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An Integrative Network Approach for
Longitudinal Stratification in Parkinson’s Disease

Barry Ryan, Riccardo E. Marioni, and T. lan Simpson

Abstract— Parkinson’s Disease (PD) is a neurodegener-
ative disorder characterized by motor symptoms result-
ing from the loss of dopamine-producing neurons in the
brain. Currently, there is no cure for the disease which
is in part due to the heterogeneity in patient symptoms,
trajectories and manifestations. There is a known genetic
component of PD and genomic datasets have helped to
uncover some aspects of the disease. Understanding the
longitudinal variability of PD is essential as it has been
theorised that there are different triggers and underlying
disease mechanisms at different points during disease pro-
gression. In this paper, we perform longitudinal and cross-
sectional experiments to identify which data modalities or
combinations of modalities are informative at different time
points. We use clinical, genomic, and proteomic data from
the Parkinson’s Progression Markers Initiative. We validate
the importance of flexible data integration by highlighting
the varying combinations of data modalities for optimal
stratification at different disease stages in idiopathic PD.
We show there is a shared signal in the DNAm signatures of
participants with a mutation in a causal gene of PD and par-
ticipants with idiopathic PD. We also show that integration
of SNPs and DNAm data modalities has potential for use as
an early diagnostic tool for individuals with a genetic cause
of PD.

Index Terms— parkinson’s disease, multi-omics integra-
tion, graph neural network, longitudinal

[. INTRODUCTION

Parkinson’s Disease (PD) is a heterogenous, progressive,
multisystem neurological disorder that affects the nervous
system. It is most commonly characterised by a range of motor
symptoms, primarily involving difficulties with movement,
however a wide variety of non-motor symptoms also exist. PD
has a complex pathophysiology, but these disease pathways
culminate in the gradual death of neuronal cells, causing a
deficit in dopamine [27].

One notable aspect of PD is the variability between indi-
viduals with the disease. PD is characterised by core motor
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syndromes of tremor, rigidity, bradykinesia and postural insta-
bility. The onset, trajectory and experience of these symptoms
among people varies significantly. Genetic mutations in indi-
viduals account for approximately 30% of cases, however not
everyone with a mutation will develop the disease [10]. The
trajectory of the disease among patients is highly variable,
with some experiencing a rapid progression to disability and
others following a relatively benign course [23]. Whether an
individual develops all motor and any non-motor symptoms
can vary too. While PD medications do not cure the disease,
they do help with some of the day-to-day motor symptoms,
however the time period for which they are effective varies
between patients also [3].

Identification of mutations in single genes have aided the
understanding of PD. For example, specific variants in the
LRRK2, GBA, and PINKI genes are associated with PD [3].
This motivates the use of omic measures for uncovering
novel insights into the pathology of PD. Omic data modalities
capture genetic and/or biomolecular profiles; analyses of these
data has resulted in many novel findings in PD. Craig et al.
(2021) found early alterations between the gene expression of
PD patients and healthy individuals [2]. Similarly, Kern et al.
(2021) found that non coding RNA’s can have diagnostic and
prognostic power in PD individuals [8]. Recent Genome Wide
Association Studies of PD have had conflicting results. Walters
et al. (2023) found no genome wide significant loci for PD in
the China Kandoori Biobank with a population of 105,408
Chinese individuals [26]. Conversely, in a population of 2478
Chinese individuals, Pan et al. (2023) found 19 associations
with PD including genome wide significant loci in LRRK2,
SNCA, and GBA [18]. Currently, there is no known exogenous
or genetic trigger for PD that causally results in the loss of
dopaminergic cells.

It has been hypothesised that the disease mechanisms of
PD change over time and that treatment needs to account
for disease stage as well as individual molecular and disease
phenotypes [27]. Longitudinal variability poses significant
challenges in both the biological understanding and treatment
of PD. This heterogeneity necessitates a flexible approach that
can incorporate multiple sources of information at a given
stage of PD. The Parkinson’s Progression Markers Initiative
(PPMI) was created for this reason. It consists of longitudinal
clinical, genomic, and imaging data from over 900 PD cases,
800 Prodromal (cases without a clinical diagnosis for PD, but
early indicators that they will go on to develop it) and 230
Healthy Controls.
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We propose a flexible integrative approach using a network
taxonomy that can incorporate many aspects of the PPMI
dataset, most notably the longitudinal component. Variability
in disease motivates an individualised approach to disease
management. We utilise a patient similarity measure to identify
patients who have similar molecular, epigenetic, and demo-
graphic disease characteristics. We hypothesise that integrating
many sources of complementary information can unravel many
of the unknown aspects of PD. By combining a patient-focused
approach with multiple sources of information, we hope to
learn what differentiates PD patients from those who have
early signatures of the disease and healthy controls.

