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Abstract

Obesity is one of the most significant risk factors of non-communicable
diseases, disability, and premature death. Due to its profound impact on
health, researchers have started classifying it as a disease rather than a
mere abnormality. India, following the global trend, is experiencing a
surge in obesity prevalence, posing a critical research question about the
potential impact of obesity reduction on NCD incidence and related dis-
orders. This study employs discrete-event dynamic microsimulation mod-
elling to investigate how changes in BMI distribution in early years of life
can influence the prevalence of hypertension, one of the most prevalent
diseases in India. The microsimulation modelling approach enables the
simulation of individual-level real-life behaviors and interactions within
a given population. The model simulated the lives of 100,000 individu-
als aged 20 over the next 50 years till age 70. Baseline characteristics,
prevalence rates, and transition probabilities were derived from diverse
data sources, including Census 2011, the National Family Health Sur-
vey - V (NFHS-5), and the Longitudinal Aging Study in India (LASI,
2017-18). The study explores the impact of two scenarios on hyperten-
sion prevalence: (i) a one-unit reduction in mean BMI level at baseline,
and (ii) a one-unit reduction in the standard deviation of BMI distribu-
tion at baseline. Results indicate that a one-unit reduction in mean BMI
level at baseline could lead to a 5% reduction in hypertension prevalence
at age 70, while a one-unit reduction in the standard deviation of BMI
distribution at baseline could result in a 7.5% reduction. These findings
underscore the importance of targeting children and adolescents with el-
evated BMI values to mitigate the later-life prevalence of hypertension.
Additionally, the study highlights the significance of promoting the use of
microsimulation modelling in health research in the Indian context.
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1 Introduction

Obesity is linked to an elevated risk of nearly all noncommunicable diseases
and disabilities. Conditions such as diabetes, hypertension, stroke, coronary
heart diseases (CHDs), and even eye diseases like glaucoma have been found to
be associated with obesity [1, 2, 3]. Not only NCDs, obesity has been found
to significantly increase the risk of communicable diseases as well. Recently,
several studies reported that obesity is correlated with a significantly higher risk
of severe COVID-19 outcomes and mortality [4]. In light of these detrimental
effects on health, researchers have begun to view obesity as a disease rather than
a mere abnormality [5]. This perspective shift has been recognized by major
health institutions such as the National Institutes of Health (USA) and the
American Obesity Society, which now advocate for the treatment and prevention
of obesity as a disease [6].

What is more concerning is that despite heightened awareness and informa-
tion about the risks associated with obesity, its prevalence is on the rise globally,
including in India. According to the World Health Organization (WHO), the
worldwide incidence of obesity has nearly tripled since 1975. In 2016, over 1.9
billion adults (39%) were overweight, with over 650 million classified as obese
(13%) [7]. These numbers are projected to increase even further in the future [7].
India is no exception to this public health issue. In fact, the incidence of over-
weight and obesity is escalating at a pace surpassing the global average. Based
on a recent study utilizing NFHS-5 (2019-21) data, the prevalence of abdominal
obesity in the country stands at 40% among women and 12% among men [8].
However, when considering BMI criteria, 23% of women and 22.1% of men are
categorized as overweight according to NFHS-5 data. Another study forecasts
that the prevalence of overweight will more than double among Indian adults
aged 20–69 years between 2010 and 2040, while the prevalence of obesity will
triple [9]. These statistics not only underscore the immediate health concerns
but also raise critical questions about the burden of morbidity in the coming
decades.

From a policy perspective, it is crucial to understand the potential impact
of reducing BMI levels on the overall burden of morbidity. Equally important is
gaining insight into the most effective strategies and interventions that can yield
optimal outcomes. One approach to achieve this is through the utilization of
microsimulation models, which have been widely employed in various domains
such as economic policy development (e.g., tax policies), urban planning, trans-
portation planning, labor market studies, insurance and risk management, and
energy and environmental policy.

Microsimulation is a technique that allows for the simulation of real-life
behaviors and interactions within a given population. Unlike aggregate-level
models that treat populations as homogeneous entities, microsimulation en-
ables researchers to create virtual populations where each individual is a unique
agent with distinct characteristics, behaviors, and attributes. In this type of
simulation modeling, individuals can interact with one another, forming an ar-
tificial society that simulates a hypothetical population of interest. Researchers
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use this technique to examine how introducing a policy or intervention would
impact the individuals in the population and shape the population dynamics.
Using microsimulation modeling, this study examines how changes in obesity
levels or alterations in BMI distribution can lead to a reduction in the prevalence
of hypertension.

There are two primary reasons that contribute to the selection of hyper-
tension as the outcome in this study. Firstly, hypertension is a serious concern
within the Indian population and one of the most prevalent NCDs in the country.
Secondly, the availability of micro-level data on blood pressure (both systolic
and diastolic) at the national level is essential for defining the parameters in the
microsimulation models used in this study.

Hypertension, also called as ”silent killer,” earns its name because many
individuals with hypertension remain unaware of the issue. For a substantial
duration, it may exhibit no signs or symptoms, silently compromising individu-
als’ health. According to the World Health Organization (WHO), approximately
1.28 billion adults aged 30–79 years worldwide suffer from hypertension [10]. A
study reported that 8.5 million deaths in 2015 were associated with high blood
pressure [11]. In India, hypertension is widespread, with NFHS-5 indicating
that 24% of men and 21% of women aged 15 and above have hypertension.
Considering the imminent rapid population aging in India, with a substantial
number entering older age groups, this prevalence is anticipated to rise further.

