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Abstract 
 
Colorectal cancer (CRC) poses significant challenges in chemotherapy response prediction due to 

its molecular heterogeneity. This study introduces an innovative methodology that leverages gene 

expression data generated from matched colorectal tumor and organoid samples to enhance 

prediction accuracy. By applying Consensus Weighted Gene Co-expression Network Analysis 

(WGCNA) across multiple datasets, we identify critical gene modules and hub genes that correlate 

with patient responses, particularly to 5-fluorouracil (5-FU). This integrative approach advances 

precision medicine by refining chemotherapy regimen selection based on individual tumor profiles. 

Our predictive model demonstrates superior accuracy over traditional methods on independent 

datasets, illustrating significant potential in addressing the complexities of high-dimensional 

genomic data for cancer biomarker research. 
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Introduction 
 

Colon and rectal cancer remains a major global health challenge [1], ranking as the third most 

prevalent cancer diagnosis and the third leading cause of cancer-related mortality for both men 

and women in the United States. It is estimated that more than 150,000 new cases will be 

diagnosed in the coming year, with >50,000 of those being rectal cancer (RC).  It is expected that 

52,000 deaths are expected to occur relative to both colon and RC this year [2]. Chemotherapy 

remains central to the treatment of both colon and rectal cancers and centers around drugs such 

as 5-fluorouracil (5-FU), Oxaliplatin, and Irinotecan. However, the effectiveness of these 

treatments varies considerably due to the molecular heterogeneity of colon and rectal tumors, 

with response rates ranging widely. For instance, the use of 5-fluorouracil (5-FU) in combination 

with leucovorin as a first-line treatment for metastatic disease shows an overall response rate of 

approximately 20-30%. Moreover, the introduction of irinotecan or oxaliplatin to this regimen 

increases the response rate to about 40-50%, demonstrating significant variability in treatment 

efficacy [3]. Further, this variability is specifically seen in RC where the response to triplet 

chemotherapy (e.g., FOLFIRI (5-FU, Oxaliplatin, and Irinotecan)) is associated with better 

prognosis than standard therapy [4, 5].  In addition, given the fact that some RC patients may 

only require upfront chemotherapy for cure, the proper selection of neoadjuvant chemotherapy 

will become even more critical [6].  Variability in treatment response highlights the critical need 

for precise predictive models to better forecast individual chemotherapy responses. Accurate 

prediction models are essential not just for enhancing treatment effectiveness, but also for 

avoiding unnecessary side effects in non-responsive patients, ultimately leading to more 

personalized and effective cancer care. 

       Current commercially available colorectal cancer gene signature panels, like 

OncotypeDX, ColoPrint, and others, primarily serve prognostic purposes, but their effectiveness 

in predicting neoadjuvant therapy response is not well-established [7-12]. Moreover, the likelihood 

of individual cancer biomarkers reaching clinical significance remains notably low, a reality 

shaped by multiple factors. One notable challenge is that prediction models derived from cell lines 

often fail in human tumors [13, 14]. In addition, intratumoral heterogeneity (ITH) via stromal cells 

in the tumor microenvironment may hide subtle gene expression alterations associated with genetic 
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diversity and heterogeneity within the tumor epithelium [15]. Finally, the complexity of genomic 

features (i.e., Curse of dimensionality) presents a key challenge to prediction tasks involving the 

drug response [16-18]. This means the top genomic features selected from primary tumors may 

not be predictive in different patient cohorts partially due to the false positive signals from high-

dimensional molecular data, which was shown in the colorectal cancer biomarker discovery [7-

10].  

 

Tumor organoids, three-dimensional cell culture systems, offer a revolutionary approach in 

cancer research. They closely mimic the structural and functional attributes of original tissues or 

organs, providing a more accurate representation of human tumors. These organoids preserve the 

genetic, phenotypic, and behavioral characteristics of their source tumors, making them highly 

relevant for drug discovery, treatment response tracking, and personalized medicine. Their ability 

to maintain the heterogeneity of the source tumors enhances the study of tumorigenesis, drug 

screening, and precision medicine, presenting a significant advantage over traditional two-

dimensional cell cultures. Previously, our group has shown that RC organoids correspond to the 

patient-specific outcomes observed including chemotherapy response and clinical outcomes [19].  

This advancement facilitates more reliable investigations into tumor pathogenesis, offering a 

promising platform for cancer research and clinical applications [20, 21]. 

 

Recent advancements in colon and RC organoid research demonstrate effective replication of 

the intricate cellular diversity and molecular heterogeneity seen in patient tumors, thus providing 

an essential tool for exploring disease development, progression, and treatment responses [19, 22-

25]. The transcriptome data from organoids has been used to predict anti-cancer drug efficacy [26].  