Multi-modal approaches have achieved good prediction ac-
curacy using the PPMI dataset. Chan et al. (2022) achieve
perfect disease stratification using a model which incorporated
multiple omic and image datasets [1]. A review by Gerraty
et al. (2023), on multi-modal integration approaches in the
PPMI dataset, found that clinical and neuroimaging datasets
were the most commonly used modalities [5]. They further
identified that few machine learning focused papers use the
longitudinal structure of the PPMI study. A possible reason for
this is due to restricted patient coverage when incorporating
image data. Chan et al. identify that the dataset they utilised is
small and heavily skewed to PD patients [1]. Given the time-
consuming nature and expense of collecting image data, this
is not surprising.

In this analysis, we integrate omic datasets such as Mes-
senger RNA expression (mRNA) and Single Nucleotide Poly-
morphisms (SNPs) with clinical and proteomic information
using a flexible network taxonomy that allows retention of the
maximum number of patients in the analysis. We represent the
integrated modalities as a Patient Similarity Network (PSN)
and use an Graph Neural Network (GNN) architecture for
disease stratification. We group patients into those with a
mutation in a known causal gene for PD, those who have
a sporadic onset of the disease, and finally a combination
of both. In each case we attempt to classify individuals as
either having PD, being prodromal, or a healthy control. We
perform experiments cross-sectionally across 4 time points
over the course of the first three years of a patient’s disease
post diagnosis. We assess the best combination of modalities
at each time point and contrast the findings between the three
groups. Finally, we re-run the analysis on a subset of genetic
PD patients who have data across all time points, with a model
trained at each time point. The goal of this experiment is to
identify whether the disease signatures we identify change over
the first three years of the disease by assessing if the learnt
biological signals remain consistent across the 4 time points.

[I. METHODS
Multi-Omic Graph Diagnosis (MOGDx)

MOGDx is a flexible tool to integrate multiple omic mea-
sures and perform classification tasks. This approach uses a
network taxonomy to combine patient similarity matrices into
a single network and perform node classification using a Graph
Convolutional Network (GCN). The performance of MOGDx
was benchmarked on cancer data and achieved state-of-the-art
performance compared to similar research [22].

MOGDx can integrate any number of modalities. This
includes omic measures as well as any other modalities of
interest, such as clinical descriptors. A single Patient Similarity
Network (PSN) is built per modality. The most informative
features of each modality are used to inform the similarity met-
ric with similarity between patients calculated using Pearson
correlation, where suitable, otherwise Euclidean distance. As
is common practice, all patient information is used to construct
the network, with train, validation and test labels created
during the training phase of the GCN-MME [11], [30]. In
this approach, non-informative features are discarded to reduce
the complexity of the similarity calculation and to discourage
uniform similarity scores for modalities such as DNAm which
will have large number of redundant or similar features. Each
PSN is constructed using the k nearest neighbours algorithm,
and the Similarity Network Fusion (SNF) algorithm is used to
combine individual PSN’s into a single network.

The fused PSN and the modalities are input into the Graph
Convolutional Network with Mulit-Modal Encoder, shown in
Figure S1. Each modality is compressed using a two layer
encoder. The first layer of the encoder is of fixed length, with
the second layer being tuned to each modality by performing
a hyperparameter search. Median imputation is performed on
the second layer of each encoder to retain patients if they are
missing from that modality. The compressed encoded layer of
each modality is then decompressed to a shared latent space
using mean pooling. Similar encoder architectures have been
established in other works [28], [29]. This shared latent space
corresponds to the patient node features, which are combined
with the PSN and input into the GCN for classification.
The GCN-MME is trained under the semi-supervised setting
for GNN outlined by Hamilton (2020) [7]. For a detailed
description of the MOGDx architecture, please refer to Ryan
et al. 2023 [22].

MOGDXx is a suitable tool to perform analysis on the PPMI
dataset due to its flexibility. It can integrate any number
of modalities, whilst simultaneously retaining the maximum
number of patients possible, in contrast to other existing
methodologies. As discussed by Chan et al. (2022) and as per
Figure 1, there are relatively few healthy control participants
[1]. Not every participant will be present in each modality at
each time point. In order to avail of the full PPMI dataset,
a method which can incorporate the maximum number of
participants is required. MOGDx achieves this by utilising
SNF and imputation to retain patient nodes. Moreover, in-
cluding patients missing in one or more modalities does not
result in a large degradation in performance [22]. MOGDx
provides a high level of interpretability. Due to the flexibility
of integration, ablation experiments can be performed to iden-
tify the most predictive modalities. As the most informative
features are extracted in the MOGDx pipeline, these features
can be further analysed to identify important pathways, traits
or interactions of the target application.

PPMI Dataset

Data was obtained from the PPMI [14]. The modalities
analysed and number of features per modality at year O are
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summarised in Table I. All other time points are included in
Tables S1-S3 in the supplementary. In total, 5988 samples
from 2188 participants were included in the analysis, as per
Table S4. Patient characteristics and the participant sample
availability over time are shown in Figure 1. Participants
in the analysis were identified as Parkinson’s Disease (PD),
Prodromal (PL) or Healthy Control (HC) participant.

