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Abstract 

Epidemiology studies evaluate associations between the metabolome and disease risk. Urine is 
a common biospecimen used for such studies due to its wide availability and non-invasive 
collection. Evaluating the robustness of urinary metabolomic profiles under varying 
preanalytical conditions is thus of interest. Here we evaluate the impact of sample handling 
conditions on urine metabolome profiles relative to the gold standard condition (no 
preservative, no refrigeration storage, single freeze thaw). Conditions tested included the use 
of borate or chlorhexidine preservatives, various storage and freeze/thaw cycles. We 
demonstrate that sample handling conditions impact metabolite levels, with borate showing 
the largest impact with 125 of 1,048 altered metabolites (adjusted P < 0.05). When simulating a 
case-control study with expected inconsistencies in sample handling, we predicted the 
occurrence of false positive altered metabolites to be low (< 11). Predicted false positives 
increased substantially (³63) when cases were simulated to undergo alternate handling. Finally, 
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we demonstrate that sample handling impacts on the urinary metabolome were markedly 
smaller than those in serum. While changes in urine metabolites incurred by sample handling 
are generally small, we recommend implementing consistent handling conditions and 
evaluating robustness of metabolite measurements for those showing significant associations 
with disease outcomes. 

 

Comprehensive metabolomic profiling provides relative abundances of metabolites in various 
specimen types. Metabolites comprise small molecules <1500 Daltons and include 
intermediates and products of metabolism involved in numerous biological processes (e.g., cell 
structure, signaling, transcriptional regulation, etc.).  Notably, metabolites also reflect various 
components of the exposome including food related components, medications, and other 
factors that affect human health. In the past decade, analytical technologies have enabled 
measurement of these metabolites in a high throughput manner, such that hundreds to 
thousands of samples can be analyzed on a timescale appropriate for studies with larger sample 
sizes. At the same time, the breadth of metabolites being captured has also increased, such as 
the ability to simultaneously measure a broader amount of lipid species (1). For these reasons, 
metabolomic profiling, either alone or in combination with other omics data, is being 
performed in epidemiological, clinical, and translational research.  

Over the last decade, there has been an increase in the use of epidemiologic studies using 
metabolomics to examine the role of metabolism in health and disease and to identify 
biomarkers (2,3). In 2014, the Consortium of Metabolomics Studies (COMETS) was established 
to build infrastructure and encourage collaboration among epidemiologists employing 
metabolomics in studies with an epidemiologic study design (4). COMETS now has over 70 
prospective cohorts and hundreds of investigators using metabolomics as a primary 
investigative tool in their studies. With the growing interest in using metabolomics in these 
studies, there have been efforts to understand how preanalytical factors affect findings.  

Preanalytical factors include the collection, shipment, storage (temperature and duration), and 
handling (e.g., aliquoting) of biological samples prior to analysis. Although research studies are 
designed to minimize the impact of preanalytical factors by standardizing methods, sample 
collection and handling still inevitably introduce variability into the study. In response to the 
need for examining the impact of preanalytical factors on metabolite stability in serum, which is 
a widely used biospecimen in epidemiologic studies, we previously examined how handling 
conditions (clotting and refrigeration time, number/temperature of thaws) affected observed 
circulating levels of metabolites (5). We determined that if handling of serum samples varied 
even modestly by case status, that results can be biased and lead to false-positive findings. 
Thus, for studies analyzing serum, sample handling should be matched by case status to 
minimize these effects. Furthermore, we observed that sample handling of serum affects levels 
of metabolites, thus, steps should be taken to diminish effects.  
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We note that sample handling conditions are specific to the type of biospecimen used in 
studies, whether it be plasma, serum, urine, cells, or tissues (6). Urine is a desirable medium for 
evaluating the metabolome as it is non-invasive, easy to collect, and provides a more global 
representation of metabolism. It is also worth noting that urine collection protocols tend to be 
more variable than those used for blood (7) and that issues in sample handling procedures 
account for the majority of preanalytical errors observed (8). With this in mind, we aimed to 
characterize sample handling effects on urine in a metabolomics analysis. We collected urine 
samples from 13 study participants, subjected the samples to various handling conditions 
commonly encountered in practice (borate, chlorhexidine, or no urine preservative, 
refrigeration time, and number/temperature of thaws) and examined how each condition 
affected observed circulating levels of over 1,000 metabolites. Similar to the serum study 
described above, we examined the impact of sample handling conditions on metabolite 
measurements using three key metrics, absolute percent, normalized difference, and 
metabolite abundance correlations. We further performed a simulated case-control study to 
estimate false positive rates of uncovering altered metabolites.  
 

