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Abstract 

Objective: Functional bowel disorders (FBDs) are multi-dimensional diseases varying in 
demographics, symptomology, lifestyle, mental health, and susceptibility to treatment. The 
patient lived experience is an integration of these factors, best understood with appropriately 
multivariate models. 
 
Methods: In a large patient cohort (n=1175), we developed a machine learning framework to 
better understand the lived experience of FBDs. Iterating through 59 factors available from 
routine clinical care, spanning patient demography, diagnosis, symptomatology, life-impact, 
mental health indices, healthcare access requirements, COVID-19 impact, and treatment 
effectiveness, machine models were used to quantify the predictive fidelity of one feature from 
the remainder. Bayesian stochastic block models were used to delineate the network 
community structure underpinning the lived experience of FBDs. 
 
Results: Machine models quantified patient personal health rating (R2 0.35), anxiety and 
depression severity (R2 0.54), employment status (balanced accuracy 96%), frequency of 
healthcare attendance (R2 0.71), and patient-reported treatment effectiveness variably (R2 
range 0.08-0.41). Contrary to the view of many healthcare professionals, the greatest 
determinants of patient-reported health and quality-of-life were life-impact, mental wellbeing, 
employment status, and age, rather than diagnostic group and symptom severity. Patients 
responsive to one treatment were more likely to respond to another, leaving many others 
refractory to all. 
 
Conclusions: The assessment of patients with FBDs should be less concerned with diagnostic 
classification than with the wider life impact of illness, including mental health and 
employment. The stratification of treatment response (and resistance) has implications for 
clinical practice and trial design, in need of further research. 
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What is known? 

- The diagnosis of functional bowel disorders (FBDs) is based on combinations of 
gastrointestinal symptoms. 
- Beyond diagnosis, the patient lived experience is much broader, with far-reaching impact on 
their life ranging from effect upon daily activities, mental well-being, access and satisfaction 
of healthcare, and treatment efficacy. 
 
 
What is new here? 
- FBD diagnosis was not a determinant of any machine model predicting patient-reported 
disease impact factors. 
- Instead, lived experience factors inclusive of life impact, mental wellbeing, employment 
status, and age were the greatest determinants of patient-reported health quality.  
- Efforts to prioritize improvements in patient-reported health quality for FBDs should shift 
focus to the broader lived experience.  
- Patients reporting response to one treatment were more likely to report response to another, 
leaving others refractory to all. 
- Predicting a response to one treatment by response to another highlights the importance of 
non-placebo trial designs. 
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Introduction 

The management of patients with functional bowel disorders (FBDs)1 remains challenging. 
Reasons include the absence of precise diagnostic tests, the paucity of clinical biomarkers, 
and a diagnostic classification based on symptom profiles that may overlap and change2. An 
incomplete understanding of FBD pathophysiology has held back development of targeted 
treatments3, including the prediction of which patients stand to benefit most from them.  
 
The healthcare professional’s diagnosis of FBDs is based on varying combinations of 
abdominal and GI symptoms. A patient’s experience of FBDs however is governed not merely 
by perturbation of the gastrointestinal tract but has far-reaching impact across the broader 
aspect of their life, ranging from effect upon daily activities, mental well-being, access and 
satisfaction of healthcare, and treatment efficacy1,2,4-8.  Patients affected by FBDs typically 
remain so for many years; living with these disorders becomes a necessity leading to 
considerable effects on quality of life (QoL), often with deleterious effects to other aspects of 
health5,9.  
 
FBDs are complex diseases with multiple biopsychosocial inputs to observed traits, rendering 
them unique to each affected individual. This difference from most other GI disorders is 
arguably a key reason that diagnostic and therapeutic innovation has been slower to progress. 
From a data-orientated perspective, while FBD are multifaceted ‘high-dimensional’ disorders, 
they are rarely statistically modelled as such2. Clinical research studies often investigate 
complex diseases with relatively low-dimensional and/or linear statistical frameworks. This is 
no different for FBDs, where common experimental designs may, for example, explore sex 
differences between disorder x, or age-related effects of treatment y, but rarely provide a more 
sophisticated integration of the two. Such approaches invariably neglect many factors that 
individualize the individual, leaving gaps in our understanding of the disorders themselves, and 
also the resultant patient lived experience10.  
 