Given that obesity is a significant risk factor for hypertension, and research
suggests that obesity alone can induce hypertension [12, 13], this study, using
dynamic discrete-event microsimulation modeling, aims to explore how changes
in BMI distribution at early stages of life can result in reduction of hypertension
incidence and prevalence.

In addition to investigating the impact of changes in BMI distribution on
hypertension prevalence, this article holds significant value in promoting use of
microsimulation modelling in health research in India. While this methodology
is widely utilized in developed countries, its potential to analyze the impacts
of existing and proposed social and economic policies at both micro and macro
levels remains largely unexploited in research and policy formations in India.
The article aims to raise awareness about the importance of microsimulation
modeling in the Indian context, not only in the domain of obesity but across all
areas of health research. By highlighting the potential benefits and applications
of this modeling approach, the author aims to encourage its wider adoption and
utilization among researchers and policymakers.

2 Methods

Model Structure

In this study, we utilized a discrete event dynamic microsimulation model to
analyze the progression of 100,000 individuals (agents) from age 20 to 70 over a
span of 50 years. Due to data limitations and the complexity of the relationship
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between BMI and blood pressure at inital and later stages of life, the model does
not simulate individuals from birth to death. The model initially explores the
simulated outcome (hypertension) over the course of 50 years if the individuals
at age 20 experience the current patterns of BMI, blood pressure, and the rela-
tionship between the two. The model further investigates how slight reduction
in mean and standard deviation of BMI distribution in early years (age 20 in
this study) can impact hypertension rates. Further characteristics of the model
are described below.

Baseline Population

The study began with a baseline population of 100,000 individuals, who were
randomly assigned to one of four categories: urban male, urban female, rural
male, and rural female. The probability of an individual being in a rural area
was calculated to be 0.692, while the probability of being in an urban area was
0.308. Within the rural area, the probability of being male was 0.517, and in
the urban area, it was 0.515. These probabilities were obtained from the 2011
census data, ensuring the accurate representation of the population distribution
in the simulation.

Figure 1: Distribution of probability of death by age

4

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.24.24301738doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.24.24301738
http://creativecommons.org/licenses/by-nd/4.0/


Mortality Pattern

We obtained the probabilities of death from the abridged life table of India
2016-20, which was published by the Sample Registration System (SRS) of the
Office of Registrar General & Census Commissioner. The SRS releases annual
abridged life tables that provide information on life expectancy for different age
groups, categorized by sex and residence (urban or rural). In our study, we
required the probability of death for each year from age 20 to 69. However,
the available data only provided probabilities for five-year age groups, such as
0-5, 5-10, and so on. To address this, we used an interpolation method in
Excel. In excel, we combined OFFSET, MATCH, and FORECAST functions
to perform the interpolation. The method extracts data points from the 5-year
age group values that straddle the target year and employs interpolation to
estimate the probability of death for that specific year. The method we used
was different from the simple linear interpolation method which can be employed
using the Forecast function. Instead, our method assigns greater weight to the
years closest to the target year when calculating the interpolated probability of
death. This interpolation approach enhances the accuracy of our estimates by
placing more significance on adjacent years in the calculation process. Year-wise
probabilities of death in the four groups are presented in Figure 1.

BMI and Blood Pressure data

In order to establish parameters for the baseline BMI data and estimate how
BMI changes with age, we relied on data from the fifth round of the National
Family Health Survey (NFHS-5) and the Longitudinal Ageing Study in India
(LASI, 2017-18). We chose to use these two datasets because they not only
provide information on BMI but also include data on systolic and diastolic blood
pressure at the individual level. This allows us to establish the relationship
between BMI and blood pressure that will be used in the microsimulation.

However, due to the specific age range requirements (20 to 70 years), it was
necessary to employ two datasets rather than one. The NFHS dataset provides
data for women aged 15 to 49 and men aged 15 to 54, while the LASI dataset
covers the required age range from 45 to 80+ years. Although the LASI dataset
does contain some data for individuals below the age of 45, the sample size for
those ages was not sufficient. Therefore, the utilization of both datasets was
imperative to ensure comprehensive coverage of the desired age range.

We gathered the necessary data from both sources and appended them into
one dataset. Specifically, we obtained data for individuals under the age of
45 from the NFHS dataset, data for individuals over 50 years old from the
LASI dataset, and data for individuals aged 45 to 49 from both datasets. It’s
important to note that since the two datasets were collected using different
sampling procedures and at different time points, there may be variations in the
estimates between the samples. To assess this, we compared the average BMI
levels specifically for the age group of 45 to 49 (as both datasets provide data
for this age range). We observed only a slight difference in the BMI estimates.
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Figure 2: Local Polynomial Smooth of age and BMI

Figure 3: Kernel Density Plot of BMI in the observed data
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Table 1: BMI Input parameter for baseline distribution

Mean BMI SD

Urban Male 22.30 4.23
Urban Female 21.17 5.12
Rural Male 21.31 4.43
Rural Female 21.05 4.35

BMI Input Parameters

To define the baseline BMI and to estimate how BMI changes overtime we had to
smoothen the data. We calculated mean BMI by age in all the four sex-residence
groups. Then we plotted a local polynomial smooth between BMI and age and
stored the smoothened BMI levels along with 95% confidence interval values.
The plots of local polynomial smooth are shown in Figure 2.