Methods 

Study Population 
The study enrolled 13 participants (6 men, 7 women) from the area surrounding the Beltsville 
Human Nutrition Research Center, US Department of Agriculture (Beltsville, Maryland) in 2016. 
The individuals were recruited from a database of interested volunteers maintained by the 
Center. 

Parfcipants completed a health history quesfonnaire. In addifon, height and weight were 
measured to determine body mass index (BMI). The eligibility of the parfcipant was based on 
self-reported medical history from the health history quesfonnaire, age of 20 to 65 years at 
beginning of study, and BMI between 18.5-35.0 kg/m2, see Table 1. Exclusion criteria included 
the presence of cardiovascular disease, kidney disease, liver disease, gout, hyperthyroidism, 
untreated or unstable hypothyroidism, certain cancers, gastrointesfnal disease, pancreafc 
disease, other metabolic diseases, or malabsorpfon syndromes, the participant being unable or 
unwilling to give informed consent or communicate with study staff, and other medical, 
psychiatric, or behavioral factors that in the judgment of the Principal Invesfgator may 
interfere with study parfcipafon or the ability to follow the collecfon protocol. Diagnosis of 
disease was based on self-reported medical history.   
 
Eight of the 13 parfcipants enrolled also parfcipated in our previous study that characterized 
sample handling effects on serum in a metabolomics analysis (5).  The study protocol was 
reviewed and approved by the Medstar Health Research Institute’s institutional review board 
(Clinicaltrials.gov identification number NCT02697500). 
 
Sample collection and processing 
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Mid-stream spot urine collections were obtained for each participant in the mornings into a 
sterile urine collection cup with a vacutainer port. Participants were not asked to fast. Aliquots 
were divided into three separate tubes corresponding to the following preservative treatments: 
1) no preservative, 2) borate preservative (BD Vacutainer C&S Urine Tubes, borate 2.63 mg/mL, 
sodium formate 1.65 mg/mL), 3) chlorhexidine preservative (BD Vacutainer Urinalysis Plus, 
chlorhexidine 0.4%, sodium propionate 94%, ethyl paraben 5.6%). Tubes were centrifuged at 
600xg for 5 min. One mL of urine, with no preservative, from each participant was pooled and 
mixed to be used as a QC sample, which was run repeatedly with other experimentally treated 
samples during metabolomics profiling (see section Laboratory assays). Ten aliquots of each of 
the 3 preservative samples (30 samples total per participant) were transferred into 2mL 
cryotubes to be subjected to various sample handling conditions, namely refrigeration and free-
thaw conditions, as outlined in Figure 1. Conditions tested included 3 preservative conditions 
(no preservative, chlorhexidine, and borate), 2 refrigeration conditions (24-hour refrigeration, 
no refrigeration/snap freezing), and 7 freeze-thaw conditions (no freeze-thaw, thaw on ice once 
or 4 times, thaw in refrigerator once or four times, and thaw at room temperature once or 4 
times).  
 
One sample of each preservative treatment was placed in the refrigerator for 24 h before 
freezing in liquid nitrogen and stored at -80 °C. Remaining samples were flash frozen in liquid 
nitrogen and stored at -80 °C. They were then subject to various thawing conditions and freeze-
thaw cycles. Thawing was performed at either room temperature, in a refrigerator, or on wet 
ice. Freeze thaws consisted of either a single thaw or 4 consecutive freeze-thaw cycles. Samples 
undergoing freeze thaws were snap frozen in liquid nitrogen following their thaw. Samples 
undergoing freeze-thaw cycles had the thaw time standardized based on previous work (5). 
Thaws on ice were fixed at 50 min, room temperature thaws were fixed at 10 min, and 
refrigerator thaws were fixed at 16 h to simulate a 5 PM to 9 AM thaw often used in 
laboratories.  

