initiative (PPMI) was

created for this reason. It consists of longitudinal clinical, genomic,

and imaging data from over 900 PD cases, 800 Prodromal (cases

without a clinical diagnosis for PD, but early indicators that they

will go on to develop it) and 230 Healthy Controls.

We propose a flexible integrative approach using a network

taxonomy that can incorporate many aspects of the PPMI

dataset, most notably the longitudinal component. Variability

in disease motivates an individualised approach to disease

management. We utilise a patient similarity measure to identify

patients who have similar molecular, epigenetic, and demographic

disease characteristics. We hypothesise that integrating many

sources of complementary information can unravel many of the

unknown aspects of PD. By combining a patient-focused approach

with multiple sources of information, we hope to learn what

differentiates PD patients from those who have early signatures

of the disease and healthy controls.

Multi-modal approaches have achieved good prediction

accuracy using the PPMI dataset. Chan et al. (2022) achieve

perfect disease stratification using a model which incorporated

multiple omic and image datasets. A review by Gerraty et al.

(2023), on multi-modal integration approaches in the PPMI

dataset, found that clinical and neuroimaging datasets were the

most commonly utilised modalities. They further identified that

few machine learning focused papers use the longitudinal structure

of the PPMI study. A possible reason for this is due to restricted

patient coverage when incorporating image data. Chan et al.

identify that the dataset they utilised is small and heavily skewed

to PD patients (Chan et al., 2022). Given the time-consuming

nature and expense of collecting image data, this is not surprising.

In this analysis, we integrate omic datasets such as Messenger

RNA expression (mRNA) and Single Nucleotide Polymorphisms

(SNPs) with clinical and proteomic information using a flexible

network taxonomy that allows retention of the maximum number

of patients in the analysis. We represent the integrated modalities

as a Patient Similarity Network (PSN) and use an Graph Neural

Network (GNN) architecture for disease stratification. We group

patients into those with a mutation in a known causal gene

for PD, those who have a sporadic onset of the disease, and

finally a combination of both. In each case we attempt to classify

individuals as either having PD, being prodromal, or a healthy

control. We perform experiments cross-sectionally across 4 time

points over the course of the first three years of a patient’s disease

post diagnosis. We assess the best combination of modalities at

each time point and contrast the findings between the three groups.

Finally, we re-run the analysis on a subset of genetic PD patients

who have data across all time points, with a model trained at each

time point. The goal of this experiment is to identify whether

the disease signatures we identify change over the first three years

of the disease by assessing if the learnt biological signals remain

consistent across the 4 time points.

Methods

Multi-Omic Graph Diagnosis (MOGDx)

MOGDx is a flexible tool to integrate multiple omic measures

and perform classification tasks. This approach uses a network

taxonomy to combine patient similarity matrices into a

single network and perform node classification using a Graph

Convolutional Network (GCN). The performance of MOGDx

was benchmarked on cancer data and achieved state-of-the-art

performance compared to similar research (Ryan et al., 2023).

MOGDx can integrate any number of modalities. This includes

omic measures as well as any other modalities of interest, such as

clinical descriptors. A single Patient Similarity Network (PSN) is

built per modality. The PSN is built using the most informative

features of that modality. The most informative features are found

by performing a contrastive analysis between classification targets.

Where suitable, Pearson correlation, otherwise Euclidean distance

is measured between these informative features and the network is

constructed using the k nearest neighbours algorithm. Similarity

Network Fusion (SNF) is used to combine individual PSN’s into

a single network. The fused PSN and the omic datasets are input

into the Graph Convolutional Network with Mulit-Modal Encoder,

the architecture of which is shown in Figure S1. Each omic

measure is compressed using a two layer encoder. The compressed

encoded layer of each modality is then decoded to a shared latent

space using mean pooling. The shared latent space is the node

feature matrix, required for training the GCN. The node feature

matrix and fused PSN are combined and input into the GCN

for classification. For a more detailed description of the MOGDx

architecture, please refer to Ryan et al. (2023)

MOGDx is a preferred tool to perform analysis on the PPMI

dataset due to its flexibility. It can integrate any number of

modalities, whilst simultaneously allowing for the retention of the

maximum number of patients possible, in contrast to other existing

methodologies. As discussed by Chan et al. (2022) and as per

Figure 1, there are relatively few healthy control participants. Not

every patient will have a sample for each modality at each time

point. In order to avail of the full PPMI dataset, a method which

can incorporate the maximum number of samples is required.