Figure 3 illustrates the kernel density plot of BMI in the observed data. It is
evident from the plot that the distribution of BMI is skewed to the right and not
symmetrical. It appears to follow more of a log-normal distribution rather than
normal distribution. Therefore, we distributed the BMI values in the baseline
age (age 20) of the simulation population using a lognormal distribution. The
mean value for BMI was derived from the smoothed mean value at age 20, while
the standard deviation was obtained from the observed data. The mean BMI
value, along with the standard deviation for the baseline BMI simulation, is
provided below in Table 1.

Defining the annual evolution of BMI in the microsimulation was a crucial
and complex task. We opted for a lagged value approach, which means that
an individual’s BMI at a particular age would be influenced by their BMI from
the previous year. This approach introduced a memory element to our model,
distinguishing it from a simple Markov model where values are independent
of lagged values, and lack memory. By considering the influence of past BMI
values on present ones, our model captures the dynamic nature of BMI changes
over time. This approach ensures that our findings align closely with real-world
observations and provides a more accurate representation of how BMI evolves
in individuals.

To better understand how we defined the BMI evolution in our model, let’s
consider an example. Suppose we have an urban-male individual with a BMI
value of 24.2 at age 20, which was randomly assigned using log-normal distri-
bution. To determine how much the BMI will increase or decrease in the next
year, we refer to the local polynomial smooth for urban males. At age 20, the
smoothed BMI value for urban-males is 22.30. For the next year (age 21), the
smoothed BMI value is 22.53, with a 95% confidence interval ranging from 22.18
to 22.87. By calculating the differences between the BMI value at age 20 and
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the lower and upper bounds of the 95% confidence interval at age 21, we obtain:

21.18− 22.32 = −0.12

22.87− 22.30 = 0.57

Therefore, for our individual with a BMI of 24.2 at age 20, the BMI at age 21
will fall within the range of (24.2 - 0.12 = 24.08) to (24.2 + 0.57 = 24.77). In
our model, we introduce more realism and natural variation by using a uniform
distribution to randomly assign a BMI value between the two values. In our
example, the uniform distribution will assign any value randomly between 24.08
to 24.77 as a BMI value at age 21. In this case, the individual’s randomly
assigned BMI at age 21 is 24.63.

To determine the BMI at age 22, we repeat the process by referring to
the smoothed data. At age 21, the smoothed BMI value is 22.53, and the
95% confidence interval for age 22 ranges from 22.36 to 23.01. The differences
between these values are:

22.36− 22.53 = −0.17

23.01− 22.53 = 0.48

Thus, for our individual, the BMI value at age 22 will be within the range of
(24.63 - 0.17 = 24.46) to (24.63 + 0.48 = 25.11). Once again, we use a uniform
distribution to assign a randomly generated BMI value between 24.46 and 25.11
for age 22. This process is repeated for all individuals till age 70. The difference
values generate using the local polynomial used which are used in defining the
annual evolution of the BMI are presented in appendix Table A1.

Blood Pressure parameters

In our model, we determined the systolic and diastolic blood pressure based
on the individual’s BMI and age. For each sex-residence group, we estimated
the relationship between blood pressure (both systolic and diastolic) and BMI
and age using linear regression. To account for the non-linear nature of the
relationship between BMI and blood pressure, we included the squared term
of BMI in the regression equation. The regression equation had the following
form:

BP = β0 + β1 · BMI + β2 · BMI2 + β3 · age (1)

The equations of association for blood pressure and BMI can be accessed from
appendix Table A2.

In our simulation model, an individual’s blood pressure was randomly as-
signed within the range of the lower and upper estimates of the equation using a
uniform distribution. To illustrate this, let’s consider an example of a 35-year-
old Rural-Female with a BMI of 23.6. According to the equation, the point
estimate of her systolic blood pressure would be:

SystolicBP = 75.95 + 1.80 ∗ 23.6− 0.025 ∗ 23.62 + 0.45 ∗ 35 = 120.256 (2)
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Table 2: Distribution of individuals at baseline age

n %

Urban-Male 16,927 16.93

Urban-Female 17,337 17.34

Rural-Male 32,863 32.86

Rural-Female 32,873 32.87

Total Population 100,000 100.00

However, to add more dynamism and realism to our model, we decided to
randomly assign the blood pressure value within the 95% confidence interval of
the equation. The lower bound calculation yields:

SystolicBP = 75.23 + 1.75 ∗ 23.6− 0.026 ∗ 23.62 + 0.44 ∗ 35 = 117.45 (3)

And the upper bound calculation yields:

SystolicBP = 76.68 + 1.87 ∗ 23.6− 0.024 ∗ 23.62 + 0.46 ∗ 35 = 123.55 (4)

Therefore, the individual’s systolic blood pressure will be a randomly generated
number between 117.45 and 123.55, assigned using a uniform distribution. By
adopting this approach, our model achieves greater realism and dynamism, re-
flecting the inherent natural individual to individual variability. Let me explain
how this approach is better. Suppose we adopted a deterministic approach,
where all rural females aged 35 with a BMI of 23.6 would have a systolic blood
pressure of 120.256 based on the point estimate of the equation. However, such
an approach would oversimplify the complexity of real-life scenarios and over-
look the variations that naturally exist among individuals. In contrast, our
chosen approach introduces natural variability into the simulation model while
still adhering to the equation of association. For instance, if there are multi-
ple rural women aged 35 with a BMI of 23.6, they would each have a different
systolic blood pressure within the 95% range of the equation. By incorporating
this natural variability into our model, we create a more realistic simulation
that better reflects the diversity and uniqueness of individuals.