Laboratory assays 

In total, 416 frozen samples were shipped to Metabolon, Inc. (Morrisville, NC) for extraction 
and metabolite profiling. These included 13 participants x 3 preservatives x 10 
refrigeration/freeze-thaw conditions + 26 pooled QC samples. Samples were run in batches 
such that each participant’s 30 samples were run sequentially on the same day, with a pooled 
QC sample run in positions 3 and 24 of each participant’s sample batch. Pooled QC samples 
were created from 1 mL aliquots with no preservative from each participant.  Urine osmolality 
was determined at pre-analysis thaw for each sample and reported values as mOsm/kg water. 
The Metabolon platform uses ultra-high-performance liquid chromatography coupled with 
mass spectrometry as previously published (9).  Metabolon performed the peak picking, 
alignment, identification, and quality control as previously described (9).   

The delivered analytical data matrix consisted of relative abundance levels of 1,208 
metabolites, of which 671 were named, as confirmed with a standard, and 32 were described 
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as high confidence identification without a chemical standard. We omitted 160 metabolites 
that had missing or below detection limit values in 80% or more of 390 study samples, leaving 
1,048 metabolites for analysis.  

All treatment comparisons were done pairwise within a participant’s set of samples. Missing 
value imputation was thus performed by participant to eliminate biases introduced from using 
other individuals’ data for imputation. The method for missing value imputation was dependent 
on metabolite data coverage over the individual’s 30 samples. For metabolites having sparse 
data, likely to be missing due to low detection limit (missing in more than 30% of the samples), 
values were imputed with the half-minimum value for that metabolite in all of the participant’s 
samples. For metabolites with more complete data coverage (missing in less than 30% of the 
samples), likely to be missing due to analytical or data preprocessing errors (e.g. co-eluting 
peaks and challenges in peak picking, etc.), metabolites were imputed using a singular value 
decomposition approach using the impute.svd() method from the R bcv package (v. 1.0.1.4) 
(10). The median correlation between duplicate gold-standard condition samples was 0.94, 
similar to prior studies (11, 12). The resulting data matrix was then centered and scaled for 
unsupervised clustering analysis (PCA) and natural log transformed for downstream statistical 
analysis. The preprocessing steps are shown in Supplementary Figure S1. 

Statistical Analyses 

Four previously described and distinct metrics were calculated to quantify the impact of sample 
handling conditions on metabolite abundances (5). The first metric, the absolute percent 
difference (APD), reflects the average difference in a metabolite’s log abundance for a 
particular sample handing condition while keeping all other conditions constant ( e.g. all 
condition combinations of refrigerator storage and thaw conditions are considered when a 
particular preservative is evaluated). Second, the normalized difference (ND) estimates the 
mean difference, in log metabolite level, normalized by between-individual variability. Third, 
metabolite abundance correlations (Pearson) were calculated for each metabolite to compare a 
predefined condition (e.g., preservative) against others (e.g., no preservative) while keeping all 
other conditions constant.  The fourth metric estimates false positive rates that result from a 
simulated case-control study where a given portion of the cases are simulated to have differing 
sample handling conditions.  Supplemental File 1 provides details on the calculations that result 
in those metrics.   

Comparison of Sample Handling Effects Across Different Biospecimen Types (Serum and Urine) 

APDs from this study in urine were compared to serum stability data from McClain et al. (5) in 
which the same handling conditions were applied for refrigeration storage and freeze-thaw 
conditions. Eight of our study participants also participated in the serum analysis. A Wilcoxon 
Rank Sum test was conducted between the APD values for the 628 metabolites from serum vs. 
the APD values for the 1048 metabolites from this urine study. This test was run for each of the 
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7 conditions in common between the two studies, including the 24h refrigeration storage and 
the six freeze-thaw conditions. The p-values were adjusted using a Bonferroni correction. 

Results 

Data Quality Assessments 

Unsupervised clustering of samples, based on 1,048 metabolites measured, confirmed that 
interindividual variability in metabolite levels dominates the observed variance, not sample 
handling effects (Supplementary Figure S2A). Moreover, participant samples were tightly 
clustered with no observed outliers, suggesting high quality data.   

