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Abstract 

Background Discerning clinically relevant ASD candidate variants from whole-exome 

sequencing (WES) data is complex, time-consuming, and labor-intensive. To this end, we 

developed AutScore, an integrative prioritization algorithm of ASD candidate variants from 

WES data, and assessed its performance to detect clinically relevant variants.   

 

Methods We studied WES data from 581 ASD probands, and their parents registered in the 

Azrieli National Center database for Autism and Neurodevelopment Research. We focused on 

rare allele frequency <1%), high-quality proband-specific variants affecting genes associated 

with ASD or other neurodevelopmental disorders (NDDs). We assigned a score (i.e., AutScore) 

to each such variant based on their pathogenicity, clinical relevance, gene-disease association, 

and inheritance patterns. Finally, we compared the AutScore performance with the rating of 

clinical experts and the NDD variants prioritization algorithm, AutoCasC.   

 

Results Overall, 1161 ultra-rare variants distributed in 687 genes in 441 ASD probands were 

evaluated by AutScore with scores ranging from -4 to 25, with a mean ± SD of 5.89 ± 4.18. 

AutScore cut-off of ≥ 12 outperforms AutoCasC in detecting clinically relevant ASD variants, 

with a detection accuracy rate of 72.3% and an overall diagnostic yield of 11.9%. Sixteen 

variants with AutScore of ≥ 12 were distributed in fifteen novel ASD genes.  

 

Conclusion AutScore is an effective automated ranking system for ASD candidate variants that 

could be implemented in ASD clinical genetics pipelines.  

 

Keywords AutScore, candidate variants, ASD, WES, prioritization algorithm. 
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Introduction 1 

Recent advances in high-throughput sequencing technologies have revolutionized genetic 2 

studies of complex diseases [1–7]. The emergence of next-generation sequencing (NGS) 3 

platforms has enabled genomic analyses at an unprecedented scale and resolution. These 4 

technologies have facilitated whole-genome sequencing (WGS) and whole-exome sequencing 5 

(WES) of large cohorts, unveiling novel disease-associated loci and providing deeper insights 6 

into the genetic architecture of complex disorders [1–9].  7 

Detecting disease-causing variants from WES/WGS data is a complex task. Today, most 8 

clinical genetics labs that analyze WES/WGS data follow the American College of Medical 9 

Genetics and Genomics (ACMG) guidelines for interpreting sequence variants [10]. This 10 

mainly includes detecting high-quality variants with lower allele frequency and damaging 11 

effects on the protein function. Other factors usually considered are the segregation of the 12 

variant with the phenotype and existing evidence for the variant or gene association with the 13 

disease.  To assist clinicians in this laborious process, several automated tools such as Exomiser 14 

[11], AMELIE [12], LIRICAL [13], AutoCasC [14], etc., have been devised to prioritize 15 

disease-specific variants (mainly single nucleotide variants [SNVs] and insertions/deletions 16 

[indels]) from WES/WGS data.  17 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that has 18 

greatly benefited from the emergence of NGS technologies. Recent large-scale WES and WGS 19 

studies have identified thousands of ASD susceptibility genetic variants in hundreds of genes 20 

[5,15–20]. Nevertheless, despite these advances in ASD genetics, clinically meaningful genetic 21 

variants are identified only in 8% to 30% of affected probands [5,21,22].  Thus, there is a need 22 

for new approaches to facilitate the detection of ASD-specific variants from WES/WGS data.  23 

Here, we present an automated scoring approach called AutScore that integrates variant and 24 

gene-level information such as pathogenicity, deleteriousness, clinical relevance, gene-disease 25 
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association, and gene-variant inheritance pattern from a wide range of bioinformatics tools and 26 

databases to generate a single score for prioritizing clinically relevant ASD candidate variants 27 

from WES data for simplex and multiplex families. We applied the AutScore to WES data from 28 

581 Israeli ASD-affected probands and their parents. We assessed its performance by 29 

comparing the obtained results to a manual and blinded evaluation of the variants by clinicians 30 

and to AutoCasC [14], an existing variant prioritization tool for neurodevelopmental disorders 31 

(NDDs).  32 

 33 

Materials and Methods 34 

Study Sample 35 

Our sample included 581 children diagnosed with ASD, registered with the Azrieli National 36 