3 Results

This section presents the outcomes of the initial baseline microsimulation model,
which is built upon the original parameters derived from the observed data.
While the microsimulation model simulates a cohort of individuals from age 20
to 70, the results are interpreted under the assumption that the cohort expe-
riences of individuals represent a cross-sectional snapshot of a population at a
given point in time. At age 20, the distribution of the individuals in the four
sex-residence is presented in Table 2.
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Table 3: Distribution of Individuals alive and dead at age 70

Alive
(%)

Dead
(%)

Urban-Male 1439 (8.50) 15488 (91.50)

Urban-Female 2560 (14.77) 14777 (85.23)

Rural-Male 1297 (3.95) 31566 (96.05)

Rural-Female 3115 (9.48) 29758 (90.52)

Total Population 8,411 (8.41) 91589 (91.59)

Figure 4: Mortality pattern in the simulated population by sex-residence group

The distribution of the alive/death status of individuals at age 70 is shown
in Table 3.

From the table, we can see that out of the total 100,000 individuals who
were alive at age 20, approximately 91.6% died by the time they reached age
70. Among the different sex-residence groups, 8.5% of urban males, 14.8% of
urban females, 3.9% of rural males, and 9.5% of rural females were able to reach
age 70.

Figure 4 shows the mortality pattern in the four sex-residence group in the
simulation model. The graph plots proportion alive on y-axis and age on x-axis.

Figure 5 illustrates the density plot of the simulated BMI for the four distinct
groups. It can be observed from the plot that the BMI distribution for urban
individuals exhibits a broader spread towards the higher values on the right side
of the plot, in comparison to the distribution for rural individuals. Additionally,
the peak of the BMI distribution for urban individuals is situated at higher
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Figure 5: Distribution of BMI in the simulated population by sex-residence
groups

values, closely resembling the observed BMI distribution in the NFHS and LASI
data.

Figure 6 illustrates the progression of obesity and hypertension prevalence
with age in our simulation model. Upon observing the figure, it becomes evident
that the prevalence of both hypertension and obesity rises as individuals age.
However, there are distinct patterns worth noting. The prevalence of obesity
displays a modest decline after the age of 60. This can be attributed to factors
such as mortality and the natural decrease in BMI that occurs with age. In
contrast, the prevalence of hypertension does not exhibit any decline throughout
the age range. As a chronic condition, hypertension persists and continues to
affect individuals, resulting in a sustained increase in prevalence. Notably, after
the age of 55, the prevalence of hypertension experiences a significant rise.

Table 4: presents the prevalence of obesity and hypertension in the simula-
tion model, categorized by sex-residence groups and age. As expected, the high-
est prevalence of obesity was observed among urban females, reaching 17.41%,
while the lowest prevalence was found among rural males, at 7.72%. The overall
prevalence of obesity in the simulated population was determined to be 8.27%.
At age 70 the prevalence of obesity was found to be 11.35%. This suggests that
if the current population aged 20 years continues to follow the current BMI
patterns, the projected prevalence of obesity among them at age 70 would likely
be 11.35%.

In contrast to obesity, the prevalence of hypertension displayed a different
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Figure 6: Progression of obesity and hypertension with age in the baseline
simulation

pattern. Among the sex-residence groups, urban males exhibited the highest
prevalence of hypertension, reaching 31.11%, while rural females had the lowest
prevalence at 10.19%. It is noteworthy that the prevalence of hypertension was
relatively low in the younger age groups (20-29 and 30-39), but experienced a
sharp increase in the later age groups. For instance, among urban males aged
50-59, the prevalence of hypertension was recorded at 46.55%. Furthermore, at
age 70, the prevalence of hypertension in the simulated population was found
to be 43.81%. This indicates that if a cohort of individuals aged 20 years
were to follow the current pattern and relationship between BMI, age, and
hypertension, the projected prevalence of hypertension among them at age 70
would be approximately 43.8%.

Scenario Testing

In our scenario testing, we investigated the effects of modifying the baseline
BMI distribution in two distinct scenarios.

Scenario 1: In the first scenario, we lowered the mean BMI for the baseline
year (age 20) by one unit while maintaining the same standard deviation as in
the first simulation across all four groups. Parameters for the Scenario-1 are
presented in Table 5.

The objective of this exercise was to assess the impact on hypertension preva-
lence when the average BMI of individuals at age 20 decreases by one unit.
Figure-7 illustrates the change in the distribution of BMI at age 20 under the
two situations (baseline and scenario 1 simulation).

Scenario 2: In the second scenario, we decreased the standard deviation
for baseline BMI (age 20) by one unit in all four groups while keeping the mean

12

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.24.24301738doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.24.24301738
http://creativecommons.org/licenses/by-nd/4.0/


Table 4: Prevalence of Obesity and Hypertension in the simulated population
by age group

Urban
Male

Urban
Female

Rural
Male

Rural
Female

Total
Population

Obesity
Age Group

20-29 7.46 9.01 5.86 5.21 6.40
30-39 11.87 15.85 7.74 7.68 9.90
40-49 15.15 19.31 8.81 10.11 12.17
50-59 17.60 20.90 9.77 9.67 13.73
60-70 18.78 20.10 8.31 8.87 13.87

at age 70 18.67 16.41 6.77 7.25 11.35
All 13.19 17.41 7.72 8.11 10.27

Hypertension
Age Group

20-29 13.40 7.11 4.13 2.32 5.32
30-39 23.70 9.19 8.55 4.41 9.61
40-49 34.17 15.11 12.85 8.19 14.27
50-59 46.55 20.19 16.71 12.11 21.98
60-70 51.93 39.04 30.18 19.21 37.85

at age 70 57.73 49.71 33.55 28.11 43.81
All 31.11 22.13 15.71 10.19 19.17

BMI the same as in the first simulation (baseline). This scenario is compara-
tively more significant than the first because here we are reducing individuals at
extreme BMI values without altering the mean. In the first scenario, we shifted
the mean to the left by one unit, causing some individuals to transition from
obese to non-obese status. However, it also led to some individuals becoming
underweight due to the entire distribution shifting leftward. On the other hand,
in the second scenario, by reducing the standard deviation, we are decreasing
individuals from both extreme values, obese and underweight. Parameters for
Scenario-2 are presented in Table 6.