Missing value assessments demonstrated that sample dilution as indicated by osmolality was a 
strong determinant of the number of metabolites detected in samples (Supplementary Figure 
S2B. Participants of the study were not fasted, and urine sample osmolality ranged from 132 to 
1265 mmol/kg (overall median 440 mmol/kg). The total number of detected metabolites 
decreased quickly for samples below 500 mmol/kg.  

Metabolites missing in >20% samples fell into specific class categories (Supplementary Table 
S1). Specifically, 20% or more metabolites falling under the classes of xenobiotics, cofactors and 
vitamins, peptides, and lipids were inconsistently represented across samples. Xenobiotics are 
the compound class with the highest percentage of inconsistently represented metabolites.   

Global Impact of Preanalytical Sample Handling Conditions (APD and ND) 

The median and inter-quantile ranges (IQRs) of the absolute percent difference (APD) and 
normalized difference (ND) for each metabolite provide a summary effect of a treatment across 
all metabolites. These metrics help discern the most labile metabolites under a given sample 
handling condition with respect to the gold standard condition (no preservative, no 
refrigeration storage, no freeze thaw). Median and IQR of APD and ND metrics for samples 
undergoing various sample handling conditions are shown in Table 2. Values are presented for 
the thaw conditions either with or without preservative treatment. Collectively, the effects of 
different handling conditions were rather small with median APDs £ 5.31 and NDs < 0.05. Also, 
the median APDs for thaw conditions were generally higher without preservatives. For 
example, the 4 freeze-thaws on ice median APD increased from 3.79 to 5.31 when computing 
APD on the subset of samples that lacked preservative treatment (adjusted P =1.15E-10, 
Cohen’s d effect size =0.36). Median and IQR values for ND show a similar trend as observed in 
APD. It should be noted that gold standard treatment technical replicates, also shown in Table 
2, have an APD of 3.57 and an ND of 0.039. Most treatments fall close to this APD and ND, 
suggesting that the treatments are close to or within technical variation when considering the 
median APD of a treatment. 
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Similarity of Metabolite Abundances Between Each Sample Handling Condition and the Gold 
Standard (Pearson Correlations) 

Pearson correlations were calculated to evaluate the similarity between metabolite abundances 
in a specific sample handling condition compared to the gold standard. Median and IQRs of 
correlations between each sample handling condition and the gold standard across all 
metabolites are shown in Table 3. For all preservative, refrigeration, and freeze-thaw 
conditions, the median correlations were ≥0.98, demonstrating a high global concordance in 
the rankings of metabolite abundances when 100% of samples are switched from one handling 
condition to another. 

Expected Number of False Positive Associations When Comparing Sample Handling Conditions 
to the Gold Standard (Case-Control Study)   

We performed a case-control study simulation to predict the expected number of false positive 
associations due to sample handling conditions rather than sample group differences. This 
analysis helps clarify our ability to extract meaningful metabolite alterations sought after in 
epidemiological studies given variations in sample handling conditions which are oftentimes 
unavoidable. We find that sample handling conditions do not have a strong impact on the 
expected number of false positive associations predicted for realistic scenarios of different 
sample handling conditions (1, 5, and 10%) (Table 4). In fact, 0 false positive associations were 
predicted when 1% of the cases had an alternate sample handling condition. When 25% of the 
cases had alternate use of preservatives, 26 metabolites are expected to be false positives with 
chlorhexidine use and 45 with borate use. Alterations in refrigeration and thaw conditions were 
predicted to have < 5 false positive associations. When 100% of cases had alternate sample 
handling, the number of expected false positive associations were substantially increased (³63). 
Again, inconsistencies in use of preservatives, particularly borate, showed the was predicted to 
have the most impact on false positives (136 for chlorhexidine and 168 for borate). 