Centre for Autism and Neurodevelopment Research (ANCAN) [23,24]. Based on clinical 37 

records, none of the parents had registered themselves with ASD, intellectual disability, or other 38 

neurodevelopmental disorders (NDDs). Genomic DNA was extracted from saliva samples from 39 

children and their parents using Oragene®•DNA (OG-500/575) collection kits (DNA Genotek, 40 

Canada).  41 

Whole Exome Sequencing (WES) 42 

Whole Exome Sequencing (WES) analysis was conducted in two labs: (1) the Broad Institute 43 

as a part of the Autism Sequencing Consortium (ASC) project [25] and (2) the Clalit Health 44 

Services sequencing lab at Beilinson Hospital. WES was performed using Illumina HiSeq 45 

sequencers in both places, followed by the Illumina Nextera exome capture kit. The sequencing 46 

reads were aligned to human genome build 38 and aggregated into BAM/CRAM files. Then, 47 

the Genome Analysis Toolkit (GATK) [26] (Broad) or Illumina’s DRAGEN pipeline [27] 48 

(Beilinson) was used for variant discovery and the generation of joint variant calling format 49 
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(vcf) files.  50 

Variant filtering and annotations 51 

The multi-sample vcf files generated by the Genome Analysis Toolkit (GATK) and the 52 

DRAGEN platform were undertaken with identical procedures for variant filtering and 53 

annotation, as previously detailed [28]. Subsequently, we identified pathogenic (P), likely 54 

pathogenic (LP), or likely gene-disrupting (LGD) variants using the InterVar [29] tool in 55 

conjunction with our proprietary tool, Psi-Variant [28]. We kept only those LP/P/LGD variants 56 

that affected genes associated with ASD or other neurodevelopment disorders (NDDs) 57 

according to the SFARI gene [30] or the DisGeNET [31] databases for downstream analyses. 58 

Subsequently, 1161 candidate variants in 441 probands remained for further analysis (Fig. 1). 59 

 60 

Fig. 1 Analysis workflow for detecting ASD candidate variants from the WES data. 61 

Prioritization of ASD candidate variant  62 
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We developed a metric called AutScore to prioritize the detected list of ASD candidate variants 63 

as follows:  64 

 65 

Where: 66 

•     I – indicates the pathogenicity of a variant based on InterVar [29] classification as 67 

follows: ‘benign’ = -3; ‘likely benign’ = -1; ‘variants of uncertain significance (VUS)’ = 0; 68 

‘likely pathogenic’ = 3, and ‘pathogenic’ = 6. 69 

 70 

•     P – cumulatively assess the deleteriousness of a variant based on the following six in-71 

silico tools (SIFT [32] (< 0.05), PolyPhen-2 [33] (≥ 0.15), CADD [34] (> 20), REVEL [35] 72 

(> 0.50), M_CAP [36] (> 0.025) and MPC [37] (≥ 2)). For each of these tools, a variant gets 73 

a score of 1 (deleterious) or 0 (benign), and these scores are aggregated to generate a single 74 

score ranging from 1 to 6. 75 

 76 

•     D – indicates the agreement of variant-phenotype segregation with the predicted 77 

segregation by the Domino tool [38] where agreement with Domino’s ‘very likely 78 

dominant/recessive’ classes = 2; agreement with Domino’s ‘likely dominant/recessive’ 79 

classes = 1; disagreement with Domino’s ‘very likely dominant/recessive’ classes = -2; 80 

disagreement with Domino’s ‘likely dominant/recessive’ classes = -1; and 0 were assigned 81 

for variants with Domino’s ‘either dominant or recessive’ segregation.  82 

 83 

•     S – indicated the strength of association of the affected gene with ASD according to 84 

the SFARI gene database [30] where ‘high confidence’ = 3; ‘strong candidate’ = 2; 85 