Moreover, harnessing the power of colon and RC organoid models and integrating molecular data 

from matched primary tumors and organoids allows an opportunity to identify novel biomarkers 

that predict treatment response.  Directly selecting markers from tumor samples can result in a 

high rate of false-positive signals due to the vast number of features relative to the number of 

observations, which can obscure true biological signals. To mitigate this issue, organoids serve as 

an amplified biological system that retains the complexity of the original tumor but in a more 

controlled environment that allows for clearer observation of treatment responses. By comparing 

the molecular profiles of organoids with those of the corresponding tumor samples, we can more 
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effectively filter out noise and retain robust signals that reflect intrinsic tumor biology. A previous 

study showed that a cancer-cell intrinsic gene expression signature has excellent predictive 

performance by minimizing intratumoral heterogeneity bias in colon and RC prognostic/predictive 

classification [27]. Another recent study found that tumor intrinsic immune signatures developed 

via a matched organoid–primary tumor system are effective tissue biomarkers of prognosis in 

colon and RC [28], indicating organoids reflect intrinsic properties of the tumor and its 

microenvironment [19, 29-33].  

Here, we developed new strategies that leverage matched colorectal tumor and organoid 

transcriptome data and the consensus gene network approach to identify key gene expression 

biomarkers predictive of 5-FU-based chemotherapy response. Our results indicate that these 

tumor-based biomarkers are strongly correlated with patient survival outcomes when treated with 

specific chemotherapeutic agents. This innovative approach marks a notable shift towards 

precision medicine, offering the potential to customize therapeutic strategies based on individual 

colorectal patient profiles to enhance treatment efficacy. 

Results 
An Overview of the Integrative Analysis of Matched Colorectal Tumor and Organoid Data 

for Chemotherapy Response Prediction 

This study employs a unique integrative analysis approach, as depicted in Figure 1, focusing on 

matched colorectal cancer (CRC) tumor tissues and patient-derived organoids. The analysis 

begins by leveraging gene expression data from both CRC tumors and corresponding organoids, 

drawn primarily from datasets GSE171680 and GSE171681, which include a substantial number 

of matched samples (87 samples)[28]. Given the lack of direct drug response data in these 

matched datasets, we next integrated an additional colorectal cancer organoid dataset, 

GSE64392, which contained IC50 values. The detailed information of three training datasets is 

listed in Table 1A.  

 

Consensus Weighted Gene Co-expression Network Analysis (WGCNA) is a powerful method 

that identifies clusters of genes (modules) with similar expression patterns across multiple 

datasets [34, 35]. This approach is particularly effective in integrating data from different sources 

[36], like tumor and organoid gene expression profiles in our study. By analyzing these patterns 
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collectively on three datasets - colorectal tumors (GSE171680), colorectal tumor-matched 

organoids (GSE171681), and an independent colorectal organoid data (GSE64392), consensus 

WGCNA provides a more robust and comprehensive understanding of the underlying biological 

relationships. It helps in pinpointing key gene modules that are consistently associated across 

datasets, which are crucial for understanding complex traits such as drug response in cancer. The 

study then centers on hub genes within these modules, vital for developing a predictive model for 

chemotherapy response. This workflow combines matched tumor-organoid gene expression with 

additional drug response data, aiming to develop a robust predictive model for disease-relevant 

chemotherapy response. 

To build and validate our drug-response prediction models, we incorporated a detailed 

methodological approach as depicted in Figure 1. Hub genes identified from the organoid 

WGCNA were employed to construct predictive models using ridge regression, random forest, 

and an ensemble of these methods. The models were trained and optimized through cross-

validation to minimize prediction error, selecting the best-performing model based on its 

predictive accuracy in terms of area under the curve (AUC) on independent validation sets. The 

selected ensemble model demonstrated superior performance, indicating its effectiveness in 

predicting chemotherapy response. Further validation involved calculating patient-specific drug-

resistance scores using the optimal model, allowing for a thorough assessment of individual 

response to chemotherapy. 

Identification of coherent gene modules through consensus WGCNA  

 

Given the robust nature of the weighted correlation network to the choice of soft-thresholding 

power, we selected β = 12 for the signed network. This ensured a scale-free topology model fit 

above 0.75, in which the network conforms to a scale-free topology, a characteristic of biological 

networks where few nodes (genes) are highly connected [34]. (Figure 2A). The consensus 

WGCNA identified 16 modules, including a grey module. Grey modules typically contain genes 

that do not correlate well with any others and thus are not grouped into specific functional modules. 

In contrast, non-grey modules such as the turquoise module (n=214), blue module (n=190), brown 

module (n=157), yellow module (n=144), and green module (n=141), which contain the most 

genes, show more homogenous and potentially functionally relevant expression patterns. Although 

the grey module comprised 1910 genes, it displayed heterogeneous expression patterns and was 
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not assigned to any particular function. Figure 2B shows the dendrogram of modules clustered by 

hierarchical clustering based on consensus Topological Overlap Matrix (TOM).  