Impact of Preanalytical Sample Handling Conditions at the Metabolite Level 

While the global impact of sample handling conditions on metabolite intensities in urine is 
generally low, we found some metabolites are susceptible to changes with handling. The 
heatmap in Figure 2 generally shows that the use of preservatives (e.g., borate and 
chlorhexidine) and four freeze-thaw cycles on ice or refrigerator show the largest differences. 
Globally, the refrigeration and freeze-thaw cycle conditions resulted in very low numbers of 
metabolites with significant changes in PD using the established statistical cutoff used above. 
Further, 4 freeze-thaws tend to increase the number of altered amino acids and lipids for ice 
and refrigeration pre-treatment. This increase is not observed when evaluating thawing at 
room temperature or on ice. Compared to the gold-standard samples, borate treatment caused 
decreased abundance in 5 and increased abundance for 12 of the 28 carbohydrates quantified 
(based on one-sample t-test, Benjamini-Hochberg (BH) adjusted P <0.05). Glucose levels were 
on average 90% lower with borate treatment. Dehydroascorbic acid is similarly decreased by 
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roughly 90% by borate treatment. Sucrose, lactose and glucuronate were also significantly 
decreased, consistently over all subjects. Other metabolites that increased with borate 
treatment included amino acids and derivatives such as glutamine (PD =0.12), glutamate (PD 
=0.7), cysteine s-sulfate (PD =0.6), 4-hydroxyphenylpyruvate (PD=0.56) and proline (PD =0.26). 
Chlorhexidine treatment altered PD for 74 metabolites (adjusted P <0.05). Nucleotides adenine 
(PD=-61%) and cytidine (PD=-28%) were decreased with chlorhexidine. Supplemental File 2 
contains statistical results for all treatments, flagging metabolites having significant increased 
or decreased abundance.  

Comparison of Pretreatment Effects Between Urine and Serum  

When comparing metabolite APD values between urine and those from a previous serum study 
with identical 24h refrigeration treatment and six freeze-thaw treatments (3), the APD values 
were higher for serum than for urine for all shared treatments between the studies, except a 
single thaw performed at room temperature (Wilcoxon Rank Sum, Bonferroni adjusted P < 
0.01) (Supplementary Table S2). We also note that globally, the number of predicted false 
positive metabolites in the simulated case-control study were higher in serum samples 
compared to urine (Supplementary Table S3).  In the case of 5% of case samples having altered 
handling, the average number of false positives across the 7 common conditions across the two 
studies was 24 for serum samples and 0 for urine samples. When the percentage of case 
samples having altered handling increases to 25%, the average false positive count for serum 
was 187 compared to urine at 3 false positives. 

Discussion 

Results from this study highlight two key findings: 1) urine is strikingly less susceptible to 
sample handling effects than serum; and 2) preservatives have the largest impact compared to 
refrigeration and freeze-thaw conditions. Our first key finding is strongly supported by the fact 
that we followed a study design and analysis scheme used previously for studying serum 
metabolite stability (5), allowing direct comparison of sample handling effects on metabolite 
levels in both urine and serum. For the 24h refrigeration and 6 freeze-thaw conditions that 
were common between the studies, the statistical comparison of serum APD values to urine 
APD values showed that 6 of the 7 conditions had higher APD values for urine samples. Beyond 
this, the simulated case-control study had few false positive findings for urine compared to 
serum. Notably, this finding has practical implications given that many epidemiological studies 
have collected or plan to collect urine biospecimens. Furthermore, large initatives like the All of 
Us Research Program collect data and biospecimens, including urine, to study many different 
diseases and conditions.	Importantly, while serum is collected more commonly than urine, 
urine does show important advantages. In addition to facile sample collection and, as we 
demonstrate here, decreased sample handling effects, metabolites measured in urine are 
impactful for biomarker detection and for improved detection of diet-related metabolites (13).    
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The second key finding that preservatives show largest differences in metabolite levels 
compared to other sample handling conditions is in line with previous observations that while 
preservatives do prevent bacterial growth, they do not avoid metabolite instability in and of 
themselves (14). Metabolites commonly evaluated for their effect on human health are 
impacted by these treatment conditions. For example, dehydroascorbic acid (oxidized form of 
vitamin C), glucose, glucuronate and glutamine are altered by borate. Similarly, nucleotides are 
impacted by chlorohexidine.   