‘suggestive evidence’ = 1; and not in SFARI database = 0.  86 

 87 

AutScore = I + P + D + S + G + C + H 
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•     G – indicated the strength of association of the affected gene with ASD according to 88 

the DisGeNET database [31] where weak/no association (GDA=0 to 0.25) = 0: mild 89 

association (GDA=0.25 to 0.50) = 1: moderate association (GDA=0.50-0.75) = 2: strong 90 

association (GDA=0.75 and above) = 3. 91 

 92 

•     C – pathogenicity of a variant based on ClinVar [39] where ‘benign’ = -3; ‘likely 93 

benign’ = -1;’VUS’ = 0; ‘Likely pathogenic’ = 1; ‘Pathogenic’ = 3. 94 

 95 

•     H – segregation of variants in the family weighted as (n2)-1 where n=number of 96 

probands in a family that carries the detected variants.  97 

Clinical genetics validation 98 

Variants with AutScore ≥ 10 (top quartile of candidate variants scores) were visually validated 99 

using the IGV software [40] and then manually examined by clinical geneticists according to 100 

the standard ACMG/AMP guidelines [10]. The clinical experts assessed the likelihood of the 101 

variants contributing to the ASD phenotype of the child and assigned each variant one of the 102 

following rankings: ‘Likely,’ ‘Possibly,’ and ‘Unlikely’.  103 

Statistical Analysis 104 

We used a Receiver Operating Characteristic (ROC) analysis to assess the performance of 105 

AutScore in detecting ASD candidate variants using the clinical experts' rankings as the 106 

reference. We also accordingly compared the sensitivity, specificity, positive predictive value 107 

(PPV), negative predictive value (NPV), and accuracy. In addition, diagnostic yield (%) was 108 

computed as the proportion of the number of ASD probands that have at least one ASD 109 

candidate variant out of the total affected ASD probands that completed their WES analysis. 110 

We compared the performance of AutScore  in detecting ASD candidate variants with the 111 
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performance of AutoCasC [14], an existing variant prioritization tool for NDDs. The agreement 112 

between AutScore and AutoCasC scores, and between these scores and the clinical assessment 113 

ranking, were assessed using Pearson’s correlation and Cohen’s Kappa statistic, respectively. 114 

Software 115 

Data storage, management, and analyses were conducted in a high-performing Linux cluster 116 

using Python version 3.5 and R version 1.1.456. All statistical analyses and data visualization 117 

were performed and incorporated into R. 118 

Results 119 

A total of 1161 variants distributed in 687 genes in 441 ASD probands were evaluated by the 120 

AutScore algorithm. Variant’s scores ranged from -4 to 25, with a mean ± SD of 5.89 ± 4.18 121 

(Fig. 2). The clinical experts examined 201 (17.31%) variants with an AutScore of ≥ 10. Among 122 

these, 24 (11.9%) were suspected as false positive indels during the visual assessment using 123 

the IGV software and thus removed from subsequent analyses. Of the remaining 177 variants, 124 

65 (36.7%) were ranked as ‘likely,’ 51 (28.8%) as ‘possibly,’ and 61 (34.5%) as ‘unlikely’ 125 

ASD candidate variants (Supplementary Table S1).  126 

Identifying an optimum AutScore cut-off 127 

Two analyses were carried out to identify the optimal AutScore cut-off (Fig. 3). First, an ROC 128 

analysis using the clinical experts’ ranking: “likely” as the true set of ASD candidate variants 129 

indicated that AutScore is an effective tool for detecting ASD clinically meaningful variants 130 

(AUC=0.843, 95% CI= 0.779-0.907) (Fig. 3A). Applying Yuden J’s analysis to these data 131 

suggested that an AutScore of ≥ 12 would be the most effective cut-off (Yuden J=0.52). The 132 

same cut-off was also indicated by integrating detection accuracy and diagnostic yield (Max of 133 

Yield + Accuracy /10=17.04) (Fig. 3B).  134 

 135 
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 136 

Fig. 2 Histogram depicting the distribution of total LP/P/LGD variants assessed by AutScore 137 

(N=1161) 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

 147 

 148 
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 149 

 150 

 

 

Fig. 3 Assessing AutScore’s optimal cut-off for detection of ASD susceptibility variants. A A 151 

receiver operating characteristics (ROC) analysis for different AutScore cut-offs. An arrow 152 

indicates the best cut-off based on Yuden J’s statistics. B Scatterplot of the detection accuracy 153 
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(x-axis) and the resulting diagnostic yield (Y-axis) for different AutScore cut-offs.  An arrow 154 

indicates the best cut-off based on both values' aggregated maximum. 155 

Comparing AutScore with AutoCasC  156 

Next, we compared the performance of AutScore (using the selected cut-off ≥ 12) vis-à-vis the 157 

existing NDD prioritization tool, AutoCasC, using its recommended cut-off of >6 [14], in 158 

detecting ASD candidate variants (i.e., likely, possibly) (Fig. 4). A moderate, but statistically 159 

significant correlation (r=0.58; p<0.05) was observed between AutScore and AutoCasC. Both 160 

tools had high sensitivity in detecting ASD variants using their recommended cut-off (0.91 and 161 