The two scenarios suggest two distinct policy approaches. Scenario 1, which
focuses on reducing the average BMI at the baseline age (age 20), suggests an
intervention that is applicable to the entire population, such as implementing
food package warnings and increasing the prices of sugary products. On the
other hand, Scenario 2, which aims to reduce the standard deviation of BMI
distribution, points towards a targeted approach where only individuals with
higher BMI levels are selected for intervention. For instance, implementing a
physical exercise and diet intervention specifically for obese adolescents.

Figure 8 shows the change in BMI distribution at baseline age due to one-
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Table 5: BMI parameters for baseline year (age 20) in First simulation and
Scenario-1 simulation

First Simulation
(Baseline)

Scenario 1 SD
(same in both)

Urban-Male 22.30 21.30 4.23

Urban-Female 21.17 20.17 5.12

Rural-Male 21.31 20.31 4.43

Rural-Female 21.05 20.05 4.35

Figure 7: BMI distribution at age 20 under baseline and Scenario 1 simulation

unit decrease in the standard deviation of BMI.
Table-7 provides an overview of BMI prevalence within the simulated popula-

tion across three scenarios: baseline (first simulation), Scenario 1, and Scenario
2. As previously mentioned, in the baseline simulation, the obesity prevalence
was 10.27%. However, in Scenario 1, this prevalence decreased to 7.79%. Fur-
thermore, in Scenario 2, the obesity prevalence decreased even further to 6.88%.

Figure-9 illustrates the density plot of systolic and diastolic blood pressure
in the simulated population under the three scenarios. The graph shows that
under Scenario 1, the distribution of both systolic and diastolic blood pressure
shifted slightly to the left compared to baseline simulation. Under Scenario
2, not only did the distribution shift to the left, but it also became narrower,
indicating a reduced spread.

Table 8 displays the hypertension prevalence within the simulated population
across three scenarios: baseline, Scenario 1, and Scenario 2. In Scenario 1,
the hypertension prevalence decreased to 16.15% from 19.17% in the baseline
simulation. This suggests that a one-unit decrease in mean BMI at age 20
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Table 6: Standard deviation of BMI distribution for baseline year (age 20) in
First simulation and Scenario-2 simulation

First
Simulation

Scenerio1 Mean (same In both)

Urban-Male 4.23 3.23 22.30

Urban-Female 5.12 4.12 21.17

Rural-Male 4.43 3.43 21.31

Rural-Female 4.35 3.35 21.05

Figure 8: BMI distribution at age 20 under baseline and Scenario 2 simulations

has the potential to lead to a 3% decline in hypertension prevalence within the
population, assuming the relationship equation between age, BMI, and blood
pressure remains the same. In Scenario 2, the hypertension prevalence was
found to be 15.33%, which is 3.8% lower than the baseline simulation model.
This implies that if the standard deviation of BMI at age 20 were one unit lower,
the hypertension prevalence would have decreased by 3.8% in the population,
again assuming the relationship equation between age, BMI, and blood pressure
remains constant.

Notably, the largest decrease in the prevalence of hypertension was observed
among urban males, with a decline of 3.9% in scenario 1 and a decline of 4.9%
in scenario 2. Conversely, the lowest decline in prevalence was observed among
rural females, with a decrease of 1.9% in scenario 1 and 2.5% in scenario 2.

Table 9 presents the changes in hypertension prevalence among individuals
aged 50 or older across the three scenarios: baseline, scenario 1, and scenario
2. This table holds particular significance due to the sharp increase in hyper-
tension prevalence observed after the age of 50, in conjunction with the aging
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Table 7: Prevalence of obesity under baseline, scenario 1 and scenario 2 simu-
lations

Baseline Scenerio1 Scenerio2

Urban-Male 13.19 11.32 10.61

Urban-Female 17.41 14.23 13.11

Rural-Male 7.72 5.83 4.41

Rural-Female 8.11 6.31 5.76

Total Population 10.27 7.79 6.88

Figure 9: Distribution of systolic and diastolic blood pressure under baseline,
scenario 1, and scenario 2 simulations

population in India. In the baseline simulation, the prevalence of hypertension
for individuals aged 50 or older was recorded at 28.7%. However, in scenario
1, this prevalence decreased to 25.7%, indicating a reduction in hypertension
incidence. Moreover, in scenario 2, the prevalence of hypertension further de-
creased to 24.6%. Notably, at age 70, the prevalence of hypertension was found
to be 38.8% in scenario 1, which is 5% lower than the prevalence observed in the
baseline simulation. This suggests that if there are two cohorts of individuals
aged 20 years, with the second cohort having a mean BMI one unit lower than
the first cohort and the same standard deviation, the prevalence of hypertension
at age 70 is expected to be 5% lower in the second cohort compared to the first
cohort.