Further, our results clearly show that consistency in sample handling is more important in 
reducing false positives than using ideal pretreatment conditions the majority (but not 100%) of 
the time. In fact, we found that ~4-15% of urinary metabolites had predicted false positive 
alterations when 25-100% cases had inconsistent handling conditions. Metabolites most prone 
to false positives are carbohydrates while those less prone are xenobiotics and amino acids.  
For more realistic scenarios (1,5, and 10% differeing sample handling conditions), we found that 
sample handling conditions did not have a strong impact on the expected number of false 
positive associations. We do recognize that in practice, consistency in sample handling when 
thousands of samples are being evaluated is extremely difficult to achieve. Nonetheless, this 
study highlights the importance of carefully understanding the preanalytical handling 
conditions to ensure that cases and controls have similar and consistent sample handling. 

It is also important to note that all samples for each participant were run as a batch of 
consecutive injections on the mass spectrometer to minimize the introduction of batch 
differences between samples within a participant’s sample set. All treatment effects were 
analyzed within an individual’s sample set, in a pairwise manner to eliminate between-
individual differences. This approach of reporting statistics within an individual’s measurements 
ensured that sample treatment was the main variable being evaluated.  

Other studies have evaluated pretreatment effects on the urine metabolome (8, 6, 15). Most 
studies, consistent with ours, report effects on the urinary metabolome due to refrigeration or 
freeze-thaw cycles (16, 14) or preservatives (17). However, others report no effects on the 
urine metabolites due to freeze thaws. One such study was conducted in 6 females and 
evaluated 63 metabolites (16) and it is thus possible that results are specific to females and to 
the scope of the metabolome being measured.  Another study evaluated the stability of 
adenosine in a case-control cohort of 40 diabetic patients and 40 healthy controls (18). While 
limited to a single metabolite, this study is a good example of the importance of evaluating the 
stability of potential biomarkers derived from epidemiological studies, since, as we observe as 
well, not all metabolites are affected similarly by pre-analytical conditions. Lastly, when 
evaluating effects of diet on the metabolome, one study reported that urine metabolites are 
more prone to variations than blood metabolites (19). While this observation contradicts our 
global finding that urine metabolites are more robust than blood metabolites in terms of 
preanalytical differences, we do report that xenobiotics show the highest percentage of 
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inconsistently represented metabolites. This observation could reflect participant differences in 
diet, medications, or other exposures.  

Despite our study approach and design, some limitations are worth noting. First, we recognize 
that urine samples can be collected through different procedures, from spot to 24-hour urine 
collection (20). Our study evaluated spot-collected samples, which is most common in 
epidemiology studies and a less resource-intensive collection method compared to 24-hour 
urine collections. Notably, our spot urine collections were performed at a similar time of day for 
each participant, reducing potential biases incurred due to circadian variation (21). Second, our 
sample size was relatively small and abundance levels between individuals could be affected by 
osmolality and could therefore impact our ability to observe preanalytical effects. Low 
osmolality samples tended to have higher APD than higher osmolality across all conditions 
(data not shown). While the lower salt (and other osmolyte) levels are not likely increasing the 
variance, the measurement error is likely to increase as concentrations go down, therefore 
causing an increase in variance. Third, this paper does not address analytical errors (sample 
preparations and run batches), although study design considerations and inclusion of 
appropriate QCs can mitigate those errors. In this study, we largely assumed that these 
analytical errors were consistent across samples. Lastly, all our samples are drawn from healthy 
volunteers. However, it is likely that metabolite instability due to preanalytical conditions could 
be different between diseased and healthy individuals due to sample matrix effects, namely 
due to different enzymatic activity and microbial contamination (6). 

This study confirms the importance of implementing consistent handling conditions in 
epidemiological studies. While urine is suitable for evaluating the metabolome, and as shown 
here, is more robust to changes in preanalytical conditions than blood, some metabolites are 
altered due to preanalytical conditions. Robustness of metabolites that show significant 
associations with disease outcomes should thus be evaluated.  
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Table 1. Cohort description. 

Characteristic No. of 
Persons           

% 

Age, years    

 <30 4  30.8 
 30-55 4  30.8 
 >55 5  38.4 

Sex    

 Female 7  53.8 
 Male 6  46.2 

Body Mass Indexa    

 18.5-25 4  30.8 
 25-30 7  53.8 
 >30 2  15.4 

Current smoking 1  7.7 

Alcohol consumptionb 6  46.2 

Coffee consumptionb 8  61.5 

Current medication use 10  76.9 

Nutritional supplement usec 8   61.5 
     

 a Weight (kg)/height(m)2    

 b Within the last 48 hours.    
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Table 2. Impact of preanalytical sample handling conditions on metabolite abundances.    