0.92, respectively; Table 1). Yet, AutScore outperformed in all other diagnostic characteristics 162 

except in its diagnostic yield (Specificity: 0.616, PPV: 0.578 and Accuracy: 72.3%; 95% C.I: 163 

65.1%-78.8% vs. Specificity: 0.133, and PPV: 0.397 Accuracy: 43.5%; 95% C.I: 35.9%-51.3% 164 

respectively) (Table 1). In addition, AutScore results had a better agreement with the clinical 165 

expert rankings than those of the AutoCasC (percentage agreement =72.3% and Cohen’s 166 

Kappa= 0.468 vs. percentage agreement=43.5% and Cohen’s Kappa= 0.04 respectively; Table 167 

2). The variant list (n=177) with AutScore, clinical assessments, and AutoCasC values is 168 

provided in Supplementary Table S1. 169 

 170 

 171 

Table 1: Comparing the performance between AutScore (≥ 12) and AutoCasC (> 6) in detecting ASD candidate variants 

Scoring 

Approaches 
Sensitivity Specificity PPV 

Accuracy (95% 

C.I.) 

Diagnostic 

Yield (Likely) 

Diagnostic Yield 

(Likely+Possibly) 
Yuden J 

AutScore (≥ 12) 0.91 0.62 0.58 0.72 (0.65, 0.79) 9.81 11.9 0.52 

AutoCasC (> 6) 0.92 0.13 0.40 0.43 (0.36, 0.51) 9.98 15.5 0.06 

Table 2: Concordance between AutScore (≥ 12), AutoCasC (> 6), and Clinical Expert Rankings in detecting ASD candidate 

variants (N=177 variants) 

Combinations Percentage Agreement Cohen's Kappa (P-Value) 

AutScore (≥ 12) Vs AutoCasC (> 6) 57.6 0.07 (0.20) 

AutScore (≥ 12) Vs Clinical Assessment 72.3 0.45 (0.00) 

Clinical Assessment Vs. AutoCasC (> 6) 43.5 0.04 (0.26) 
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Fig. 4 A clustered scatter diagram comparing the performance of AutScore (≥ 12), AutoCasC 172 

(> 6), and the clinical assessments (e.g., likely (green), possibly (yellow), and unlikely (red)). 173 

Characteristics of the LP/P/LGD variants detected by AutScore  174 

Overall, 102 variants had an AutScore ≥12. Of these, 59, 18, and 25 variants were ranked as 175 

‘likely’, ‘possibly’, and ‘unlikely’ ASD candidate variants, respectively, by the clinical experts 176 

(Table 3). Most of the detected variants (45.1%) were distributed in high-confidence ASD 177 

genes according to the SFARI Gene database [30] (i.e., SFARI score of 1). Another 29 (28.4%) 178 

variants were detected in 23 genes (29.9%) not listed in the SFARI database and thus may be 179 

considered novel ASD genes. More than 90% of the detected variants were classified as LP/P 180 
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according to the ACMG/AMP variant interpretation criteria [10], and more than 62% were 181 

denovo variants. 182 

Table 3: Characteristics of the detected variants with AutScore ≥ 12 (N=102) 

Functional Consequences 
Freq (%) 

Frameshift Insertion/Deletion 25 (24.5%) 

Splice Acceptor/Donor 6 (5.9%) 

Stop Gained/Lost 22 (21.6%) 

Missense 37 (36.3%) 

Other  12 (11.8%) 

Gene Type   

SFARI 1 46 (45.1%) 

SFARI 2 and 3 27 (26.5%) 

Any SFARI 73 (71.6%) 

Novel Genes 29 (28.4%) 

Inheritance Pattern   

Denovo 64 (62.7%) 

X-linked 5 (4.9%) 

Autosomal Recessive 33 (32.4%) 

