Abstract
Large-scale gene-environment interaction (GxE) discovery efforts often involve compromises in the definition of outcomes and choice of covariates for the sake of data harmonization and statistical power. Consequently, refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C). This GxE was originally identified by Kilpeläinen et al., with the strongest cohort-specific signal coming from the Women’s Genome Health Study (WGHS). We thus explored this GxE further in the WGHS (N = 23,294), with follow-up in the UK Biobank (UKB; N = 281,380), and the Multi-Ethnic Study of Atherosclerosis (MESA; N = 4,587). Self-reported PA (MET-hrs/wk), genotypes at rs295849 (nearest gene: LHX1), and NMR metabolomics data were available in all three cohorts. As originally reported, minor allele carriers of rs295849 in WGHS had a stronger positive association between PA and HDL-C (pint = 0.002). When testing a range of NMR metabolites (primarily lipoprotein and lipid subfractions) to refine the HDL-C outcome, we found a stronger interaction effect on medium-sized HDL particle concentrations (M-HDL-P; pint= 1.0×10-4) than HDL-C. Meta-regression revealed a systematically larger interaction effect in cohorts from the original meta-analysis with a greater fraction of women (p = 0.018). In the UKB, GxE effects were stronger both in women and using M-HDL-P as the outcome. In MESA, the primary interaction for HDL-C showed nominal significance (pint = 0.013), but without clear differences by sex and with a greater magnitude using large, rather than medium, HDL-P as an outcome. Towards reconciling these observations, further exploration leveraging NMR platform-specific HDL subfraction diameter annotations revealed modest agreement across all cohorts in the interaction affecting medium-to-large particles. Taken together, our work provides additional insights into a specific known gene- PA interaction while illustrating the importance of phenotype and model refinement towards understanding and replicating GxEs.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This investigation was supported by two grants from the U.S. National Heart, Lung, and Blood Institute (NHLBI), the National Institutes of Health, R01HL118305 and R01HL156991. KEW was supported by K01DK133637. TOK was supported by the Novo Nordisk Foundation (NNF18CC0034900, NNF21SA0072102). ARB was supported by the Intramural Research Program of the National Human Genome Research Institute of the National Institutes of Health through the Center for Research on Genomics and Global Health (CRGGH). SM was supported by HL160799, HL117861, and K24 HL136852. The WGHS is supported by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with funding for genotyping provided by Amgen and funding for NMR assays by the American Heart Association. Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for "NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)" (phs001416.v3.p1) was performed at the Broad Institute of MIT and Harvard (3U54HG003067-13S1). Centralized read mapping and genotype calling, along with variant quality metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1). Phenotype harmonization, data management, sample-identity QC, and general study coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-120393-02S1), and TOPMed MESA Multi-Omics (HHSN2682015000031/HSN26800004). The MESA projects are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for the Multi-Ethnic Study of Atherosclerosis (MESA) projects are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1TR001881, DK063491, and R01HL105756. The authors thank the other investigators, the staff, and the participants of the MESA study for their valuable contributions. A full list of participating MESA investigators and institutes can be found at http://www.mesa-nhlbi.org.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The WGHS component of this work was conducted under approval from the Mass General Brigham IRB (protocol 2006P001259). The UKB component of this work was conducted under a Not Human Subjects Research determination for UKB data analysis (NHSR-4298 at the Broad Institute of MIT and Harvard) and UK Biobank application 27892. The MESA component of this work was conducted under approval from the Mass General Brigham IRB (protocol 2017P000531).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Code supporting the analyses described here can be found at https://github.com/kwesterman/gxpa-nmr. Access to WGHS data is restricted by the institutional review board, but analysis may be performed through collaboration; please contact Daniel Chasman (dchasman@bwh.harvard.edu). The UK Biobank data can be obtained through application at https://www.ukbiobank.ac.uk/. MESA data can be accessed through the TOPMed program via the NCBI Database of Genotypes and Phenotypes (dbGaP).