TABLE |
BREAKDOWN OF MODALITY FEATURES IN PPMI DATASET AT YEAR 0

Raw
Feature
Count

PSN Extracted Feature
Count

Method of

Count After Processing Extraction

All Genetic  Idiopathic All Genetic  Idiopathic

mRNA 52338 29791 24251 33664 1267 1240 1320 Padj < 0.05
miRNA 40194 3206 2995 3152 401 418 242 Padj < 0.05
DNAm 805434 300k 300k 300k 149 15 11 |w] >0
SNP 841 841 841 841 20 20 20 None
Protein 4785 4785 4785 4785 4785 227 4785 |w| >0
Clinical 6 6 6 6 6 6 6 None

MDS- 88 63 63 63 56 61 57 |w| >0

UPDRS
Omic measures are Messenger RNA expression (nRNA), micro RNA expression (miRNA),
DNA methylation (DNAm) and Single Nucleotide Polymorphisms (SNPs). Cerebral Spinal
Fluid (CSF) is the protein measure and MDS-UPDRS is the Movement Disorder Society
Unified Parkinson’s Disease Rating Scale. p,q; is the false discovery rate in differential
expression. |w| is the absolute coefficient weights in penalised elastic net regression.

Four genomic measures, shown in Table I, were gener-
ated from whole-blood samples and analysed. Each modality
was processed in a complimentary bioinformatics pipeline
if available. For example, DNAm was normalised using the
wateRmelon package in R [20]. See Ryan et al. (2023)
for more detail on how specific genomic modalities were
handled [22]. In general, processing included the removal of
uninformative or missing features, normalisation, imputation
of missing values and conversion from categorical features
to numerical features. The top 300k most variable CpG sites
were retained to allow computation on this dataset to fit
into memory. For the same reason, a Principal Component
Analysis (PCA) was performed on the SNPs dataset to reduce
the dimensionality of the dataset, and the first 20 PC’s were
retained.

Genomic datasets were supplemented with additional mea-
sures of 1472 CSF markers extracted from participants and
clinical descriptors. Clinical descriptors included individual
phenotypes of age, sex and years of education; These were
supplemented with measures for smoking, alcohol and BMI
generated from DNAm profiles [15]. These DNAm profiles
were derived from models trained on up to 5087 individuals
in a national study in Scotland and tested on two separate
cohorts also based in Scotland [15]. The MDS-UPDRS by
Goetz et al. (2008) is a measure of disease severity in those
with PD and PL [6]. This scale combines measures relating
to both motor and non-motor symptoms of PD. It consists of
both self-assessment and clinical assessments and is a proxy of
disease stratification [6]. It was used as a baseline comparative
model to identify if the biological signal for PD found in
the blood is stronger than clinical assessment using MOGDx.
These modalities were similarly processed for feature removal,
conversion and normalisation.

Pairwise linear regression between the three classes was
performed using the DESeq2 package in R to obtain differen-
tial gene expression transcripts [12]. For non gene expression
modalities, penalised elastic net regression was performed
using the glmnet package in R [25]. Differentially expressed

genes with a statistically significant FDR (pgq; < 0.05) and
logistic regression coefficients with an absolute weight greater
than zero were used for feature selection prior to the similarity
calculation. This discourages uniform similarity scores for
modalities such as DNAm which will have large number
of redundant or similar features. The number of informative
features is dependent on the subgroup being analysed. If no
informative features were found, all features were retained.
Further information on the experiments is included below, with
the feature counts summarised in Table I.

Participant samples have been broken down by sex, age,
subgroup and time point in Figure 1. The time points cover
the first three years of the disease in the PD cohort. The first
time point (labelled year 0) corresponds to participants with
PD who have had a diagnosis for less than 2 years, have
not begun taking any PD medication and are not expected
to require PD medication for at least 6 months [14]. Those in
the genetic subgroup of PD have a mutation in one of three
genes: LRRK2, SNCA or GBA. Idiopathic individuals do not
have mutations in any of these three genes. PL participants
have been identified as being of high risk for the disease,
but have not yet met a clinical threshold for diagnosis. The
first time point, year 0, in this cohort corresponds to their
enrolment in the study. The genetic subset of this group also
have a mutation in one of the three aforementioned genes as
aligned with the genetic PD subgroup. As per Figure 1 A,
the PL participants in the genetic subgroup far outnumber the
participants in the Rapid eye movement Behaviour Disorder
(RBD) and hyposmia subgroups. Participants in these groups
have one of two non-motor symptoms associated with PD.
RBD is a sleep disorder which has been identified as an early
indicator for the disease, and hyposmia is a smell disorder
which is an early indicator of PD [13], [21]. The HC arm
of this analysis have been screened to ensure they did not
meet the criteria for either PD or PL. As with PL, their first
time point, year 0, aligns with their enrolment in the PPMI
study. PD idiopathic and PL genetic are the two most prevalent
subgroups in the dataset. The vast majority of participants are
aged 55 years or older, and the mean age of all participants
is 63 years. As identified in Chan et al. (2022) there are
fewer HCs compared to PD and PL however the numbers
presented in both Figure 1 A and Table S4 show higher counts
compared to their analysis which was subset to participants
who had image data available [1]. A distinguishing factor of
this analysis is the utilisation of the longitudinal data in the
PPMI dataset. Figure 1 B shows the flow of data availability
over time. It is split by clinical diagnosis of PD, PL or HC
and is further divided at each time point by disease subgroup.
It shows that, over time, the number of participants decreases
across all diagnoses and subgroups. This is due to participant
dropout (n = 401), missing samples for a participant at a
time point (see Table S5) or the transition of a PL patient
to a clinical diagnosis for PD (n = 33). A summary of the
criteria for participant stratification and disease subgroups are
summarised in Figure S2.
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Fig. 1. A Participant Count by Age and Sex — The number of participants in each disease subgroup broken down by age and sex
are shown. PD idiopathic and Genetic Prodromal are the two largest cohort subgroups. The majority of participants are older than
55 years, with a slightly larger male majority. Relatively, there are very few PL participants who do not have genetic predisposition.
B Longitudinal Participant Count by Disease Subroup — The flow of participant availability over the first four years in PD, PL and HC
participants in the PPMI study. The number of participants available decays in all subgroups over time.