Additionally, in Scenario 2, the prevalence of hypertension at age 70 was
found to be 36.9%, which is 6.9% lower than the hypertension prevalence ob-
served at age 70 in the baseline model. This implies that if there are two
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Table 8: Prevalence of hypertension under baseline, scenario 1 and scenario 2
simulations

Baseline Scenerio1 Scenerio2

Urban-Male 31.11 27.21 26.21

Urban-Female 22.13 18.66 17.73

Rural-Male 15.71 12.57 11.89

Rural-Female 10.19 8.28 7.74

Total Population 19.17 16.15 15.33

Table 9: Prevalence of hypertension among individuals aged 50 or above under
Scenario 1 and Scenario 2

Baseline Scenerio1 Scenerio2

Age ≥ 50 28.71 25.69 24.61

Age 70 43.81 38.77 36.31

cohorts of individuals aged 20 years, with the second cohort having one unit
less standard deviation in BMI distribution and the same mean, the prevalence
of hypertension at age 70 would be approximately 7% lower in the second cohort
compared to the first cohort.

4 Discussion

This study employs dynamic microsimulation modelling to investigate the po-
tential impact of reducing obesity and modifying the distribution of BMI on
hypertension prevalence. The findings indicate that, following the current BMI
distribution, mortality rates, and the relationship between age, BMI, and blood
pressure, a cohort of 100,000 individuals aged 20 will exhibit an obesity preva-
lence of 11.4% and hypertension prevalence of 43.8% at age 70. Viewing the
cohort experiences from a cross-sectional perspective indicates a BMI preva-
lence of 10.3% and hypertension prevalence of 19.2% in the simulated popula-
tion. The study highlights that a one-unit decrease in the mean value of BMI
at baseline (age 20) would lead to an approximately 3% reduction in hyperten-
sion prevalence in the simulated population. Conversely, a one-unit reduction
in the standard deviation of BMI at baseline would result in a 3.8% decrease
in hypertension prevalence in the simulated population. However, it is crucial
to interpret these findings with consideration of the modelling assumptions and
limitations. While acknowledging the crude nature of the model used in this
study, it offers insights into the significance of targeting obesity for hypertension
reduction.

When comparing the two scenarios - a one-unit decrease in mean BMI, and
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a one-unit decrease in the standard deviation of BMI, the higher reduction in
prevalence of hypertension was observed under scenario-2, involving the reduc-
tion in the spread of BMI distribution at baseline. These findings indirectly
point towards the necessity of addressing the spread of BMI distribution in
the population. The current mean BMI values are not inherently problematic;
rather, the concern lies with the extremes of the BMI distribution. This sug-
gests the importance of targeting individuals with both high and low BMI values
at young ages by providing accurate information about nutrition and healthy
eating habits. By doing so, not only will the spread of the BMI distribution
decrease, but the mean of the distribution will also be reduced. As emphasized
in prior research, it is worth noting that not only has the average BMI been
on the rise in recent decades, but the variance of BMI has also experienced a
significant increase [14]. This observation underscores the importance of con-
sidering both the mean and variance of BMI when identifying the most effective
intervention strategies [14].

The findings of this study indirectly underscore the importance of addressing
childhood obesity. The global prevalence of childhood obesity has markedly risen
over the past three decades, particularly in developed nations [15]. While current
levels of childhood obesity in India remain relatively low, proactive measures are
essential to prevent a similar upward trajectory. Research suggests that children
classified as overweight or obese are prone to carrying these conditions into
adulthood, increasing their susceptibility to non-communicable diseases such as
diabetes and cardiovascular ailments at a younger age [16]. The profound impact
of childhood obesity extends to physical health, social and emotional well-being,
and self-esteem, with lasting effects persisting into later life [16]. Therefore,
it is important for the policymakers and the stakeholders to understand the
gravity of this issue and formulate viable strategies to address and mitigate its
consequences.

The findings of this study must be interpreted with due consideration for
the limitations, as well as the validity and reliability of the modelling employed.
It is crucial to note that the microsimulation model utilized in this study does
not simulate the entire population; rather, it provides a microsimulation of
100,000 individuals aged 20 years, projecting their experiences based on current
patterns of mortality and BMI over the next 50 years. Essentially, the model
predicts the outcome at age 70 if this specific cohort follows the given parameters
of BMI, blood pressure, and mortality. However, it is important to highlight
that the interpretation of the results are made at a population level, assuming
that the experiences of individuals at each age are indicative of cross-sectional
outcomes. Another limitation lies in the adjustment of the association equation
between BMI and hypertension, which was solely done for age within all four sex-
residence groups. The model’s scope for refinement could have been enhanced by
incorporating numerous other factors into the equation. However, the model’s
inherent structure restricts the consideration of additional factors.

Several factors can influence the pattern and distribution of BMI across dif-
ferent age groups. These may encompass variables such as sex, residence (urban
or rural), socioeconomic status, education level, region, and genetic factors, po-
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tentially contributing to heterogeneity in BMI distribution. However, due to
data constraints, our model could only incorporate sex and residence. While
the input data provided separate probabilities of death for all four sex-residence
groups based on life tables from SRS, we were unable to adjust these probabili-
ties of death based on BMI level and hypertension status. For instance, consider
two rural females aged 50 years: one with hypertension and a BMI of 27.0, and
the other without hypertension with a BMI of 23.0. Ideally, the probability
of death should differ significantly between the two individuals, with the first
woman having a higher probability of death compared to the second one. How-
ever, in our model, both individuals would have the same probability of death
because we lacked data on the probability of death categorized by hypertension
status and BMI level. These limitations present opportunities for improvement
in future studies addressing this topic. Future studies can incorporate additional
life events into the simulation framework. These events could encompass key
life milestones such as marriage, childbirth, and employment, providing a more
comprehensive representation of individuals’ life trajectories. Additionally, in-
cluding risk of other morbidities with increase in age would contribute to a more
nuanced understanding of health dynamics within the simulated population.