Research that aims to uncover complex nonlinear disease mechanisms is increasingly 
achievable with machine learning11,12. If we are to ascribe FBDs as high-dimensional entities 
across diagnostics, symptomatology, demographics, healthcare requirements, and treatment 
responsiveness, governed tightly by nonlinear interactions of any of the former, then arguably 
the only appropriate method to investigate them is with models sufficiently powerful to 
illuminate underlying heterogeneous and nonlinear disease mechanisms12-14. We therefore 
developed a comprehensive software-driven framework harnessing state-of-the-art machine 
learning to reveal, in unprecedented detail, the lived experience of FBDs. In placing the 
perspective of the individual patient at the forefront of our approach10, we delineate the 
determinants of ill health, such as the impact on QoL and treatment effectiveness in a more 
meaningful and patient-orientated way. This framework bypasses any preconceptions of 
healthcare professionals and could pave the way to more richly individualized patient 
care10,11,15,16. 
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Methods 

Study design 

A single online questionnaire was administered to two existing cohorts of individuals using 
convenience sampling methods. The two groups were: 
 
1) ContactMe-IBS (established 2017) – a national irritable bowel syndrome (IBS) registry of 

people who are interested in participating in IBS research (https://www.contactme-
ibs.co.uk). ContactMe-IBS is owned by the NHS (County Durham and Darlington NHS 
Trust). Registrants are primarily from the Northeast (actively promoted within Durham 
Bowel Dysfunction Service) and the Southwest where GPs are particularly research active 
with ContactMe-IBS. Access to the registry is via numerous sources including GP practices, 
gastroenterology clinics, pharmacies, and social media. During registration, participants 
self-identify as having IBS by completing screening questions based on Rome IV criteria4. 
 

2) Transanal irrigation (TAI) database (established 2019) – a database of patients who have 
commenced TAI under the care of Durham Bowel Dysfunction Service.  

 
Participants on the registry received primary or secondary care for IBS and gave permission 
to be informed of active research studies. Over a 4-week period, October - November 2021, 
registrants of both databases (n = 4480 on ContactMe-IBS; n = 259 on the TAI database) were 
invited to participate by email link to a questionnaire, or by postal questionnaire if preferred. 
Online questionnaire data were captured digitally via the web-based REDCap application, a 
secure system designed to support data collection for research studies. Inclusion in the study 
required participants to be aged 18 years or older with symptoms of bowel dysfunction, 
registered on either database and able to understand written and spoken English (for 
questionnaire completion). Participants who did not respond to the invitation or reminder 
email, or those who did not fully complete the questionnaire, were excluded.  

Materials  

The study used an 88-item questionnaire requiring ~35 minutes to complete, organized in the 
following sections: 
 
1) Demographic: including date of birth, sex, ethnicity, and employment status. 

 
2) Nosological: this section was designed to characterize the FBD type of the participant. The 

scoring algorithms of the ROME IV4 criteria were used to identify primary diagnostic groups: 
irritable bowel syndrome (constipation [IBS-C], diarrhea [IBS-D] predominant, or mixed 
[IBS-M]); functional constipation (FC); functional diarrhea (FD); or fecal incontinence (FI). 
Criteria for evacuatory dysfunction (ED) did not depend on investigations, but relied on 
symptom scores for straining, a feeling of blockage, a feeling of incomplete evacuation and 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.24301624doi: medRxiv preprint 

https://www.contactme-ibs.co.uk/
https://www.contactme-ibs.co.uk/
https://doi.org/10.1101/2024.01.23.24301624
http://creativecommons.org/licenses/by/4.0/


7 

the need to digitate, with questions and scoring of these aligned to the ROME IV 
questionnaire. 
 

3) Primary symptom: respondents were asked to report their primary symptom from a choice 
of ‘abdominal pain’, ‘bloating’, ‘watery stools’, ‘hard stools’, and ‘frequent bowel 
movements’, including quantified severity and duration experienced. 