A. Design of Data Analysis

In this analysis, we perform cross-sectional experiments
at 4 time points over three years, as well as longitudinal
experiments on participants who have a mutation in one of
the three causal genes of PD. In all cross-sectional experiments
we classify whether participants have PD, are PL or are a HC.
We perform these cross-sectional experiments on all partici-
pants, regardless of their subgroup. Similarly, we perform the
experiments on two subsets based on participants’ subgroup.
The first subset, referred to as genetic, includes PD and PL
participants in the genetic subgroup. The other subset, referred
to as idiopathic, includes all participants in the idiopathic PD,
RBD and hyposmia subgroups. HC participants are included
in both subsets as a control. We use a brute-force approach,
testing all combinations of modalities in each experiment to
identify the modalities at each time point with the highest
accuracies and F1 scores.

In the longitudinal analysis, we re-perform the best per-
forming cross-sectional experiment on the genetic PD and
PL subgroups, with exact numbers shown in Table S6. Once

again, HC are included as a control. This analysis includes
participants who are present at each time point in at least one
of the included modalities. The best performing cross-sectional
experiment was determined by averaging the F1 scores of
each model across all time points. For this analysis, only
the optimal combination of modalities which maximised both
accuracy and patient retention was analysed. The longitudinal
experiments comprise 4 cross-sectional experiments where
MOGDx is trained and tested at each time point and 12
longitudinal experiments where each model is tested on the
unseen networks and omics from the alternative time points.
Networks are constructed using only the features identified at
that model’s time point. For example, when testing the year 3
network at year 1, the network being tested is reconstructed
only using the features identified at year 1. In this manner,
each of the 4 models are tested on a completely unseen test
set of the same patients but from other time-points. This is
undertaken to assess if the biological signal learnt at one time
point is present at other time points.
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1. RESULTS
Performance & Evaluation

The performance metrics used to compare the classification
performance of MOGDx were accuracy, F1 score and improve-
ment in accuracy. The F1 score was calculated by the mean
F1 score of each class, weighted by the size of that class.
Improvement in accuracy is a metric used to compare how
much the accuracy improved compared to a baseline model. In
this case, the baseline model is a simple model which predicts
the most common class. Stratified k-fold cross validation was
performed with 5 randomly generated splits to obtain the
mean and standard deviation metrics reported. Within each
split, the set was further randomly split into training and
validation sets to produce an overall train/validation/test split
of 68%/12%/20% respectively.

A. An integrative approach is optimal when classifying
individuals with PD over time

The results from the cross-sectional experiments, shown
in Table II and Figure 2, highlight the power of a flexible
integrative approach when classifying participants in the PPMI
dataset with PD. The flexibility of the approach allows us to
test all modalities individually, as well as all combinations
of integrated modalities at each time point. As a result, all
6 modalities are included in at least one experiment. This is
further evident in Figure S3, which shows that an integrated
approach is preferred in 13 of the top 15 best performing
models averaged across all time points of the three groups.
In Table II there are only two experiments, years 1 and
3 with all participants (genetic + idiopathic), which do not
integrate modalities for optimal performance. In Figure 2, the
three worst performing models are all individual modalities,
whereas the best model in the genetic and idiopathic subgroups
integrate two modalities. DNAm performs best individually
when predicting all participants. The improvement in accuracy
of these DNAm models, at most time points in Figure 2, is
lower than the combined modalities in the other subgroups.
There is an increase in accuracy compared to the worst
performing modality, miRNA, but it does not match or improve
on the baseline MDS-UPDRS assessment. Only the genetic
subgroup achieves an improvement in accuracy greater than
the MDS-UPDRS assessment. This could motivate the use
of these modalities for early disease diagnosis, as motivated
below. The combination of CSF and DNAm in the idiopathic
subgroup shows promising performance, particularly at year 2.
The MDS-UPDRS is an accurate baseline to compare to, given
it consists of clinical assessment scores of both motor and
non-motor symptoms [6]. Thus, the results show encouraging
performance when integrating combinations of modalities in
subgroups of PD.