 

Prognostic relevance and correlation of gene modules with clinical outcomes 

Among the modules identified, the tan, salmon, and magenta modules showed statistically 

significant associations with Overall Survival (OS) and Recurrence-Free Survival (RFS) in Cox 

regression models in independent datasets (Figure 2C). These modules demonstrated protective 

effects, with hazard ratios less than one. Notably, the tan and salmon modules had significant 

Spearman correlations between their eigengenes in matched organoid (GSE171681) and tumor 

samples (GSE171682, suggesting robust biomarker potential.  Figure 3A shows the scatterplot of 

Spearman correlations between the eigengenes of these two modules. The tan module, in particular, 

showed the highest correlation (𝑅!"#$ = 0.7, 𝑝 = 	2.2 × 10%&' ), and the salmon module also 

achieves a moderate correlation coefficient (𝑅(")*+#$ = 0.5, 𝑝 = 	1.4 × 10%'). Figure 3B shows 

the consensus network of the tan and salmon modules with the names of the hub genes colored in 

brown. The tan module has more connections than the salmon module. In each pair among the 

three datasets, the individual module membership Spearman correlations are all significant 

(Figure 3C). This indicates a high consistency of gene findings in the tan and salmon modules 

across the three datasets and confirms the reliability of these gene modules in predicting clinical 

outcomes. We identified and selected 35 hub genes with an absolute consensus module 

membership (MM) of 0.5 or higher for subsequent prediction modeling. 

Building organoid drug-response models and selecting drug response-related genes 

The organoid 5-FU drug-response models were built using the 35 hub genes selected from  

WGCNA. To further identify the biomarkers following 5FU treatment in colorectal cancer, we 

developed an ensemble model that combined two machine learning methods: random forest and 

ridge regression (see “Methods”). We compared the performance of our ensemble method to that 

of using only ridge or only random forest methods through cross-validation in the training data 

GSE64392. We also validated these models on the GSE171680 dataset using the Area Under the 

Curve (AUC) metric (see Supplementary Figure 1). The results suggested that the biomarkers 

identified by the ensemble model demonstrated higher predictive performance across all models. 
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Using this model, seven genes were selected as the final biomarkers for the 5-FU drug response 

based on training data GSE64392 (Table 2). 

Validation of organoid prediction model with six independent datasets 

The prediction performance of our organoid model was then validated in six independent GSE 

datasets: GSE39582, GSE17538, GSE106584, GSE72970, and GSE87211. The details of the 

survival and transcriptomic data for these six datasets are described in Table 1B. The patient-

specific drug-response scores of each validation dataset were calculated (see “Methods”) and the 

statistical difference in overall survival (OS) between the drug-sensitive and drug-resistant groups 

was assessed by the Kaplan-Meier survival curves and log-rank tests. As shown in Figure 4 and 

Table 3, the drug-sensitive group had a significantly longer OS than the drug-resistant group for 

all six datasets: the p-values of log-rank tests are 1.32×10-04 (GSE39582), 7.09×10-04  (GSE17538), 

4.95×10-02 (TCGA-COAD), 2.08×10-02 (GSE106584), 4.60×10-03 (GSE72970), and 1.25×10-03 

(GSE87211). We examined the pattern of the seven selected drug-related genes.  

Interestingly, we found that all the genes with lower IC50 values show higher expression 

in GSE64932 (Figure 5A). Furthermore, to determine if the 35 hub genes identified in the 

consensus WGCNA have similar validation outcomes as the seven drug-related genes, we 

computed patient-specific drug-resistant scores using the ridge regression coefficients of the 35 

hub genes. The prognosis test results are displayed in Supplementary Figure 2, which shows 

significant p-values were achieved in all datasets except TCGA-COAD, where the significance 

was marginally achieved. The selection of 35 hub genes from the WGCNA, and the further 

selection of 7 genes from these 35, provide a reliable predictor of drug response. This can be 

showed by the significant log-rank tests in 5 out of 6 validation datasets, which were based on 

survival outcomes of the 35 hub genes. Furthermore, all 6 validation datasets showed significant 

results in log-rank tests using the 7-gene organoid model.  

Functional enrichment analysis of hub genes 

We next performed enrichment analysis for the 35 selected hub genes in the KEGG, REACTOME, 

and GO pathway databases. Figure 5B presents the significant pathways with adjusted p-values 

less than 0.05. It can be observed that certain pathways are prominently associated with colon and 
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rectal cancer chemotherapy response. Top pathways included those related to DNA repair 

mechanisms, cell cycle regulation, apoptosis, and drug metabolism. For instance, pathways 

involved in DNA damage response are crucial, as chemotherapy often targets rapidly dividing 

cancer cells by inducing DNA damage. Similarly, pathways regulating apoptosis is also significant, 

as the effectiveness of chemotherapy is partly determined by the ability of cancer cells to undergo 

programmed cell death.  