 
   

Absolute Percent Difference (APD) 
 

Normalized Difference (ND) 
   

With Preservative Without Preservative 
 

With Preservative Without Preservative 
   

median IQR median IQR 
 

median IQR median IQR 

Preservative 
         

 None (Gold Std. 
Duplicates) 

3.57 (1.5-7.45)        
 

Borate 2.95 (1.06-8.60) 
   

0.023 (0.010-0.075) 
  

 
Chlorhexidine 3.00 (1.16-7.31) 

   
0.022 (0.006-0.057) 

  

Refrigeration 2.40 (0.91-4.92) 3.01 (1.22-7.74) 
 

0.025 (0.01-0.049) 0.044 (0.016-0.088) 

Thaw 
         

 
1 thaw 

         
  

On ice 1.65 (0.65-3.56) 3.13 (1.29-6.69) 
 

0.015 (0.006-0.034) 0.027 (0.011-0.056) 
  

In refrigerator 2.61 (1.11-5.74) 3.75 (1.46-8.73) 
 

0.021 (0.008-0.040) 0.032 (0.014-0.064) 
  

At room temp. 2.13 (0.89-4.53) 4.00 (1.5-9.47) 
 

0.021 (0.010-0.044) 0.034 (0.012-0.083) 
 

4 thaws 
         

  
On ice 3.79 (1.86-6.41) 5.31 (2.53-9.03) 

 
0.035 (0.019-0.063) 0.041 (0.020-0.074) 

  
In refrigerator 2.39 (0.94-5.61) 4.18 (1.79-8.88) 

 
0.014 (0.005-0.033) 0.021 (0.008-0.051) 

  
At room temp. 2.41 (0.96-4.73) 3.85 (1.7-8.07) 

 
0.017 (0.006-0.040) 0.025 (0.011-0.057) 
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Table 3: Pearson correlation of relative metabolite abundances for a specific handling condition 
compared to the “gold standard” condition of no-preservative, no refrigeration storage, and no freeze-
thaw cycles. 

Comparison Median IQR  
20th 

Percentile 
(262) 

15th 
Percentile 

(157) 

10th 
Percentile 

(105) 

5th 
Percentile 

(52) 
Preservative 

       

 
Borate 0.98 (0.98-0.99) 

 
0.88 0.83 0.76 0.53 

 
Chlorhexidine 0.98 (0.98-0.99) 

 
0.93 0.9 0.85 0.74 

Refrigeration 0.98 (0.98-0.99) 
 

0.94 0.91 0.85 0.73 
Thaw 

       
 

1 thaw 
       

  
On ice 0.99 (0.99-1) 

 
0.96 0.94 0.89 0.76 

  
In refrigerator 0.99 (0.99-0.99) 

 
0.94 0.92 0.86 0.74 

  
At room 
temp. 

0.99 (0.99-1) 
 

0.94 0.92 0.85 0.73 
 

4 thaws 
       

  
On ice 0.99 (0.99-0.99) 

 
0.95 0.93 0.86 0.76   

In refrigerator 0.99 (0.99-1) 
 

0.94 0.92 0.87 0.74   
At room 
temp. 

0.99 (0.99-0.99) 
 

0.95 0.93 0.87 0.73 
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Table 4. Expected number of false positive associations found when comparing alternate sample 
handling conditions to the “gold standard” condition. 