B. Flexibility in integration of modalities facilitates a
biological signal for PD to be learnt from whole-blood
samples and protein markers in PPMI study participants

Table II highlights the importance of flexibility when in-
tegrating different modalities. There is an improvement in

Cross-Sectional Experiments Improvement in Accuracy
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Fig. 2. Modality Integration Performance of Best, Worst and

Baseline (MDS-UPDRS) Models A — Idiopathic + Genetic Opti-
mal performance, using DNAm, does not improve on baseline
MDS-UPDRS assessment but is better than worst performing
modality miRNA B — Genetic Integrating DNAm and SNPs
for participants with a genetic predisposition for PD performs
better than the MDS-UPDRS assessment and worst performing
modality C Idiopathic — Integrating CSF with DNAm improves
on the worst performing modality, mRNA, but has worse perfor-
mance compared to the MDS-UPDRS assessment.

accuracy compared to a model which predicts the most com-
mon class in all experiments. This improvement increases with
time, indicating an increased biological signal for PD as the
disease progresses. In both genetic and idiopathic subgroups,
years 1 and 2 are the most predictive time points. This could
indicate that these time points are capturing both early and late
signatures of PD. This is particularly evident in the idiopathic
subgroup, where there is a change in predictive modalities over
time, with common modalities early and late in the disease.
The genetic SNPs modality is predictive early, whereas protein
CSF markers along with DNAm are more prominent in later
stages. This supports the work of Wiillner et al. (2023) who
found that there may be different disease mechanisms at
different stages of PD [27]. The caveat is that the prediction
accuracy at year 0 in this subgroup is low.

Conversely, in the genetic subgroup, the modalities which
are most predictive do not change with time. Unsurprisingly,
the SNPs modality is included across all time points in the
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TABLE I
CROSS-SECTIONAL PERFORMANCE OF MOGDX IN DIFFERENT SUBGROUP EXPERIMENTS

Modalities Number of Participants Accuracy F1 score Improvement in Accuracy
Genetic + Year 0 DNAm + SNP + mRNA + miRNA 1515 0(’330 +0.019 OA():G.S + 040‘17 0.110 £ 0.018
Ldiopathic Year 1 DNAm 548 0.624 £0.020  0.667 £ 0.032 0.111 £ 0.02
(Al Year 2 Clinical + DNAm 542 0.694 +0.037  0.717 £ 0.034 0.166 + 0.037
Year 3 DNAm 493 0.712 £ 0.018  0.699 £ 0.048 0.146 + 0.018
Year 0 DNAm + SNP 489 0.789£0.036  0.753 £ 0.04 0.419 £ 0.036
Genetic Year 1 DNAm + SNP 443 0.867 £0.018  0.835 4 0.02 0.472 +£0.018
Year 2 DNAm + SNP 432 0.866 +0.031  0.837 £ 0.032 0.477 £0.031
Year 3 DNAm + SNP 365 0.841 +0.034 0.811 £0.038 0.403 £ 0.034
Year 0  SNP + miRNA 667 0.681 £0.031  0.752 £ 0.008 0.069 £ 0.031
Ldiopathic Year 1  CSF + DNAm + SNP 582 0.720 £ 0.039  0.776 £ 0.035 0.122 +0.039
Year 2 CSF + Clinical + DNAm 399 0.805+0.022  0.770 £ 0.022 0.246 + 0.022
Year 3 CSF + DNAm 360 0.764 +0.022  0.721 £ 0.021 0.183 + 0.022

genetic subgroup experiments. SNPs are a fixed description
of participant genetic information [4]. Thus, this dataset can
clearly distinguish HCs from PD and PL individuals who
have a mutation in a known causal gene for PD. It does not
differentiate between PD and PL participants, thus indicating
that this differentiation is learnt from another modality, in
this case DNAm. Whether the biological signal learnt changes
over time requires further work to understand the drivers of
variability in DNAm at each time point. The integration of
these two modalities outperforms the MDS-UPDRS baseline,
highlighting the predictive power of using whole-blood sam-
ples to extract omic information relating to a neurological
disease. In summary, we found a strong disease signal both
early, but particularly late, in the blood of individuals with a
genetic predisposition for PD, despite it being a neurological
disorder.

C. There are possible similarities in the DNAm
signatures of idiopathic participants and participants who
have a genetic predisposition for PD

There is a clear genetic driver in participants who have
a mutation in a causal gene of PD. As per Table 2, the
genetic subgroup achieves the highest accuracies, F1 scores
and improvements in accuracy at all time points. As included
participants have a mutation in one of the LRRK2, GBA or
SNCA genes, the genetic influence on their disease is far more
prominent and can be distinguished with high classification
accuracy using genomic data. This highlights the homogeneity
between participants in this subgroup and the power of using
a patient similarity approach for tasks of this nature. The
idiopathic subgroup contains participants with unknown causes
of PD or, in the case of participants labelled PL, have an
early indication of developing the disease. This group has no
known genetic association with PD, therefore it is unsurprising
that the accuracies achieved when integrating genomic data is
lower. It is still possible that there is a genetic cause of PD
in this cohort, however there are likely numerous signatures
which are too diverse for a signal to be found.