Prediction performance of alternative gene selection processes 

To demonstrate the consistency and utility of our approach in predicting the survival of colorectal 

cancer patients, we evaluated the prediction performance on the validation datasets using two 

alternative gene selection methods: one based on three additional WGCNA strategies, and another 

based on two gene association tests (Table 3). We found that the genes chosen by Model 2 (See 

Methods), which were selected based on consensus WGCNA applied to two datasets, yielded 

significant results in the log-rank tests for four datasets (Supp Figure 4). This was followed by 

Model 1, where genes were selected based on WGCNA applied to tissue data GSE171680; it 

produced significant results in the log-rank tests for three datasets (Supp Figure 3). Model 3, in 

which genes were selected based on WGCNA applied to organoid data GSE64932, did not 

consistently yield significant results in log-rank tests (Supp Figure 5). This suggests that applying 

more data to construct consensus WGCNA yields more robust results in predicting survival. Next, 

we examined the gene selection process based on the two different criteria of gene filtering from 

the association tests. We found that the small sample size of the organoid and tissue data could 

potentially affect the reliability of test results, thereby impacting the validation results in survival 

prediction (Supp Figure 6-7). 

 
Discussion 

In this study, we introduced a novel methodology for predicting chemotherapy responses in 

colon and rectal cancer, utilizing matched tumor-organoid gene expression data. Our approach 

incorporated Consensus Weighted Gene Co-expression Network Analysis (WGCNA) across 

diverse datasets, including colorectal tumors, corresponding organoids, and an independent CRC 

organoid dataset with drug response data (IC50 values). This method effectively identified key 
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gene modules and hub genes associated with colorectal chemotherapy response, marking a 

significant advancement in personalized medicine approaches for colorectal treatment. 

 

The prediction results of our study highlight the substantial advantages of using matched 

organoid and tumor samples for biomarker selection in colorectal cancer treatment. By 

integrating gene expression data from these matched samples, our analysis was able to identify 

more precise and relevant biomarkers for chemotherapy response prediction. This approach led 

to the discovery of specific gene modules and hub genes that are critically involved in response 

to chemotherapy in colorectal cancer, particularly 5-fluorouracil (5-FU). Our predictive model, 

built on these findings, demonstrated a notable improvement in accuracy and reliability 

compared to traditional methods as results showed in Table 3.  

 

The superior performance of our proposed model underscores the effectiveness of the two 

strategies we employed. First, matched tumor-organoid data in capturing the intrinsic signature 

of chemo-response complex molecular dynamics of colon and rectal cancers, thus yielding a 

more robust clinical outcome. Second, the WGCNA network-based biomarker selection offered 

notable advantages in understanding colorectal cancer chemotherapy response. The ability of 

WGCNA to identify modules of co-expressed genes allowed us to discern complex gene 

interaction networks relevant to response to treatment in colon and rectal cancer. This network-

based approach facilitated the identification of not just individual genes but also clusters of genes 

(modules) that collectively contribute to drug responsiveness. This method, by capturing the 

systemic relationships and dependencies among genes, provided a more holistic view of the 

molecular mechanisms underlying the response to chemotherapy in colorectal cancer, thereby 

enhancing the accuracy and relevance of the selected biomarkers for clinical application.  

A limitation of the current work is the lack of direct drug response data from the matched 

colorectal cancer organoid dataset (GSE171681), necessitating reliance on similar in vitro 

organoid experiments (GSE64392). Future research could benefit from matched tumor-organoid 

datasets inclusive of patient and organoid drug response outcomes. Additionally, network 

modeling approaches could be refined to integrate more extensive biological information [37, 

38], potentially offering more profound insights into CRC chemotherapy response mechanisms. 

The strength of this work highlights a new pathway in biomarker discovery for colon and rectal 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 9, 2024. ; https://doi.org/10.1101/2024.01.24.24301749doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.24.24301749


cancer chemotherapy response prediction, addressing typical high-dimensional genomic data 

challenges in cancer research like intratumoral heterogeneity and the curse of dimensionality. 

This method could extend to more advanced organoid cultures, including those that incorporate 

integrating the potential of organoid and the patient-tumor microenvironment [39], offering the 

potential to identify biomarkers for immunotherapy responses.  

 

Discussion 

In this study, we introduced a novel methodology for predicting chemotherapy responses in 

colon and rectal cancer, utilizing matched tumor-organoid gene expression data. Our approach 

incorporated Consensus Weighted Gene Co-expression Network Analysis (WGCNA) across 

diverse datasets, including colorectal tumors, corresponding organoids, and an independent CRC 

organoid dataset with drug response data (IC50 values). This method effectively identified key 

gene modules and hub genes associated with colorectal chemotherapy response, marking a 

significant advancement in personalized medicine approaches for colorectal treatment. 