While it is crucial to acknowledge the limitations of this study, it is equally
important to recognize its significant contribution to the existing body of litera-
ture. It contributes to the relatively limited body of literature on the application
of microsimulation modelling in health research within the context of India. In
developed countries, the reliance on microsimulation modelling to shape fis-
cal and economic policies is well-established. European Union countries, for
instance, utilize EUROMOD, a tax-benefit microsimulation model, to analyse
the effects of taxes and benefits on household incomes. Similarly, the United
States employs models like DYNASIM3, MINT, and CBOLT, Canada uses DY-
NACAN, Norway employs MOSART, Sweden utilizes SESIM, Australia relies
on APPSIM, and the UK utilizes SAGE and PENSIM microsimulation models
to analyse diverse outcomes within their respective populations. These models
play an active role in policymaking by providing insights into questions that
are challenging to address using alternative modelling techniques. For instance,
these models have been instrumental in exploring various scenarios related to
future old age pension schemes and their potential impact on both micro and
macroeconomic aspects [17].

While numerous countries are using microsimulation models to shape their
policies and interventions, there is almost no attention is being paid on this type
of models in India. There is a need for increased research focus and funding
dedicated to microsimulation modelling in India. Although the development
of a robust microsimulation model at the national or subnational level is a
prolonged and resource-intensive process demanding substantial funding and a
skilled research workforce, the outcomes it yields are undeniably valuable and
worth investment.
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Malta, Ísis Eloah Machado, Antonio Luiz Pinho Ribeiro, Bruce Bartholow
Duncan, Maria Inês Schmidt, Diego Augusto Santos Silva, Scott Glenn,
Ashkan Afshin, et al. The burden of non-communicable diseases at-
tributable to high bmi in brazil, 1990–2017: Findings from the global bur-
den of disease study. Population Health Metrics, 18(1):1–13, 2020.

[3] Ning Cheung and Tien Y Wong. Obesity and eye diseases. Survey of
ophthalmology, 52(2):180–195, 2007.

[4] Solja T Nyberg, G David Batty, Jaana Pentti, Marianna Virtanen, Lars Al-
fredsson, Eleonor I Fransson, Marcel Goldberg, Katriina Heikkilä, Markus
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Appendix 

 