MOGDx achieves this by utilising SNF and imputation methods

to retain patient nodes. SNF can include patients with missing

samples in one or more modalities and due to its ability to share

information across modalities the performance of the network is

not reduced (Ryan et al., 2023). MOGDx provides a high level of

interpretability. Due to the flexibility of omic integration, ablation

experiments can be performed to identify the most predictive

omic measures. As the most informative features are extracted

in the MOGDx pipeline, these features can be further analysed to

identify important pathways, traits or interactions of the target

application.

PPMI Dataset

Data was obtained from the PPMI (Marek et al., 2018). The

modalities analysed and number of features per modality at year

0 are summarised in Table 1. All other time points are included

in Tables S1-S3 in the supplementary. In total, 5988 samples from

2188 participants were included in the analysis, as per Table S4.

Patient characteristics and the participant sample availability over

time are shown in Figure 1. Participants in the analysis were

identified as Parkinson’s Disease (PD), Prodromal (PL) or Healthy

Control (HC) participant.
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Table 1. Breakdown of Modality Features in PPMI Dataset at Year 0

Raw

Feature

Count

Count After Processing
PSN Extracted Feature

Count

Method of

Extraction

All Genetic Idiopathic All Genetic Idiopathic

mRNA 52338 29791 24251 33664 1267 1240 1320 padj < 0.05

miRNA 40194 3206 2995 3152 401 418 242 padj < 0.05

DNAm 805434 300k 300k 300k 149 15 11 |ω| > 0

SNP 841 841 841 841 20 20 20 None

Protein 4785 4785 4785 4785 4785 227 4785 |ω| > 0

Clinical 6 6 6 6 6 6 6 None

MDS-

UPDRS
88 63 63 63 56 61 57 |ω| > 0

Omic measures are Messenger RNA expression (mRNA), micro RNA expression (miRNA),

DNA methylation (DNAm) and Single Nucleotide Polymorphisms (SNPs). Cerebral Spinal

Fluid (CSF) is the protein measure and MDS-UPDRS is the Movement Disorder Society

Unified Parkinson’s Disease Rating Scale. padj is the false discovery rate in differential

expression. |ω| is the absolute coefficient weights in penalised elastic net regression.

Four genomic measures, shown in Table 1, were generated from

whole-blood samples and analysed. Each measure was processed to

remove uninformative or missing features. A Principal Component

Analysis (PCA) was performed on the SNPs dataset to reduce the

dimensionality of the dataset, and the first 20 PC’s were retained.

Omic data were supplemented with additional measures of 1472

CSF markers extracted from participants and clinical descriptors.

Clinical descriptors included individual phenotypes of age, sex

and years of education; These were supplemented with measures

for smoking, alcohol and BMI generated from DNAm profiles

(McCartney et al., 2018). These DNAm profiles were derived from

models trained on up to 5087 individuals in a national study in

Scotland and tested on two separate cohorts also based in Scotland

(McCartney et al., 2018). The MDS-UPDRS by Goetz et al. (2008)

is a measure of disease severity in those with PD and PL. This

scale combines measures relating to both motor and non-motor

symptoms of PD. It consists of both self-assessment and clinical

assessments and is a proxy of disease stratification (Goetz et al.,

2008). It was used as a baseline comparative model to identify if

the biological signal for PD found in the blood is stronger than

clinical assessment using MOGDx.

Pairwise linear regression between the three classes was

performed using the DESeq2 package in R to obtain differential

gene expression transcripts (Love et al., 2014). For non gene

expression modalities, penalised elastic net regression was

performed using the glmnet package in R (Tay et al., 2023).

Differentially expressed genes with a statistically significant

FDR (padj < 0.05) and logistic regression coefficients with an

absolute weight greater than zero were extracted as informative

features for each modality’s PSN. The number of informative

features is dependent on the subgroup being analysed. If no

informative features were found, all features were retained. Further

information on the experiments is included below, with the feature

counts summarised in Table 1.