 

The prediction results of our study highlight the substantial advantages of using matched 

organoid and tumor samples for biomarker selection in colorectal cancer treatment. By 

integrating gene expression data from these matched samples, our analysis was able to identify 

more precise and relevant biomarkers for chemotherapy response prediction. This approach led 

to the discovery of specific gene modules and hub genes that are critically involved in response 

to chemotherapy in colorectal cancer, particularly 5-fluorouracil (5-FU). Our predictive model, 

built on these findings, demonstrated a notable improvement in accuracy and reliability 

compared to traditional methods as results showed in Table 3.  

 

The superior performance of our proposed model underscores the effectiveness of the two 

strategies we employed. First, matched tumor-organoid data in capturing the intrinsic signature 

of chemo-response complex molecular dynamics of colon and rectal cancers, thus yielding a 

more robust clinical outcome. Second, the WGCNA network-based biomarker selection offered 

notable advantages in understanding colorectal cancer chemotherapy response. The ability of 

WGCNA to identify modules of co-expressed genes allowed us to discern complex gene 

interaction networks relevant to response to treatment in colon and rectal cancer. This network-
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based approach facilitated the identification of not just individual genes but also clusters of genes 

(modules) that collectively contribute to drug responsiveness. This method, by capturing the 

systemic relationships and dependencies among genes, provided a more holistic view of the 

molecular mechanisms underlying response to chemotherapy in colorectal cancer, thereby 

enhancing the accuracy and relevance of the selected biomarkers for clinical application.  

A limitation of the current work is the lack of direct drug response data from the matched 

colorectal cancer organoid dataset (GSE171681), necessitating reliance on similar in vitro 

organoid experiments (GSE64392). Future research could benefit from matched tumor-organoid 

datasets inclusive of patient and organoid drug response outcomes. Additionally, network 

modeling approaches could be refined to integrate more extensive biological information [37, 

38], potentially offering more profound insights into CRC chemotherapy response mechanisms. 

The strength of this work highlights a new pathway in biomarker discovery for colon and rectal 

cancer chemotherapy response prediction, addressing typical high-dimensional genomic data 

challenges in cancer research like intratumoral heterogeneity and the curse of dimensionality. 

This method could extend to more advanced organoid cultures, including those that incorporate 

integrating the potential of organoid and the patient-tumor microenvironment [39], offering the 

potential to identify biomarkers for immunotherapy responses.  
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Method 
Study cohorts  
 
We selected three colorectal cancer datasets from research carried out by van de Wetering et al.[22] 
and Cho et al. [28] for use in the consensus WGCNA algorithm and development of organoid drug-
response model. The datasets from van de Wetering et al. contains 22 organoid samples of 
microarray data and drug-response for colorectal cancer. The microarray data can be retrieved from 
the Gene Expression Omnibus (GEO) with the study accession GSE64932 [22]. In our study, we 
used IC50 values as drug sensitivity measurements and selected 19 samples tested with 5-Fu. The 
two datasets from Cho et al. include paired expression data from 87 organoid (GEO accession: 
GSE171681) and patient tissue (GEO accession: GSE171680) samples with colorectal cancer. The 
detailed information of the three training datasets can be found in Table 1A. Furthermore, we 
validated the prognosis predictive value of our organoid drug-response model to the overall 
survival (OS) outcomes of five GEO datasets for colorectal and colon cancer (GSE39582 [40], 
GSE17538 [41], GSE106584 [42], GSE72970 [43], and GSE87211 [44]). We also included one 
TCGA data (https://www.cancer.gov/tcga) for colorectal cancer (TCGA-COAD). All six validation 
datasets contain OS outcomes and the samples with 5-FU based treatment were selected. The 
detailed information of validation data can be found in Table 1B. 
 
Data preprocessing 
 
For the expression datasets from GEO, we used the robust multichip average (RMA) normalized 
expression data [45]. The genes were represented by the probes with the largest interquartile range 
(IQR) statistics using findLargest function in genefilter R/Bioconductor package. The gene 
symbols were annotated using the AnnotationDbi R/Bioconductor package. The TCGA-COAD 
patient data were downloaded from the TCGA data portal using the TCGAbiolinks Bioconductor/R 
package [46]. For expression analysis of TCGA-COAD, we used the FPKM-UQ dataset and 
performed a log2 transformation. 
 
Consensus WGCNA 
 
We used consensus WGCNA to study the relationships among the three expression profiles 
(GSE64932, GSE171680, and GSE171681) [34]. To perform this analysis, we first filtered the 
three expression profiles, selecting only the 3637 common genes that were among the top 50% 
most variable genes across all datasets. For each dataset, a signed correlation weight, 𝑠,- =
&./+012!,	2"5

$
, is assigned to each gene pair 𝑥, 	𝑎𝑛𝑑	𝑥- via a positive soft thresholding parameter 𝛽. 