This makes the idiopathic cohort very heterogenous. Despite
these significant differences between participant subgroups,
most experiments include DNAm as a predictive modality,
with the idiopathic subgroup at year O being the only ex-
periment where it is not included. Given this prominence,
it indicates the presence of epigenetic modifications between
PD, PL and HC participants. When considering all participants

(genetic + idiopathic), there is a mix of a homogeneous and a
heterogeneous group, which makes learning very difficult. De-
spite this, there is a robust improvement in accuracy between
10% and 20% across all time points, as per Figure 2. This
suggests that there may be a shared signal between the two
subgroups in the DNAm modality. A possible explanation for
the decreased performance compared to the two subgroups
is that the additional information added by other integrated
modalities is not shared between the two subgroups. In order
to confirm if the signal being learnt is similar, more research
needs to be conducted to identify the common discriminating
DNAm features, however our results suggests common signa-
tures in the DNAm of genetic and idiopathic PD participants.

D. An integrative model trained at a late disease stage
could form a viable early diagnostic tool for predicting
individuals with PD who have a genetic predisposition for
the disease

In the cross-sectional experiments, we show the metrics for
classifying participants with a mutation in a causal gene of
PD to be very promising. The combination of DNAm and
SNPs achieves a consistently high accuracy, F1 score and
improvement in accuracy. The improvement in accuracy is
consistent across all time points, as per Figure 2, highlighting
the robustness of the signal learnt. At year 0, participants
with PD are in the early stages of their disease. They have
had a clinical diagnosis for two years or less, have not begun
taking medication and are not expected to be required to take
medication for at least 6 months. Despite this, the models are
able to discriminate between the three stratification targets.
Further research should be conducted to identify if this signal
can be learnt prior to diagnosis and motivates the integration
of DNAm with SNPs for early PD detection. Longitudinal
experiments were performed on a subset of participants from
the genetic group who are present in either DNAm or SNPs at
each time point. These experiments were designed to identify
the optimal time point to train such a diagnostic tool and if
the disease signal learnt early in the disease is present later
and vice versa.

Table III shows the results of the longitudinal experiments
and clearly highlights that an early PD detection model should
be trained later in the disease course. Both the accuracy and
F1 scores increase with models which are trained later in
the disease course. Optimal performance was observed by the
model trained at year 3. Poorest performance was observed by
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TABLE Ill
LONGITUDINAL EXPERIMENTS PERFORMANCE METRICS

Time Point Model Tested
Year 1 Year 2
0.806 /0.768  0.813/0.773
0.911/0.886 0.845/0.811
0.849/0.814  0.872/0.840
0.888 /0.870  0.908 / 0.885

Accuracy / F1

Year 0
Year 1
Year 2
Year 3

Year 0

0.83270.798
0.839 /0.815
0.849 / 0.814
0.895/0.874

Year 3
0.816 7/ 0.777
0.845/ 0.814
0.836 / 0.799
0.947 / 0.932

Time
Point
Model
Trained

the model trained at year 0, with the performance of models
trained at years 1 and 2 being comparable. For simplification
of comparison, the metrics reported in Table III, report the
accuracy and F1 score achieved when the model classifies all
participants included in the experiment. Therefore, only for the
models trained and tested at the same time point, 68% of the
participants will have been seen by the model in the training
set. This accounts for the apparent increase in accuracy relative
to the cross-sectional metrics reported in Table II. Despite this,
the model trained at year 3 achieves a higher accuracy when
tested at year O and year 2 compared to the models trained at
these time points. While the model trained at year 3 doesn’t
improve on the accuracy of the model trained and tested at
year 1, it does outperform all models at all other time points,
as per Figure S4.

Figure 3 shows the accuracy broken down by class for the
four models trained at each time point. All models predict
the HC class with high accuracy. As mentioned, both PD and
PL participants have a genetic risk variant for the disease,
thus, the SNPs modality can easily discriminate between them
and the HC participants. The main differentiation between the
models is their ability to distinguish PD from PL participants.
In general, it can be observed from Figure 3 that the accuracy
in predicting PD participants decays the further away in time
you test the model from when it was trained. This can be
observed in Figure 3, both by the sharp gradients of the PD
participants when assessing the number of consecutive correct
predictions of a model and the decrease in flow accuracy.
Conversely, the PL class have much more stable and consistent
predictions across all time points. This is evident in Figure
3 with the number of PL participants correctly classified in
the flow diagram being less variable over time and the flatter
gradients in the consistency of predictions.