Participant samples have been broken down by sex, age,

subgroup and time point in Figure 1. The time points cover the

first three years of the disease in the PD cohort. The first time

point (labelled year 0) corresponds to participants with PD who

have had a diagnosis for less than 2 years, have not begun taking

any PD medication and are not expected to require PD medication

for at least 6 months (Marek et al., 2018). Those in the genetic

subgroup of PD have a mutation in one of three genes: LRRK2,

SNCA or GBA. Idiopathic individuals do not have mutations in

any of these three genes. PL participants have been identified as

being of high risk for the disease, but have not yet met a clinical

threshold for diagnosis. The first time point, year 0, in this cohort

corresponds to their enrolment in the study. The genetic subset of

this group also have a mutation in one of the three aforementioned

genes as aligned with the genetic PD subgroup. As per Figure 1

A, the PL participants in the genetic subgroup far outnumber

the participants in the Rapid eye movement Behaviour Disorder

(RBD) and hyposmia subgroups. Participants in these groups have

one of two non-motor symptoms associated with PD. RBD is a

sleep disorder which has been identified as an early indicator for

the disease, and hyposmia is a smell disorder which is an early

indicator of PD (Mahmood et al., 2020; Roos et al., 2019). The

HC arm of this analysis have been screened to ensure they did not

meet the criteria for either PD or PL. As with PL, their first time

point, year 0, aligns with their enrolment in the PPMI study. PD

idiopathic and PL genetic are the two most prevalent subgroups in

the dataset. The vast majority of participants are aged 55 years or

older, and the mean age of all participants is 63 years. As identified

in Chan et al. (2022) there are fewer HCs compared to PD and PL

however the numbers presented in both Figure 1 A and Table S4

show higher counts compared to their analysis which was subset

to participants who had image data available. A distinguishing

factor of this analysis is the utilisation of the longitudinal data in

the PPMI dataset. Figure 1 B shows the flow of data availability

over time. It is split by clinical diagnosis of PD, PL or HC and is

further divided at each time point by disease subgroup. It shows

that, over time, the number of participants decreases across all

diagnoses and subgroups. This is due to participant dropout (n =

401), missing samples for a participant at a time point (see Table

S5) or the transition of a PL patient to a clinical diagnosis for PD

(n = 33). A summary of the criteria for participant stratification

and disease subgroups are summarised in Figure S2.

Design of Data Analysis

In this analysis, we perform cross-sectional experiments at 4 time

points over three years, as well as longitudinal experiments on

participants who have a mutation in one of the three causal

genes of PD. In all cross-sectional experiments we classify whether

participants have PD, are PL or are a HC. We perform these

cross-sectional experiments on all participants, regardless of their

subgroup. Similarly, we perform the experiments on two subsets

based on participants’ subgroup. The first subset, referred to as

genetic, includes PD and PL participants in the genetic subgroup.

The other subset, referred to as idiopathic, includes all participants

in the idiopathic, RBD and hyposmia subgroups. HC participants

are included in both subsets as a control. We use a brute-

force approach, testing all combinations of modalities in each

experiment to identify the modalities at each time point with the

highest accuracies and F1 scores.

In the longitudinal analysis, we re-perform the best performing

cross-sectional experiment on the genetic PD and PL cohorts, with

exact numbers shown in Table S6. Once again, HC are included as

a control. This analysis includes participants who have a sample

at each time point in at least one of the included modalities.

The best performing cross-sectional experiment was determined

by averaging the F1 scores of each model across all time points.

For this analysis, only the optimal combination of modalities which

maximised both accuracy and patient retention was analysed. It

comprises 4 cross-sectional experiments where MOGDx is trained

and tested at each time point. Each of the 4 models are then tested

at all other time-points to assess if the biological signal learnt is

present at other time points.
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Fig. 1: A Participant Count by Age and Sex — The number of participants in each disease subgroup broken down by age and sex

are shown. PD idiopathic and Genetic Prodromal are the two largest cohort subgroups. The majority of participants are older than 55 years,

with a slightly larger male majority. Relatively, there are very few PL participants who do not have genetic predisposition. B Longitudinal

Participant Count by Disease Subroup — The flow of participant availability over the first four years of samples in PD, PL and HC

participants in the PPMI study. The number of samples available decays in all subgroups over time.

Results

Performance & Evaluation

The performance metrics used to compare the classification

performance of MOGDx were accuracy, F1 score and improvement

in accuracy. The F1 score was calculated by the mean F1 score

of each class, weighted by the size of that class. Improvement

in accuracy is a metric used to compare how much the accuracy

improved compared to a baseline model. In this case, the baseline

model is a simple model which predicts the most common class.