The signed network weighted adjacency matrix is defined as:  
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𝑎,- = 4𝑠,-4
6 

Here, 𝛽  is the raised power of similarity measures, which emphasize more on the strong 
associations [47]. The three adjacency matrices were then transformed into the topological overlap 
matrices (TOM) that provide a robust measure of connections between gene pairs [48]. The 
individual TOMs are calibrated using the full quantile normalization such that all quantiles equal 
each other. To obtain the consensus TOM, we calculated the component-wise mean of individual 
TOMs for each set. The genes were further clustered by average linkage hierarchical clustering 
using the dissimilarity measure of the consensus TOM (1 – consensus TOM). The dendrogram cut 
height for module detection was set to 0.999 and the minimum module size of each module was 
set to 30 genes. The consensus network analysis was conducted using the  
blockwiseConsensusModules R function in WGCNA package. 
 
Significant modules and hub genes selection 
 
To identify the significant modules, we first performed Cox proportional hazards regression 
models to test association between patient OS and recurrent free survival (RFS) outcomes with the  
module eigengenes (MEs). This approach was adopted as the survival outcomes are significantly 
related to drug response. The module eigengenes were obtained as the 1(! principal component of 
the patient tissue expression. Three modules were selected with coefficient P-value < 0.05 in either 
OS or RFS cox regression model. Furthermore, to determine the concordance of modules between 
organoid and tissue expression, we estimated Spearman correlations between the eigengenes of 
each module in the two paired organoid and tissue expressions (GSE171681 and GSE171682). 
Only two modules, tan and salmon, among the three survival outcomes significant modules, were 
highly significant correlated (𝑅!"#$ = 0.7, 𝑝 = 	2.2 × 10%&' and 𝑅(")*+#$ = 0.5, 𝑝 = 	1.4 × 10%') 
between their eigengenes. These two modules were then selected as the significant modules for 
further model training. To assess the module membership (MM) of genes in each module, we 
calculated the correlation between the gene expressions and MEs of each module. This is denoted 
as kME. To evaluate the MM across all the expressions, we used the consensus kME that obtained 
by average aggregation of the kMEs for each expression set. The consensus kME was implemented 
in the function consensusKME. The selection of hub genes varies as each dataset has different 
clinically related information. For example, GSE64932 only contains drug response data, while 
GSE171681 only includes survival outcome data. We selected the hub genes of the significant 
modules using only the criterion of consensus |MM| ≥ 0.5.  
 
Organoid drug-response model training 
 
To build the drug-response models, we used the hub genes selected from the WGCNA of the 
organoid expression profile against the median IC50 of 5-FU as drug response. We selected ridge, 
random forest, and an ensemble method of random forest and ridge as the training models. Elastic 
net model was performed using the glmnet R package. The optimal 𝛼  and 𝜆 parameters were 
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selected based on the lowest mean squared error between the drug response and predicted values 
in the validation sets, using 3-fold cross validation (CV). This was implemented in the cv.glmnet 
function. The Random Forest (RF) was constructed using the rfsrc function from the 
randomForestSRC R package. The final RF model was built using genes with a permutation 
importance greater than 0. The ensemble method was created by choosing genes based on their 
permutation importance obtained from random forest model. These selected genes were then fitted 
into a ridge regression model. Following the selection of drug-response related genes, we 
conducted a 3-fold CV on each model to decide the optimal model as our final organoid model. 
Furthermore, to ensure the optimal model is selected, we applied the three models to patient data 
GSE171680, which was used to conduct the consensus WGCNA. The Area Under the Curve (AUC) 
was calculated based on the predicted values of each model, using the OS outcome as binary. The 
ensemble model was selected as the optimal model as it achieved both lowest 3-fold CV values 
and highest AUC among all three model. To stabilize the CV errors and assess the model powers, 
we repeated running the 3-fold CV for each model with 100 times. Seven genes were selected by 
the optimal model as the drug-response related genes. 
 
Patient specific drug-resistant score 
 
To validate our optimized organoid drug-response model, we calculated the patient specific drug-
resistance score for each patient using the corresponding expression data. Specifically, the score 
from the optimized organoid drug-response is calculated as follow:  

𝑆𝑐𝑜𝑟𝑒7"!,8#! =?	𝛽, 	 ⋅ 𝐸𝑥𝑝7"!,8#!,,
,∈:

	 

where 𝑖 is gene from the 7 drug-response related genes 𝐺, 𝐸𝑥𝑝7"!,8#!,, represents the expression 
level of gene 𝑖 of the patient, and 𝛽, is the ridge regression coefficient of gene 𝑖 from the optimized 
organoid model. In the random forest model, the patient-specific score is derived from the 
predicted values. These values are estimated by the model using the expression data of the selected 
genes. For each validation dataset, the drug-resistant scores were separated into two groups: the 
drug-resistant group (with score ≥ cut point) and the drug-sensitive group (with score < cut point). 
The maximum rank statistic, which implemented in the MaxStat R package, was used to determine 
the cut point for each validation dataset. The Kaplan-Meier survival analysis and the log-rank test 
were used to visualize and evaluate the statistical differences in overall survival (OS) between the 
two groups. 
 