 
4) Bowel habit: the Bristol Stool Form Scale was used to identify stool type17, and the ROME 

IV4 criteria individual question data used to assess bowel habit. 

5) Treatment: A visual analogue scale (VAS) was used to measure perceived effectiveness for 
a range of trialed treatments. These included medicinal (such as laxative, enema, 
suppository) and non-medicinal (such as pelvic floor/sphincter exercises, footstool use 
during defecation, fluid and/or dietary changes). Questions on the use and effectiveness of 
TAI for the management of FBDs were developed by the study team, consisting of seven 
single answer multiple choice questions and a VAS for patient-perceived effectiveness. 
Data were not curated or designed for treatment comparisons, but rather to delineate the 
determinants of patient-perceived effectiveness to a given regime.  

6) Life impact: the impact of FBDs on QoL was assessed using a 5-point Likert scale based 
on the Patient Assessment of Constipation on Quality of Life (PAC-QOL) questionnaire5,18. 
PAC-QOL wording was widened to reflect all FBDs, for example ‘constipation’ was 
amended to ‘bowel symptoms’, and questions related directly to constipation were omitted 
(Q2,Q4,Q20,Q21,Q24 from PAC-QOL18). This approach would enable insight to the impact of 
any set of bowel symptoms to a patient, rather than placing focus on specific disease 
subtypes. The EQ5D-5L General Health19 was used to explore the impact of FBDs on 
mobility, self-care, usual activities, pain or discomfort, and anxiety or depression. Patient 
rating of their overall health was also measured by VAS. The Work Productivity and Activity 
Impairment Questionnaire20 was used to assess impairment in activities of daily living (ADL) 
and employment-related productivity. Questions elicited employment status, absenteeism 
(percentage of work hours missed due to bowel symptoms), presenteeism (the degree to 
which symptoms affect work productivity whilst working), percentage of work hours missed 
for other reasons, and the degree to which symptoms affected other ADLs in the preceding 
7 days. 
 

7) Healthcare use: questions determined whether the participant had been admitted to 
hospital for bowel symptoms; and their access to healthcare including physiotherapy, 
general practitioner (GP), consultant gastroenterologist, GP/district/specialist nurse, and 
dietician. 
  

8) COVID-19: comprising single response multiple choice questions explored how the COVID-
19 pandemic affected individuals.  
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Algorithmic approach 

FBDs are a complex set of disorders that are both impacted by, and have profound impact 
upon, a wide array of interacting biological, social, and psychological factors. A study seeking 
to predict or characterize one single constitutional, diagnosis, disease, treatment, life impact, 
or healthcare access feature in such a cohort could only increase its understanding by small 
margins. Our task here is to find a means to understand the disease process for these patients 
in a much broader sense, developing a suite of statistical models aiming to predict all patient 
factors instead. 
 
In undertaking such an approach, we forgo any clinical assumptions, harnessing a data-driven 
method that allows machine models to identify which constitutional, diagnostic, disease, 
treatment, life impact, or healthcare access factors are predictable, whilst simultaneously 
revealing the data-driven determinants of them. Our framework tests the hypotheses that 1) a 
machine model shall discern what patient factors plausibly can – and perhaps equally 
important, what cannot be – predicted from their remaining data, and 2) a machine model shall 
identify the greatest determinants of a given patient feature, both of which have downstream 
clinical utility in decision support, patient monitoring, and treatment. 
 
A practical example is the prediction of patient-reported health quality. In determining the 
extent to which patient-reported health quality can be predicted from other constitutional and 
clinical data, this reveals the capacity for healthcare professionals to ascertain it from data 
routinely available. Where patient-reported health quality is readily predictable by a machine 
model, then its determining factor(s) can guide practice, whether that is in patient triaging or 
treatment monitoring. If, however health quality is not predictable, then this informs us that 
data currently curated, inclusive of patient constitution, diagnosis, and healthcare access, do 
not inform it, so in our practice we should not make assumptions as to how a patient would 
rate their personal health without seeking further information. 
 