Stratified k-fold cross validation was performed with 5 randomly

generated splits to obtain the mean and standard deviation

metrics reported. Within each split, the set was further randomly

split into training and validation sets to produce an overall

train/validation/test split of 68%/12%/20% respectively.

An integrative approach is optimal when classifying individuals

with PD over time

The results from the cross-sectional experiments, shown in Table

2 and Figure 2, highlight the power of a flexible integrative

approach when classifying participants in the PPMI dataset with

PD. The flexibility of the approach allows us to test all modalities

individually, as well as all combinations of integrated modalities

at each time point. As a result, all 6 modalities are included in at

least one experiment. This is further evident in Figure S3, which

shows that an integrated approach is preferred in 13 of the top

15 best performing models averaged across all time points of the

three groups. In Table 2 there are only two experiments, years

1 and 3 with all participants (genetic + idiopathic), which do

not integrate modalities for optimal performance. In Figure 2,

the three worst performing models are all individual modalities,

whereas the best model in the genetic and idiopathic subgroups

integrate two modalities. DNAm performs best individually when

predicting all participants. The improvement in accuracy of these

DNAm models, at most time points in Figure 2, is lower than the

combined modalities in the other subgroups. There is an increase

in accuracy compared to the worst performing modality, miRNA,

but it does not match or improve on the baseline MDS-UPDRS

assessment. Only the genetic subgroup achieves an improvement

in accuracy greater than the MDS-UPDRS assessment. This could

motivate the use of these modalities for early disease diagnosis,

as motivated below. The combination of CSF and DNAm in the

idiopathic subgroup shows promising performance, particularly at

year 2. The MDS-UPDRS is an accurate baseline to compare

to, given it consists of clinical assessment scores of both motor

and non-motor symptoms (Goetz et al., 2008). Thus, the results

show encouraging performance when integrating combinations of

modalities in subgroups of PD.
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Table 2. Cross-Sectional performance of MOGDx in different subgroup experiments

Modalities Number of Participants Accuracy F1 score Improvement in Accuracy

Genetic +

Idiopathic

(All)

Year 0 DNAm + SNP + mRNA + miRNA 1515 0.630± 0.019 0.665± 0.017 0.110± 0.018

Year 1 DNAm 548 0.624± 0.020 0.667± 0.032 0.111± 0.02

Year 2 Clinical + DNAm 542 0.694± 0.037 0.717± 0.034 0.166± 0.037

Year 3 DNAm 493 0.712± 0.018 0.699± 0.048 0.146± 0.018

Genetic

Year 0 DNAm + SNP 489 0.789± 0.036 0.753± 0.04 0.419± 0.036

Year 1 DNAm + SNP 443 0.867± 0.018 0.835± 0.02 0.472± 0.018

Year 2 DNAm + SNP 432 0.866± 0.031 0.837± 0.032 0.477± 0.031

Year 3 DNAm + SNP 365 0.841± 0.034 0.811± 0.038 0.403± 0.034

Idiopathic

Year 0 SNP + miRNA 667 0.681± 0.031 0.752± 0.008 0.069± 0.031

Year 1 CSF + DNAm + SNP 582 0.720± 0.039 0.776± 0.035 0.122± 0.039

Year 2 CSF + Clinical + DNAm 399 0.805± 0.022 0.770± 0.022 0.246± 0.022

Year 3 CSF + DNAm 360 0.764± 0.022 0.721± 0.021 0.183± 0.022

Fig. 2: Modality Integration Performance of Best, Worst

and Baseline (MDS-UPDRS) Models A — Idiopathic +

Genetic Optimal performance, using DNAm, does not improve on

baseline MDS-UPDRS assessment but is better than worst performing

modality miRNA B — Genetic Integrating DNAm and SNPs

for participants with a genetic predisposition for PD performs better

than the MDS-UPDRS assessment and worst performing modality C

Idiopathic — Integrating CSF with DNAm improves on the worst

performing modality, mRNA, but has worse performance compared to

the MDS-UPDRS assessment.

Flexibility in integration of modalities facilitates a biological

signal for PD to be learnt from whole-blood samples and

protein markers in PPMI study participants

Table 2 highlights the importance of flexibility when integrating

different modalities. There is an improvement in accuracy

compared to a model which predicts the most common class in

all experiments. This improvement increases with time, indicating

an increased biological signal for PD as the disease progresses.