Functional enrichment analysis of hub genes 
  
The pathway analysis was performed for the selected 35 hub genes using over representation 
analysis, which was implemented in clusterProfiler R package [49]. Briefly, this method 
determined whether biological processes that were over-represented in the gene list of interest 
using p-values calculated by hypergeometric distribution and adjusted by Benjamini-Hochberg 
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(BH) method to calculate false discover rate (FDR). For the selected hub genes, we analyzed 
pathways from KEGG, Reactome and GO pathways from the Molecular Signatures Database 
(MSigDB), which can be accessed by the msigdbr R/Bioconductor package. The minimum and 
maximum sizes of gene sets used for analysis were set to 10 and 500 respectively. 
 
Gene selection process based on other WGCNA approaches 
 
Additionally, we performed three other WGCNA models to select candidate genes: Model 1, 
WGCNA based on only the tissue expression (GSE171680); Model 2, consensus WGCNA based 
on the matched organoid and tissue expressions (GSE171681 and GSE171680); and Model 3, 
WGCNA based on only the organoid expression with drug response (GSE64932). For Model 1 
and 2, the modules were identified as significant based on the Cox regression results regarding the 
OS outcome. We filtered the hub genes for further model training using |MM| ≥0.5. As there was 
no public drug response data available for this study, we used the OS outcome as response to train 
three models: ridge, random forest, and the ensemble model. On the other hand, the significance 
of the modules of Model 3 was determined by the Spearman correlation between the 𝐼𝐶;< and the 
eigengene of each module. The same criterion was conducted to select the hub genes and followed 
by training the organoid models. 
 
Gene selection process based on gene association tests 
 
We compared gene selection methods by conducting gene filtering based on the results of three 
association tests: 1) Gene-OS Cox regression test, 2) Gene-drug response Spearman correlation 
test, and 3) Gene-paired Spearman correlation test. Specifically, for the gene-OS Cox regression 
test, we fit the model to the OS outcome of GSE171680, with each gene as the dependent variable. 
Each model was adjusted for age and sex to account for confounding variables. The gene-drug 
Spearman correlation test was conducted between the 𝐼𝐶;<  drug response and each gene of 
GSE64932. The gene-paired Spearman correlation test was conducted between the gene 
expression levels of the paired organoid and tissue data. The candidate genes of training the 
organoid models were selected based on their significance in gene-paired correlations, gene-OS 
association tests and gene-drug correlation tests. We employed two gene filtering criteria and built 
organoid models using the genes chosen based on these criteria respectively. The first criterion 
selects genes where all test result p-values are smaller than 0.05. The second criterion selects genes 
where all test result p-values are smaller than 0.05 and the sign of the gene-OS and gene-drug 
coefficients are in agreement. 
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Figure 1 - Workflow for the iden/fica/on of gene biomarkers with WGCNA and development 
of organoid model. The process iniWates with the selecWon of three colorectal cancer datasets 
for a consensus WGCNA. PotenWal gene biomarkers are then chosen to train the organoid models 
with GSE64392 and its drug response 5-FU. Subsequently, genes related to drug response are 
idenWfied and uWlized for prognosis tesWng on six independent colorectal cancer paWent 
expression datasets. 
 
Figure 2 – Construc/on of consensus WGCNA . (A) shows the scale-free topology model fit (y-
axis) under different power values (x-axis); (B) shows the average connecWvity (y-axis) under 
different power values (x-axis); (C) shows the dendrogram of the consensus module clustering 
based on the dissimilarity measure (1- consensus TOM); (D) the heatmap on the lef plots the 
relaWonship of consensus module eigengenes and prognosis results of GSE171680; the heatmap 
on the right indicates the Spearman correlaWon between consensus module eigengenes of 
GSE171680 and GSE171681. 
 
Figure 3 - Plots of significant modules: tan and salmon. (A) shows the scaberplots between 
eigengenes of GSE171680 (x-axis) and GSE171681 (y-axis) of tan (top) and salmon (bobom), with 
Spearman correlaWons and P-values labeled; (B) shows the consensus network of the tan and 
salmon modules (hub genes colored in brown); (C) shows the scaberplots of the module 
membership (MM) among all three datasets of tan (top) and salmon (bobom) modules. 
 
Figure 4 - Drug-response predic/ons for 5-FU-based treated samples of six independent 
datasets. The predicted drug-resistant scores were divided into drug-sensiWve and drug-resistant 
group and tested on the overall survival results from six independent datasets. StaWsWcal 
significance was measured using Kaplan–Meier survival curves and log-rank tests. P-values <0.05 
were considered significant. 
 