Table A1: 95% bound of change in BMI from previous age 

  Urban-Male   Urban-Female   Rural-Male   Rural-Female 

  LB UB   LB UB   LB UB   LB UB 

Age            

21 0.082 0.571 
 

0.288 0.341 
 

0.104 0.229 
 

0.281 0.330 

22 0.036 0.487 
 

0.333 0.375 
 

0.140 0.264 
 

0.270 0.323 

23 0.045 0.426 
 

0.347 0.398 
 

0.191 0.317 
 

0.265 0.325 

24 0.088 0.389 
 

0.349 0.398 
 

0.171 0.294 
 

0.250 0.303 

25 0.121 0.356 
 

0.347 0.393 
 

0.162 0.268 
 

0.249 0.291 

26 0.161 0.353 
 

0.340 0.378 
 

0.157 0.248 
 

0.240 0.273 

27 0.183 0.352 
 

0.326 0.358 
 

0.158 0.241 
 

0.233 0.262 

28 0.195 0.354 
 

0.311 0.337 
 

0.142 0.223 
 

0.217 0.244 

29 0.198 0.345 
 

0.288 0.316 
 

0.116 0.198 
 

0.201 0.230 

30 0.161 0.296 
 

0.265 0.293 
 

0.093 0.180 
 

0.183 0.214 

31 0.152 0.274 
 

0.242 0.278 
 

0.073 0.164 
 

0.166 0.198 

32 0.152 0.266 
 

0.218 0.260 
 

0.065 0.159 
 

0.150 0.188 

33 0.107 0.221 
 

0.192 0.239 
 

0.048 0.144 
 

0.131 0.173 

34 0.073 0.182 
 

0.176 0.231 
 

0.025 0.124 
 

0.113 0.159 

35 0.042 0.137 
 

0.158 0.226 
 

-0.004 0.097 
 

0.094 0.144 

36 0.014 0.115 
 

0.135 0.221 
 

-0.015 0.086 
 

0.085 0.137 

37 0.006 0.112 
 

0.114 0.215 
 

-0.036 0.064 
 

0.079 0.140 

38 0.000 0.111 
 

0.093 0.208 
 

-0.057 0.041 
 

0.066 0.134 

39 0.008 0.125 
 

0.071 0.199 
 

-0.058 0.037 
 

0.053 0.125 

40 0.020 0.138 
 

0.046 0.183 
 

-0.055 0.035 
 

0.043 0.123 

41 0.040 0.157 
 

0.046 0.191 
 

-0.059 0.028 
 

0.035 0.130 

42 0.052 0.163 
 

0.041 0.200 
 

-0.065 0.020 
 

0.036 0.136 

43 0.052 0.170 
 

0.031 0.204 
 

-0.068 0.009 
 

0.025 0.131 

44 0.057 0.187 
 

0.031 0.221 
 

-0.068 0.029 
 

0.008 0.117 

45 0.043 0.176 
 

0.021 0.229 
 

-0.052 0.054 
 

-0.024 0.099 

46 0.020 0.147 
 

0.019 0.238 
 

-0.028 0.078 
 

-0.052 0.081 

47 0.029 0.149 
 

0.014 0.241 
 

-0.016 0.100 
 

-0.081 0.063 

48 0.032 0.155 
 

-0.012 0.231 
 

-0.031 0.095 
 

-0.109 0.033 

49 0.037 0.177 
 

-0.019 0.243 
 

-0.049 0.088 
 

-0.123 0.021 

50 0.042 0.194 
 

-0.049 0.229 
 

-0.059 0.090 
 

-0.134 0.017 

51 0.041 0.191 
 

-0.073 0.223 
 

-0.061 0.097 
 

-0.131 0.025 

52 0.060 0.210 
 

-0.098 0.215 
 

-0.085 0.088 
 

-0.119 0.038 

53 0.025 0.236 
 

-0.130 0.200 
 

-0.104 0.078 
 

-0.114 0.043 

54 -0.014 0.227 
 

-0.130 0.207 
 

-0.123 0.065 
 

-0.106 0.043 

55 -0.062 0.203 
 

-0.172 0.172 
 

-0.150 0.043 
 

-0.083 0.061 

56 -0.100 0.181 
 

-0.203 0.146 
 

-0.168 0.042 
 

-0.068 0.070 

57 -0.086 0.231 
 

-0.200 0.156 
 

-0.184 0.051 
 

-0.070 0.068 

58 -0.086 0.252 
 

-0.201 0.163 
 

-0.186 0.072 
 

-0.082 0.056 

59 -0.109 0.249 
 

-0.190 0.185 
 

-0.171 0.108 
 

-0.095 0.038 

60 -0.092 0.283 
 

-0.197 0.199 
 

-0.177 0.120 
 

-0.123 0.005 

61 -0.117 0.277 
 

-0.201 0.226 
 

-0.156 0.158 
 

-0.127 0.000 

62 -0.140 0.277 
 

-0.225 0.244 
 

-0.163 0.174 
 

-0.137 -0.001 
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63 -0.173 0.290 
 

-0.255 0.268 
 

-0.167 0.203 
 

-0.155 -0.004 

64 -0.239 0.296 
 

-0.301 0.283 
 

-0.164 0.257 
 

-0.160 0.015 

65 -0.333 0.308 
 

-0.352 0.282 
 

-0.195 0.301 
 

-0.172 0.031 

66 -0.452 0.308 
 

-0.415 0.252 
 

-0.262 0.317 
 

-0.180 0.051 

67 -0.452 0.390 
 

-0.496 0.188 
 

-0.358 0.275 
 

-0.188 0.056 

68 -0.424 0.411 
 

-0.669 0.103 
 

-0.449 0.210 
 

-0.163 0.090 

69 -0.921 0.552 
 

-1.224 0.187 
 

-0.971 0.211 
 

-0.282 0.208 

70 -0.921 0.552   -1.224 0.187   -0.971 0.211   -0.282 0.208 

LB: lower bound; UB: upper bound 

 

 

 

 

Table A2: Equations of association between BMI, Age, and Blood Pressure 

  Point Estimate Lower Bound Upper Bound 

Systolic Blood Pressure   

Urban-Male BP = 81.31 + 2.44(BMI) -0.036(BMI2) + 0.21(age) BP = 77.51 + 2.14(BMI) -0.042(BMI2) + 0.20(age) BP = 85.11 + 2.74(BMI) -0.03(BMI2) + 0.22(age) 

Urban-Female BP = 77.35 + 1.47(BMI) -0.02(BMI2) + 0.53(age) BP = 76.11 + 1.38(BMI) -0.022(BMI2) + 0.52(age) BP = 78.59 + 1.57(BMI) -0.019(BMI2) + 0.53(age) 

Rural-Male BP = 81.24 + 2.47(BMI) -0.034(BMI2) + 0.15(age) BP = 79.43 + 2.32(BMI) -0.036(BMI2) + 0.14(age) BP = 83.05 + 2.61(BMI) -0.03(BMI2) + 0.16(age) 

Rural-Female BP = 75.95 + 1.80(BMI) -0.025(BMI2) + 0.45(age) BP = 75.23 + 1.75(BMI) -0.026(BMI2) + 0.44(age) BP = 76.68 + 1.87(BMI) -0.024(BMI2) + 0.46(age) 

    

Diastolic Blood Pressure   

Urban-Male BP = 60.87 + 1.16(BMI) -0.014(BMI2) + 0.07(age) BP = 58.30 + 0.95(BMI) -0.02(BMI2) + 0.062(age) BP = 63.43 + 1.36(BMI) -0.01(BMI2) + 0.08(age) 

Urban-Female BP = 54.78 + 1.16(BMI) -0.014(BMI2) + 0.18(age) BP = 53.74 + 1.08(BMI) -0.016(BMI2) + 0.18(age) BP = 55.83 + 1.24(BMI) -0.013(BMI2) + 0.19(age) 

Rural-Male BP = 55.93 + 1.41(BMI) -0.018(BMI2) + 0.09(age) BP = 54.69 + 1.31(BMI) -0.02(BMI2) + 0.08(age) BP = 57.16 + 1.51(BMI) -0.016(BMI2) + 0.09(age) 

Rural-Female BP = 53.10 + 1.27(BMI) -0.016(BMI2) + 0.20(age) BP = 52.47 + 1.22(BMI) -0.017(BMI2) + 0.20(age) BP = 53.74 + 1.32(BMI) -0.018(BMI2) + 0.21(age) 
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