In both genetic and idiopathic subgroups, years 1 and 2 are the

most predictive time points. This could indicate that these time

points are capturing both early and late signatures of PD. This is

particularly evident in the idiopathic subgroup, where there is a

change in predictive modalities over time, with common modalities

early and late in the disease. The genetic SNPs modality is

predictive early, whereas protein CSF markers along with DNAm

are more prominent in later stages. This supports the work of

Wüllner et al. (2023) who found that there may be different disease

mechanisms at different stages of PD. The caveat is that the

prediction accuracy at year 0 in this subgroup is low.

Conversely, in the genetic subgroup, the modalities which are

most predictive do not change with time. Unsurprisingly, the SNPs

modality is included across all time points in the genetic subgroup

experiments. SNPs are a fixed description of participant genetic

information (Edwards et al., 2007). Thus, this dataset can clearly

distinguish HCs from PD and PL individuals who have a mutation

in a known causal gene for PD. It does not differentiate between

PD and PL participants, thus indicating that this differentiation

is learnt from another modality, in this case DNAm. Whether the

biological signal learnt changes over time requires further work

to understand the drivers of variability in DNAm at each time

point. The integration of these two modalities outperforms the

MDS-UPDRS baseline, highlighting the predictive power of using

whole-blood samples to extract omic information relating to a

neurological disease. In summary, we found a strong disease signal

both early, but particularly late, in the blood of individuals with

a genetic predisposition for PD, despite it being a neurological

disorder.

There are possible similarities in the DNAm signatures of

idiopathic participants and participants who have a genetic

predisposition for PD

There is a clear genetic driver in participants who have a mutation

in a causal gene of PD. As per Table 2, the genetic subgroup

achieves the highest accuracies, F1 scores and improvements

in accuracy at all time points. As included participants have

a mutation in one of the LRRK2, GBA or SNCA genes, the

genetic influence on their disease is far more prominent and can

be distinguished with high classification accuracy using genomic

data. This highlights the homogeneity between participants in this

subgroup and the power of using a patient similarity approach for

tasks of this nature. The idiopathic subgroup contains participants
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with unknown causes of PD or, in the case of participants labelled

PL, have an early indication of developing the disease. This

group has no known genetic association with PD, therefore it

is unsurprising that the accuracies achieved when integrating

genomic data is lower. It is still possible that there is a genetic

cause of PD in this cohort, however there are likely numerous

signatures which are too diverse for a signal to be found.

This makes the idiopathic cohort very heterogenous. Despite

these significant differences between participant subgroups, most

experiments include DNAm as a predictive modality, with the

idiopathic subgroup at year 0 being the only experiment where

it is not included. Given this prominence, it indicates the presence

of epigenetic modifications between PD, PL and HC participants.

When considering all participants (genetic + idiopathic), there is

a mix of a homogeneous and a heterogeneous group, which makes

learning very difficult. Despite this, there is a robust improvement

in accuracy between 10% and 20% across all time points, as per

Figure 2. This suggests that there may be a shared signal between

the two subgroups in the DNAm modality. A possible explanation

for the decreased performance compared to the two subgroups

is that the additional information added by other integrated

modalities is not shared between the two subgroups. In order to

confirm if the signal being learnt is similar, more research needs

to be conducted to identify the common discriminating DNAm

features, however our results suggests common signatures in the

DNAm of genetic and idiopathic PD participants.

An integrative model trained at a late disease stage could form

a viable early diagnostic tool for predicting individuals with PD

who have a genetic predisposition for the disease

In the cross-sectional experiments, we show the metrics for

classifying participants with a mutation in a causal gene of PD

to be very promising. The combination of DNAm and SNPs

achieves a consistently high accuracy, F1 score and improvement

in accuracy. The improvement in accuracy is consistent across all

time points, as per Figure 2, highlighting the robustness of the

signal learnt. At year 0, participants with PD are in the early

stages of their disease. They have had a clinical diagnosis for

two years or less, have not begun taking medication and are not

expected to be required to take medication for at least 6 months.