Figure 5 - Heatmap of 7 drug-related biomarkers and func/onal enrichment plots of 35 hub 
genes selected from WGCNA. (A) displays a heatmap of seven drug-related biomarkers, 
accompanied by a hierarchical clustering dendrogram at the top. The coefficients of the 
biomarkers are depicted on the lef. (B) presents dot plots for the funcWonal enrichment analysis 
of 35 hub genes, selected from WGCNA. All significant pathways are included in the plot. 
 
Supplementary Figure 1 - Showcases the cross-valida/on (CV) errors and ROC curves of the 
Ridge, RF, and ensemble models. On the lef are boxplots of 100 repeated CV errors. The t-test 
results between Ridge vs ensemble and RF vs ensemble are displayed at the top of the boxplots, 
where "**" represents P-values < 0.01 and "****" signifies P-values < 0.0001. On the right are the 
ROC curves from tesWng on the binary label of the OS results of GSE171680 across the three 
models. The area under the curve (AUC) values are labeled for each model. 
 
Supplementary Figure 2 - Drug-response predic/ons for 5-FU-based treated samples of six 
independent datasets with 35 hub genes selected from the consensus WGCNA  
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Supplementary Figure 3 - Drug-response predic/ons for 5-FU-based treated samples of six 
independent datasets with candidate genes selected from WGCNA Model 1  
 
 
Supplementary Figure 4 - Drug-response predic/ons for 5-FU-based treated samples of six 
independent datasets with candidate genes selected from WGCNA Model 2 
 
 
Supplementary Figure 5 - Drug-response predic/ons for 5-FU-based treated samples of six 
independent datasets with candidate genes selected from WGCNA Model 3 
 
 
Supplementary Figure 6 - Drug-response predic/ons for 5-FU-based treated samples of six 
independent datasets with candidate genes selected from filtering criterion 1 of gene 
associa/on tests 
 
Supplementary Figure 7 - Drug-response predic/ons for 5-FU-based treated samples of six 
independent datasets with candidate genes selected from filtering criterion 2 of gene 
associa/on tests 
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Table 1A Gene expression training datasets 

 

 

 

Table 1B Gene expression testing datasets 

 

Dataset Data type Array type Number of genes Number of samples Have drug response Number of
 OS events

Median OS 
follow-up time

Number of 
RFS events

Median RFS 
follow-up time

GSE171680 Tissue RNAseq 20501 87 No 15 38.27 19 29.90
GSE171681 Organoid RNAseq 20501 87 No 15 38.27 19 29.90
GSE64392 Organoid Microarray 25988 19 Yes NA NA NA NA

Datasets Array type Number of genes Number of samples Number of samples with
5-FU based chemotherapy Number of OS events Median follow-up time

GSE39582 Microarray 20824 167 102 30 41.00
GSE17538 Microarray 20824 232 88 40 47.83
TCGA-COAD RNA-Seq 19462 456 122 18 25.15
GSE106584 Microarray 23145 156 83 37 81.27
GSE72970 Microarray 20824 124 124 92 22.80
GSE87211 Microarray 20816 203 203 28 62.25
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Table 2 The seven genes selected by the ensemble organoid model 

Gene Coefficient Module 

CELP -0.0798 tan 
CPN1 -0.0282 tan 

NEURL2 -0.0162 tan 
PIPOX -0.0392 tan 

SLC19A3 -0.0568 tan 
VAV3 0.0012 tan 

HOXB13 -0.0325 salmon 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 9, 2024. ; https://doi.org/10.1101/2024.01.24.24301749doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.24.24301749


Table 3 – Prediction results of the main models and all other gene selection processes. 

Drug-related
biomarkers

Hub genes Model 1 Model 2 Model 3

Log-rank test P-value
GSE39582 1.32E-04 2.00E-04 2.13E-02 1.06E-01 2.13E-01 1.36E-01 9.16E-02
GSE17538 7.09E-04 8.70E-04 2.56E-01 2.39E-02 1.53E-01 1.48E-01 1.36E-01

TCGA-COAD 4.95E-02 7.90E-02 1.32E-01 7.52E-03 7.26E-02 1.88E-01 6.88E-02
GSE106584 2.08E-02 3.70E-02 1.36E-01 4.84E-02 7.11E-02 2.19E-01 4.59E-02
GSE72970 4.60E-03 5.40E-04 2.25E-02 5.49E-02 4.42E-02 2.42E-02 3.04E-01
GSE87211 1.25E-03 1.80E-02 5.44E-03 1.63E-02 5.65E-02 2.87E-01 5.09E-02

Organoid model Ensemble Ridge Ensemble RF Ensemble Ensemble Ensemble
Number of modules selected 2 2 3 1 7
Number of genes selected 7 35 73 8 17 27 21

Other approaches
WGCNA based process

Validation datasets

Three association tests based process
Criterion 2:
Concordant
genes only

Criterion 1:
Significant genes in 

three tests

Main model
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