We therefore developed a software-embodied, end-to-end, multivariate framework to fully 
interrogate patient data, inclusive of data organization and multivariate missingness 
imputation, yielding a platform of machine learning extreme gradient boosting (XGBoost) 
models optimized to predict a set of given inputs, all evaluated out-of-sample on a separate 
test set (Figure 1)21. XGBoost is an architecture that employs a parallel ensemble of gradient 
boosted weak-learner decision trees, which has shown superior performance in multiple 
machine learning tasks with tabular data21. We partitioned data 80:20 into model training 
(n=940) and testing (n=235) sets; the latter was completely excluded through all model 
development and evaluated only after complete development of all models. This pipeline is 
described in greater detail throughout the supplementary material. 
 
Our algorithmic approach yielded a comprehensive set of machine models trained to predict 
each patient feature from the remainder, importance metrics (SHapley Additive exPlanations 
(SHAP)22) which shed light on the strongest determinants of each feature and model 
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performance metrics, all evaluated out of sample. We then consolidated these findings 
formally with a nested stochastic block model (SBM), a Bayesian generative model of a network 
that aims to find the most optimum community structure14,23-28. Just as the London 
Underground network is comprised of stations (nodes) and tracks between them (edges), 
organized by different train lines, here we study patient factors as nodes, and the prediction 
importance metrics as edges connecting factors to one-another. By fitting an SBM to these 
data it reveals the most compact representation of how patient factors are organized. 

Data and code availability  

All code will be made publicly available upon publication at 
https://github.com/jamesruffle/perspective-ai. Trained model weights are available upon 
request. Data and code availability is in line with UK government policy on open-source code. 
Patient data are not available for dissemination under the ethical framework that governs its 
use. 

Ethical approval 

The study was approved by local institutional review board and conducted in accordance with 
the “Declaration of Helsinki”. The Health Research Authority approved this study prior to 
commencement. REC reference 21/SW/0086 (IRAS ID 296856). 
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Results 

Cohort 

We received 1175 responses from 4739 patients (response rate 24.8%), who formed our 
analysis cohort. Mean age was 52 years (range 20-80 years): female (n=1000) and male (n=175) 
(Figure 1). 642 patients fulfilled the ROME-IV criteria for IBS (IBS-C n=133, IBS-M n=237 IBS-
D n=246, IBS-U n=26). Further functional bowel disorder diagnoses yielded were functional 
constipation (n=173), and functional diarrhea (n=157). The remaining 203 patients 
demonstrated symptoms rendering them non-classifiable due to syndromic overlap in (n=130), 
or exclusion from (n=73), current classification systems. 
 

 
Figure 1. Study design. A) Flow diagram. B) Geospatial referral distribution. 
 
We derived a hierarchical clustering representation of how patient factors were interrelated by 
pairwise correlation coefficient (Figure 2). This illustrated that when comparing linear 
relationships between patient factors they generally align to self-explanatory domains. For 
example, measures of irrigation use and patient-reported effectiveness thereof were highly 
correlated and clustered together (r 0.64 or higher, all FDR-corrected p<0.0001). Similarly, 
measures of pain were highly correlated and clustered together, as well as pain-criterion 
diagnoses such as IBS (r 0.40 or higher, all FDR-corrected p<0.0001). Patient-reported 
effectiveness of several treatments formed another cluster, both medicinal (laxative use), and 
non-medicinal (including changes to diet, fluid intake, footstall use, and pelvic or sphincter 
exercises): r range 0.13-0.50, all FDR-corrected p<0.0001. Pain severity, impact of bowel 
symptoms on daily activities, and impact on measures of assisted daily living (ADLs) formed 
another cluster (r 0.32 or higher, all FDR-corrected p<0.0001). Finally, engagement and 
requirement of healthcare services formed a weak cluster, including if seen by a medical 

Figure 1PERSPECTIVE-AI
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(f=86)Data availability

20% Testing (n=235)
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Drop reductive 
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Hyperparameter grid search
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(59 models | 16200 fits per 
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consultant, general practitioner, dietician, and nurse (r range 0.12-0.45, FDR-corrected 
p<0.0001).  
 