Despite this, the models are able to discriminate between the

three stratification targets. Further research should be conducted

to identify if this signal can be learnt prior to diagnosis and

motivates the integration of DNAm with SNPs for early PD

detection. Longitudinal experiments were performed on a subset

of participants from the genetic group who have samples available

in either DNAm or SNPs at each time point. These experiments

were designed to identify the optimal time point to train such a

diagnostic tool and if the disease signal learnt early in the disease

is present later and vice versa.

Table 3 shows the results of the longitudinal experiments and

clearly highlights that an early PD detection model should be

trained later in the disease course. Both the accuracy and F1

scores increase with models which are trained later in the disease

course. Optimal performance was observed by the model trained

at year 3. Poorest performance was observed by the model trained

at year 0, with the performance of models trained at years 1

and 2 being comparable. For simplification of comparison, the

metrics reported in Table 3, report the accuracy and F1 score

achieved when the model classifies all participants included in the

Table 3. Longitudinal Experiments Performance Metrics

Accuracy / F1
Time Point Model Tested

Year 0 Year 1 Year 2 Year 3

Time

Point

Model

Trained

Year 0 0.832 / 0.798 0.806 / 0.768 0.813 / 0.773 0.816 / 0.777

Year 1 0.839 / 0.815 0.911 / 0.886 0.845 / 0.811 0.845 / 0.814

Year 2 0.849 / 0.814 0.849 / 0.814 0.872 / 0.840 0.836 / 0.799

Year 3 0.895 / 0.874 0.888 / 0.870 0.908 / 0.885 0.947 / 0.932

experiment. Therefore, only for the models trained and tested at

the same time point, 68% of the participants will have been seen

by the model in the training set. This accounts for the apparent

increase in accuracy relative to the cross-sectional metrics reported

in Table 2. Despite this, the model trained at year 3 achieves a

higher accuracy when tested at year 0 and year 2 compared to the

models trained at these time points. While the model trained at

year 3 doesn’t improve on the accuracy of the model trained and

tested at year 1, it does outperform all models at all other time

points, as per Figure S4.

Figure 3 shows the accuracy broken down by class for the four

models trained at each time point. All models predict the HC class

with high accuracy. As mentioned, both PD and PL participants

have a genetic risk variant for the disease, thus, the SNPs modality

can easily discriminate between them and the HC participants.

The main differentiation between the models is their ability to

distinguish PD from PL participants. In general, it can be observed

from Figure 3 that the accuracy in predicting PD participants

decays the further away in time you test the model from when

it was trained. This can be observed in Figure 3, both by the

sharp gradients of the PD participants when assessing the number

of consecutive correct predictions of a model and the decrease in

flow accuracy. Conversely, the PL class have much more stable

and consistent predictions across all time points. This is evident

in Figure 3 with the number of PL participants correctly classified

in the flow diagram being less variable over time and the flatter

gradients in the consistency of predictions.

In Table 3, we show there is a much stronger signal

discriminating PD from PL participants later in the disease course.

This finding is expected as the PD participants, on average, will

have a more severe disease at year 3 than they will at year 0.

What these results therefore show is that by year 3 we have found

a very accurate threshold for differentiating PD participants from

PL. When we then back-propagate this threshold by testing the

model over time, we find that the PL participants maintain a high

predictive accuracy, but some PD participants cross this threshold

and are misclassified as PL. As stated, differences between these

groups can be largely explained by differences in their DNAm.

Thus, we can attribute these findings to epigenetic modifications

occurring in participants with PD as their disease progresses.

Discussion

In this paper, we applied an integrative network framework and

artificial intelligence to the PPMI dataset. The PPMI dataset is

an observational, international study, consisting of multiple data

modalities, with the goal of identifying markers of PD to accelerate

disease modifying clinical trials (Marek et al., 2018). We used

clinical, genomic, and proteomic data to include a significant

number of patient samples and conducted cross-sectional and

longitudinal stratification of participants who have PD, have an

early indication of developing PD (Prodromal), or were a Healthy

Control.
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Fig. 3: Longitudinal Experiments Participant Stratification A — Year 0 This model consistently predicts the same participants as

PD, PL and HC which can be observed by the consistent flow of predictions in A.1 and relatively flat gradients in A.2. B — Year 1 This model

is very accurate when trained and tested at the same time point, but performs poorly when predicting PD participants at other time points. This

leads to significant changes in the flow of predictions in B.1 and sharp gradients in B.2. C — Year 2 This model achieves good trade off in

predicting between PD and PL participants as can be seen by symmetry in C.1, but the predictions are not consistent as per the sharp gradients

in C.2. D — Year 3 This is the best performing model. There is good symmetry in predictions in D.1 and the lines in D.2 are relatively flat.