  Proportion of Case Samples Handled Differently 
    0.01 0.05 0.1 0.25 1 

Preservative       

 Borate 0 2 11 45 168 

 Chlorhexidine 0 1 3 26 136 

Refrigeration       

 24h Fridge 0 0 1 4 99 

Thaw       

 1x Ice 0 1 1 2 63 

 1x Fridge 0 1 1 4 77 

 1x RT 0 0 0 4 104 

 4x Ice 0 0 0 1 72 

 4x Fridge 0 1 1 3 67 

 4x RT 0 0 1 3 76 
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Figure 1. Sample Collection and Preanalytical Sample Handling for Each Participant. Urine 
samples from each study participant were collected in sterile cups and subsequently divided 
into 3 preservative condition tubes containing no preservative, borate, or chlorhexidine. 
Samples were then subjected to various experimental conditions including 24 hours of 
refrigeration storage, no freeze-thaw, thaw on ice, thaw in refrigerator, or thaw at room 
temperature for 1 or 4 freeze-thaw cycles. In total, 390 samples (30 samples per participant) 
were sent for metabolomics profiling.    
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Figure 2: Metabolites and their chemical class altered by preanalytical sample handling. Percentage of 
altered metabolites within each metabolite class. Metabolites are considered altered if they have a gain 
or loss of abundance by one-sample t-test (Benjamini-Hochberg adjusted p-value <0.05). Super Pathway 
annotations are those provided by Metabolon. Gold indicates increases in metabolite abundance while 
blue elements represent decreased abundance under a given condition. The color intensity indicates the 
percentage of metabolites having statistically significant abundance changes, with the most intense 
color indicating that more than 15% of the metabolites in that class have altered abundance, statistically 
significant percent change.   
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Supplementary Figure S1. Workflow delineating the data preprocessing steps. 
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Supplementary Figure S2: Data quality assessment.  A. Principal Components Analysis of our cohort 
metabolite abundance profiles. The input matrix included the log normalized abundances for 1,024 
metabolites for each of the 390 samples (excluding QC samples). Colors are associated with participant 
ID. Point size relates to sample osmolality.  B. Number of metabolite missing values for each sample as a 
function of sample osmolality. Preservative type is indicated by marker shape.  

 

 

 

Supplementary Table S1. Total metabolites measured and those filtered out due to being 
missing in more than 80% of 390 samples.  Super pathways are those provided by Metabolon. 

Super Pathway Total Missing Percent 
No Annotation (X-mets) 537 56 10% 
Xenobiotic 177 50 28% 
Lipid 120 24 20% 
Amino Acid 218 10 5% 
Cofactors and Vitamins 35 8 23% 
Nucleotide 52 5 10% 
Peptide 24 5 21% 
Carbohydrate 30 2 7% 
Energy 15 0 0% 

 1208 160  
 

 

Supplementary Table S2. Wilcoxon Rank Sum statistic comparing metabolite APD values 
between serum and urine metabolites for conditions common to both studies. 

Treatment 
Serum 
Mean 

Urine 
Mean 

Serum 
Median 

Urine 
Median pVal 

Bonferroni-Adj 
pVal 

No Refrigeration vs.24 hr Refrigeration 10.48 5.37 4.75 3.01 1.40E-10 9.82E-10 
No thaw vs 1x thaw on ice 7.23 5.09 4.74 3.13 1.26E-09 8.81E-09 
No thaw vs 1x thaw in refrigerator 9.84 6.09 6.04 3.75 1.86E-12 1.30E-11 
No thaw vs.1x room temperature thaw 7.37 6.59 4.65 4.00 1.21E-01 8.46E-01 
No thaw vs 4x thaw on ice 13.52 6.68 10.05 5.31 2.35E-36 1.64E-35 
No thaw vs 4x thaw in refrigerator 15.56 6.50 7.25 4.18 9.88E-19 6.91E-18 
No thaw vs 4x thaw in room 
temperature 7.23 5.75 5.54 3.85 5.64E-10 3.95E-09 
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Supplementary Table S3. Number of false positive metabolites from the study simulation 
comparing serum to urine, for three levels of fraction of case samples having altered handling 
conditions, 0.05, 0.25 and 1.0. 

 Proportion of Case Samples Handled Differently 
 Serum Study  Urine Study 

  0.05 0.25 1   0.05 0.25 1 
No Refrigeration vs.24 hr Refrigeration 17 86 217  0 4 99 
No thaw vs 1x thaw on ice 12 181 447  1 2 63 
No thaw vs 1x thaw in refrigerator 22 205 459  1 4 77 
No thaw vs.1x room temperature thaw 12 170 375  0 4 104 
No thaw vs 4x thaw on ice 54 381 688  0 1 72 
No thaw vs 4x thaw in refrigerator 41 196 386  1 3 67 
No thaw vs 4x thaw in room 
temperature 8 92 244   0 3 76 
Average Number of False Positives 24 187 402  0 3 80 
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