In Table 3, we show there is a much stronger signal
discriminating PD from PL participants later in the disease
course. This finding is expected as the PD participants, on
average, will have a more severe disease at year 3 than they
will at year 0. What these results therefore show is that by year
3 we have found a very accurate threshold for differentiating
PD participants from PL. When we then back-propagate this
threshold by testing the model over time, we find that the
PL participants maintain a high predictive accuracy, but some
PD participants cross this threshold and are misclassified
as PL. As stated, differences between these groups can be
largely explained by differences in their DNAm. Thus, we can
attribute these findings to epigenetic modifications occurring
in participants with PD as their disease progresses.

IV. DISCUSSION

In this paper, we applied an integrative network framework
and artificial intelligence to the PPMI dataset. The PPMI
dataset is an observational, international study, consisting of
multiple data modalities, with the goal of identifying markers
of PD to accelerate disease modifying clinical trials [14]. We
used clinical, genomic, and proteomic data to include a signifi-
cant number of patient samples and conducted cross-sectional
and longitudinal stratification of participants who have PD,
have an early indication of developing PD (Prodromal), or
were a Healthy Control.

We found that a flexible integrative approach is optimal
when performing disease stratifications for PD. Our models
show a strong preference for including multiple modalities.
It is clear that there is not sufficient information in any one
single modality to accurately capture significant variability
in PD at all time points. This highlights the importance of
integrating multiple sources of information to capture different
components of the heterogeneity in PD. Flexibility is also a
key characteristic of this framework. Our approach allows us to
test all modalities individually and all combinations of modal-
ities at each time point. This allows us to perform ablation
experiments to identify the most informative modalities at each
time point. The idiopathic subgroup contains individuals with
no known cause of PD. This makes them a very heterogeneous
group as there could be a vast number of different disease
mechanisms at play, which may not be captured by the clinical,
genomic or proteomic data. Our results show improvement in
accuracy over a baseline predictive model. The availability
of CSF is very informative in this subgroup. Unlike whole
blood samples, that can only contain biomolecules that pass
through the blood brain barrier, data derived from CSF likely
contains a richer biomolecular complement that more closely
mimics signatures in the brains of idiopathic PD participants.
CSF was included in three experiments in the idiopathic
subgroup, despite it only being available in a relatively low
number of participants. Unfortunately, only one participant
in the genetic subgroup had a CSF sample available. Thus,
it is unknown if CSF is informative in the genetic subgroup
of the PPMI dataset. As a result, it was not included in any
genetic subgroup analyses and its effect was likely obscured
in the joint genetic and idiopathic analysis. It is known that
CSF is a good marker for PD as multiple CSF measures, in
particular CSF a-synuclein, are known to be good prognostic
measures of PD [19]. The build up of a-synuclein is well
established in the pathology of PD, particularly later in the
disease course, which mirrors our findings of CSF being more
predictive later in the analysis [3]. We found that different
modalities are informative at different stages of PD in the
idiopathic subgroup. This supports the theory, by Wiillner
et al. (2023), that the pathology or mechanisms of PD may
change over time in this group and highlights the importance
of flexibility when integrating different modalities [27].

The strongest metrics were observed when stratifying the
genetic subgroup. This group consists of participants who
have a mutations in one of three genes, LRRK2, GBA or
SNCA, which are known to be associative with PD [3], [24].
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Longitudinal Participant Predictions for Models Trained at Different Time Points
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Fig. 3. Longitudinal Experiments Participant Stratification A — Year 0 This model consistently predicts the same participants as PD,
PL and HC which can be observed by the consistent flow of predictions in A.1 and relatively flat gradients in A.2. B— Year 1 This
model is very accurate when trained and tested at the same time point, but performs poorly when predicting PD participants at other
time points. This leads to significant changes in the flow of predictions in B.1 and sharp gradients in B.2. C — Year 2 This model
achieves good trade off in predicting between PD and PL participants as can be seen by symmetry in C.1, but the predictions
are not consistent as per the sharp gradients in C.2. D — Year 3 This is the best performing model. There is good symmetry in
predictions in D.1 and the lines in D.2 are relatively flat. It does have more difficulty predicting PD participants earlier in the disease
course, thus the sharper decline in D.2.
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In comparison to the idiopathic group, this genetic group
can be considered homogenous as there is a clear genetic
driver to their disease. Unsurprisingly, this is reflected in the
results, as a strong genetic signal was found when performing
classifications on this group. A combination of DNAm and
SNPs were identified as the most informative at all time points,
reflecting this homogeneity. The signal learnt during the cross-
sectional experiments yielded impressive accuracies, F1 scores
and improvements in accuracies with slightly higher metrics
observed at years 1 and 2. This highlights that there is a robust
signal contained in the integration of these modalities, which
may be present even earlier in the disease course than what is
identified here.