It does have more difficulty predicting PD participants earlier in the disease course, thus the sharper decline in D.2.
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We found that a flexible integrative approach is optimal when

performing disease stratifications for PD. Our models show a

strong preference for including multiple modalities. It is clear that

there is not sufficient information in any one single modality to

accurately capture significant variability in PD at all time points.

This highlights the importance of integrating multiple sources of

information to capture different components of the heterogeneity

in PD. Flexibility is also a key characteristic of this framework.

Our approach allows us to test all modalities individually and

all combinations of modalities at each time point. This allows us

to perform ablation experiments to identify the most informative

modalities at each time point. The idiopathic subgroup contains

individuals with no known cause of PD. This makes them a very

heterogeneous group as there could be a vast number of different

disease mechanisms at play, which may not be captured by the

clinical, genomic or proteomic data. Our results show improvement

in accuracy over a baseline predictive model. The availability of

CSF is very informative in this subgroup. Unlike whole blood

samples, that can only contain biomolecules that pass through the

blood brain barrier, data derived from CSF likely contains a richer

biomolecular complement that more closely mimics signatures in

the brains of idiopathic PD participants. CSF was included in

three experiments in the idiopathic subgroup, despite it only being

available in a relatively low number of participants. Unfortunately,

only one participant in the genetic subgroup had a CSF sample

available. Thus, it is unknown if CSF is informative in the genetic

subgroup of the PPMI dataset. As a result, it was not included in

any genetic subgroup analyses and its effect was likely obscured in

the joint genetic and idiopathic analysis. It is known that CSF is

a good marker for PD as multiple CSF measures, in particular

CSF α-synuclein, are known to be good prognostic measures

of PD (Parnetti et al., 2019). The build up of α-synuclein is

well established in the pathology of PD, particularly later in the

disease course, which mirrors our findings of CSF being more

predictive later in the analysis (Davie, 2008). We found that

different modalities are informative at different stages of PD in the

idiopathic subgroup. This supports the theory, by Wüllner et al.

(2023), that the pathology or mechanisms of PD may change over

time in this group and highlights the importance of flexibility when

integrating different modalities.

The strongest metrics were observed when stratifying the

genetic subgroup. This group consists of participants who have

a mutations in one of three genes, LRRK2, GBA or SNCA,

which are known to be associative with PD (Davie, 2008; Smith

and Schapira, 2022). In comparison to the idiopathic group,

this genetic group can be considered homogenous as there is

a clear genetic driver to their disease. Unsurprisingly, this is

reflected in the results, as a strong genetic signal was found

when performing classifications on this group. A combination of

DNAm and SNPs were identified as the most informative at all

time points, reflecting this homogeneity. The signal learnt during

the cross-sectional experiments yielded impressive accuracies, F1

scores and improvements in accuracies with slightly higher metrics

observed at years 1 and 2. This highlights that there is a robust

signal contained in the integration of these modalities, which may

be present even earlier in the disease course than what is identified

here.

There is a strong preference in all models for including DNAm

across all three experiment groups. DNAm was not included in the

most predictive model in only one experiment for the idiopathic

subgroup at year 0. Our findings show that the improvement

in classification accuracy of DNAm is consistent across all time

points. This prominence indicates that DNAm is predictive of PD

at all time points of both subgroups. Considering the importance

of DNAm in both genetic and idiopathic groups separately and

combined suggests that there could be an overlapping signal

contained in this modality. As DNAm is a measure of epigenetics,

it suggests that there is common environmental or behavioural

factors in both genetic and idiopathic groups which explains some

aspect of their PD. Further research to identify the main drivers

of variability in DNAm in the two subgroups separately and

combined should be conducted to identify these factors.