Variant Type   

Pathogenic (P) 56 (54.9%) 

Likely Pathogenic (LP) 38 (37.3%) 

VUS/LGD 8 (7.8%) 

Clinical Assessment   

Likely 59 (57.8%) 

Possibly 18 (17.6%) 

Unlikely 25 (24.5%) 

Discussion 183 

Discerning clinically relevant ASD candidate variants from many variants poses a formidable 184 

challenge for clinical experts, demanding considerable time and effort. Here, we present 185 

AutScore, a novel bioinformatics prioritization tool that integrates variant and gene-level 186 

information to prioritize ASD candidate variants derived from WES data. AutScore can be 187 

integrated into an existing bioinformatic pipeline for WES data analysis by pre-installing the 188 

ACMG/AMP [10] variant interpretation tool InterVar [14] and our in-house tool Psi-Variant 189 

[28]. Although AutScore was initially designed to assess the ASD clinical relevance of rare 190 

autosomal SNVs, it can be adapted for analyses of copy number variants (CNVs), 191 
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mitochondrial variants, and common heritable variants that are expected to enhance its 192 

applicability further. 193 

Our results indicated that AutScore is highly efficient in detecting clinically relevant ASD 194 

variants. Using its most effective cut-off (i.e., ≥12), it achieves an overall diagnostic yield of 195 

11.9%, comparable to results from prior studies [5,21,22].  We showed that AutScore 196 

outperforms the existing NDD variant prioritization tool, AutoCasC [14], in detecting clinically 197 

relevant ASD candidate variants. The higher accuracy of AutScore compared to AutoCasC is 198 

likely because it was explicitly designed to detect ASD candidate variants. At the same time, 199 

AutoCasC focuses on prioritizing candidate variants related to a broader range of NDDs.  200 

The following limitations should be considered when using AutScore. First, the AutScore 201 

metric was established using a trial-and-error approach, assigning certain weights and penalties 202 

to its different elements. It is possible to mitigate this inherent subjectivity using a machine 203 

learning model-based prioritization score. Since such models require larger datasets of true 204 

ASD variants, we plan to upgrade to AutScore when such datasets are available. Second, 205 

AutScore is constrained to specific genes from the DisGeNET [31] and SFARI Gene [30] 206 

databases. Consequently, it might have missed some potential candidate variants in genes not 207 

cataloged in these databases. Third, the performance of AutScore data has not been assessed in 208 

WGS data.  Hence, caution should be taken when applying this ranking tool to prioritize ASD 209 

candidate variants derived from WGS data. Fourth, the estimates derived from AutScore, 210 

including accuracy, PPV, and yield, were computed based on WES data from an ASD cohort 211 

within the Israeli population. Thus, these estimates could vary in other populations. Lastly, 212 

AutScore may not function optimally in cases involving probands with incomplete pedigree 213 

information and unknown segregation patterns.  214 

Conclusion 215 

AutScore constitutes a highly effective automated ranking system designed to prioritize ASD 216 
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candidate genetic variants in WES data. The utilization of AutScore holds the potential to 217 

significantly streamline the process of elucidating the specific genetic etiology of ASD within 218 

affected families. In doing so, it can contribute to expediting and enhancing the accuracy of 219 

clinical management and treatment strategies, ultimately leading to more effective 220 

interventions in the context of ASD.  221 

 

List of abbreviations 

ASD: Autism Spectrum Disorder 

SNVs: Single Nucleotide Variants 

INDELs: Insertions/Deletions 

LGD: Likely Gene Disrupting 

LP/P/VUS: Likely Pathogenic/Pathogenic/Variants of Uncertain Significance 

LoF: Loss of Function 

CNVs: Copy Number Variants 

WES: Whole Exome Sequencing 

WGS: Whole Genome Sequencing 

ACMG/AMP: American College of Medical Genetics and Genomics/Association of 

Molecular Pathology  

GATK: Genome Analysis Toolkit 

IQR: Interquartile Range 

NDDs: Neurodevelopmental Disorders 

PPV: Positive Predictive Value 

NPV: Negative Predictive Value 

SFARI: Simons Foundation Autism Research Initiative 

OMIM: Online Mendelian Inheritance in Man 
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AUC: Area Under the Curve 

ROC: Receiver Operating Characteristic 
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