There is a strong preference in all models for including
DNAm across all three experiment groups. DNAm was not
included in the most predictive model in only one experiment
for the idiopathic subgroup at year 0. Our findings show that
the improvement in classification accuracy of DNAm is con-
sistent across all time points. This prominence indicates that
DNAm is predictive of PD at all time points of both subgroups.
Considering the importance of DNAm in both genetic and
idiopathic groups separately and combined suggests that there
could be an overlapping signal contained in this modality. As
DNAm is a measure of epigenetics, it suggests that there is
common environmental or behavioural factors in both genetic
and idiopathic groups which explains some aspect of their PD.
Further research to identify the main drivers of variability in
DNAm in the two subgroups separately and combined should
be conducted to identify these factors.

Training a model that integrates SNPs and DNAm late in
the disease course of individuals with a genetic predisposition
for PD could form a viable early diagnostic tool. We obtain
an average accuracy of 91% on a subset of participants in the
PPMI dataset that have a genetic predisposition for PD and
are present in either the SNPs or DNAm modality at each
time point. Our results show that all models can accurately
identify the HC class but, a model trained at year 3 is the best
at distinguishing PD participants from PL at all time points.
Training a model at year 3 is optimal, as the average disease
state of a participant with PD will have progressed by this
time. This makes it easier for the model to learn a threshold
which can discriminate between PD and PL participants. This
behaviour is evident from our model, as the accuracy achieved
when predicting the PL class is robust when testing the model
at earlier time points. Conversely, there is a deterioration in
classification accuracy of the PD group when testing the model
at earlier time points due to PD participants being misclassified
as PL.

The most likely explanation of this phenomenon is that the
effects of PD are not captured in all PD participants early in the
disease course. As the SNPs dataset will differentiate perfectly
between the HC class and the PD and PL genetic subgroups,
this discriminatory effect is largely contained in the DNAm
modality. DNAm is the process of binding methyl groups
to sites in an individual’s DNA, resulting in alteration of
expression [16]. It provides an epigenetic signature which can
be inherited, associated with a disease and, depending on the
site, reversed. Conditional to the DNA site affected, epigenetic

modifications can occur slowly, meaning it can take a number
of years for the effect of PD to be seen in a participant. In
the PPMI study, DNAm was generated using whole-blood
samples from participants. The advantage of using whole-
blood samples is that they are minimally invasive and cost-
effective. The disadvantage is that the biological signal may
be quite weak for a neurological disorder in the blood due
to the blood-brain barrier. This model also does not take into
account individual participant trajectories. For example, two
participants with PD may be recruited and diagnosed at the
same time but can have different disease courses. This could
further explain the decrease in accuracy at earlier time points
of the PD class as some PD participants at these early time
points may be at an earlier stage of the disease. Despite these
limitations, we have shown excellent accuracy at all time
points, making this a promising and viable approach to develop
an early diagnostic tool for PD.

Diagnosing PD is a still an ongoing challenge of the
disease, and being able to perform accurate early diagnosis
would be a major step forward in the management of the
disease. Diagnosis of PD in a clinical setting still involves the
development of motor symptoms, by which time over 60% of
dopamine neurons within specific regions of the basal ganglia
may have been lost [17]. Pagan (2012) motivates that early
detection can improve outcomes for PD patients by slowing
disease progression and limiting its effect on their quality of
life [17].

There are limitations to the model presented in this analysis.
It is preferable that the sensitivity of the PD class rather than
the specificity be accurate, as is the case here. If the sensitivity
is high it means that the model is more likely to misdiagnose
a PL participant as a PD which is preferable to misdiagnosing
many PD participants. It cannot be determined how accurate
this model is prior to a clinical PD diagnosis. This analysis is
limited by the longitudinal time points of the PPMI dataset.
Tracking the accuracy of this model for PL participants who go
on to develop PD is a promising avenue of future research to
further develop an early diagnostic tool. Further research also
needs to be conducted in a dataset other than the PPMI dataset
to measure the robustness of these findings. There is potential
for survivor bias in the participants included in the longitudinal
analysis. This analysis is limited by the use of a GCN. GCN
is a transductive graph neural network algorithm, meaning all
nodes have to be present during training and testing [9]). As
a result, all participants are required to be present at each
time point in order to be included in this longitudinal analysis.
This leads to potential survivor bias, as all participants will
have survived the disease until at least year 3 of this analysis.
Future implementations should look towards inductive graph
neural network algorithms which do not require all nodes to
be present during training, thus allowing more participants to
be included at each time point and eliminating survivor bias.

V. CONCLUSION

This study highlights the importance of flexible integrative
approaches to the analysis of PD. We have shown that there
is a signal for PD present in genomic and proteomic data
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obtained from whole-blood samples. We have shown this both
in a homogeneous group with a clear genetic driver for the
disease and also in a more heterogeneous idiopathic group.
We have achieved non-zero improvements in accuracy which
are comparable to the MDS-UPDRS assessment baseline in the
idiopathic group and significantly improved on this baseline in
the genetic group. We have done so with models that do not ac-
count for the effects of medication or individual PD participant
trajectory. We have identified DNAm as an informative omic
measure in all individuals with PD and have proposed a model
which could be used as an early diagnostic tool for individuals
with a genetic predisposition for the disease. In summary, our
research shows that an integrative network framework can be
used to perform longitudinal stratification in PD.
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