Training a model that integrates SNPs and DNAm late in the

disease course of individuals with a genetic predisposition for PD

could form a viable early diagnostic tool. We obtain an average

accuracy of 91% on a subset of participants in the PPMI dataset

that have a genetic predisposition for PD and have at least one

sample in the SNPs or DNAm modality at each time point. Our

results show that all models can accurately identify the HC class

but, a model trained at year 3 is the best at distinguishing PD

participants from PL at all time points. Training a model at year

3 is optimal, as the average disease state of a participant with

PD will have progressed by this time. This makes it easier for the

model to learn a threshold which can discriminate between PD

and PL participants. This behaviour is evident from our model,

as the accuracy achieved when predicting the PL class is robust

when testing the model at earlier time points. Conversely, there

is a deterioration in classification accuracy of the PD group when

testing the model at earlier time points due to PD participants

being misclassified as PL.

The most likely explanation of this phenomenon is that the

effects of PD are not captured in all PD participant samples

early in the disease course. As the SNPs dataset will differentiate

perfectly between the HC class and the PD and PL genetic

subgroups, this discriminatory effect is largely contained in the

DNAmmodality. DNAm is the process of binding methyl groups to

sites in an individual’s DNA, resulting in alteration of expression

(Moore et al., 2013). It provides an epigenetic signature which

can be inherited, associated with a disease and, depending on the

site, reversed. Conditional to the DNA site affected, epigenetic

modifications can occur slowly, meaning it can take a number of

years for the effect of PD to be seen in a participant. In the PPMI

study, DNAm was generated using whole-blood samples from

participants. The advantage of using whole-blood samples is that

they are minimally invasive and cost-effective. The disadvantage

is that the biological signal may be quite weak for a neurological

disorder in the blood due to the blood-brain barrier. This model

also does not take into account individual participant trajectories.

For example, two participants with PD may be recruited and

diagnosed at the same time but can have different disease courses.

This could further explain the decrease in accuracy at earlier time

points of the PD class as some PD participants at these early time

points may be at an earlier stage of the disease. Despite these

limitations, we have shown excellent accuracy at all time points,

making this a promising and viable approach to develop an early

diagnostic tool for PD.

Diagnosing PD is a still an ongoing challenge of the disease, and

being able to perform accurate early diagnosis would be a major

step forward in the management of the disease. Diagnosis of PD in

a clinical setting still involves the development of motor symptoms,

by which time over 60% of dopamine neurons within specific

regions of the basal ganglia may have been lost (Pagan, 2012).
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Pagan (2012) motivates that early detection can improve outcomes

for PD patients by slowing disease progression and limiting its

effect on their quality of life.

There are limitations to the model presented in this analysis.

It is preferable that the sensitivity of the PD class rather than

the specificity be accurate, as is the case here. If the sensitivity

is high it means that the model is more likely to misdiagnose

a PL participant as a PD which is preferable to misdiagnosing

many PD participants. It cannot be determined how accurate

this model is prior to a clinical PD diagnosis. This analysis is

limited by the longitudinal time points of the PPMI dataset.

Tracking the accuracy of this model for PL participants who go

on to develop PD is a promising avenue of future research to

further develop an early diagnostic tool. Further research also

needs to be conducted in a dataset other than the PPMI dataset

to measure the robustness of these findings. There is potential

for survivor bias in the participants included in the longitudinal

analysis. This analysis is limited by the use of a GCN. GCN

is a transductive graph neural network algorithm, meaning all

nodes have to be present during training and testing (Kipf and

Welling, 2017)). As a result, all participants are required to have

a sample at each time point in order to be included in this

longitudinal analysis. This leads to potential survivor bias, as

all participants will have survived the disease until at least year

3 of this analysis. Future implementations should look towards

inductive graph neural network algorithms which do not require

all nodes to be present during training, thus allowing more samples

to be included at each time point and eliminating survivor bias.

Conclusion

This study highlights the importance of flexible integrative

approaches to the analysis of PD. We have shown that there is a

signal for PD present in genomic and proteomic data obtained from

whole-blood samples. We have shown this both in a homogeneous

group with a clear genetic driver for the disease and also in

a more heterogeneous idiopathic group. We have achieved non-

zero improvements in accuracy which are comparable to the

MDS-UPDRS assessment baseline in the idiopathic group and

significantly improved on this baseline in the genetic group.

We have done so with models that do not account for the

effects of medication or individual PD participant trajectory. We

have identified DNAm as an informative omic measure in all

individuals with PD and have proposed a model which could be

used as an early diagnostic tool for individuals with a genetic

predisposition for the disease. In summary, our research shows

that an integrative network framework can be used to perform

longitudinal stratification in PD
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