Taken together, these analyses show that many aspects of patient data cluster together into 
relatively self-explanatory domains. Measures of abdominal pain (and FBD diagnoses made by 
the presence of pain1) cluster together. Where an aspect of patient daily life is disrupted, 
disruption to other aspects of their life is also likely. Where response to one treatment is 
identified, there is likely to be some response to another. Key here however is that such an 
approach only superficially characterizes pairwise and linear relationships between a patient 
or disease factor, a remit nonlinear machine models allow us to further interrogate. 
 

 
Figure 2. Feature correlation matrix dendrogram. Correlation matrix derived by Pearson 
correlation coefficient, and hierarchical clustering dendrogram derived by the Euclidean 
distance matrix. Darker red squares depict more positive and darker blue squares depicting 
more negative correlation coefficients between pairwise factor.  

Figure 2
Pairwise correlation & clustering
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Machine model predictions of all patient factors 

The out-of-sample test set performance breakdowns for all models across the different 
domains of data are shown compactly in Figure 3, Table 1, and Table 2, and described in greater 
detail within the supplementary material. Regression models (Figure 3A, Table 1) tasked to 
predict healthcare usage and life impact achieved the best out-of-sample predictive 
performances, with more variable performances across treatment, pain, demographic, and 
COVID-19 impact domains. These findings illustrate how healthcare requirements of a given 
individual could be relatively well determined with machine learning, plausibly applicable to 
triage systems or healthcare system planning, and similarly how impact on daily life were 
relatively easily determined also, of relevance to determining the wider impact of disease at 
both the individual and societal level, whereas predicting individual treatment response in this 
cohort was a far harder task. 
 
Classification models are shown in panel Figure 3B and Table 2, demonstrating that disease 
classification (nosology) was overall most predictable, followed by bowel habit, healthcare 
usage, pain, COVID-19 impact, and treatment data. The high classification accuracy of patient 
diagnosis is an expected finding, given the clear constellation of signs and symptoms that 
determine them4, yet the ability to accurately determine employment status, healthcare usage 
(and type of) at the individual level holds plausible value for quantifying the wider impact the 
FBDs cause, pertinent to the patient lived experience. 
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Regression model target Test set performance (R2) 

Frequency of attendance for bowel symptoms 0.71 

Impact of bowel symptoms on daily activities 0.67 

Impact of bowel symptoms on work 0.62 

Anxiety and depression severity 0.54 

Impact on ADLs 0.52 

Impact of mental health and wellbeing from the 
pandemic 

0.51 

Ease of healthcare access 0.48 

Modified PACQOL 0.46 

Effectiveness of pelvic floor or sphincter 
exercises 

0.41 

Impact on selfcare 0.39 

Effectiveness of fluid intake 0.38 

Pain severity 0.37 
Effectiveness of change to diet 0.37 

Personal health rating 0.35 

Hours of work missed for non-GI reasons 0.31 

Healthcare contact satisfaction 0.30 

Age 0.29 

Impact on mobility 0.29 

Impact of sleep from the pandemic 0.23 

Effectiveness of footstool use during defecation 0.18 

Hours per week worked 0.17 

Effectiveness of laxatives 0.16 

Bowel symptoms during the pandemic 0.15 

Effectiveness of probiotics 0.10 

Effectiveness of enemas 0.09 

Effectiveness of suppositories 0.08 
 
Table 1. Out of sample test set performances for regression models. Model performance is 
given by R2 value, where a higher value indicates greater predictability from the remaining 
patient data. 
 
 
 
 
 
 
 
 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.24301624doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.23.24301624
http://creativecommons.org/licenses/by/4.0/


14 

Classification model target Test set performance  
(balanced accuracy %) 

Diagnosis – IBS, and if IBS-D, IBS-M, IBS-C  100% 

Employment status 96% 

If suffering from diarrhea or constipation 88% 

If seen by a GP for FBD 88% 

If suffering from abdominal pain 83% 

If required healthcare access for bowel reasons 
during the pandemic 

81% 

If seen by a specialist hospital nurse 78% 

Presence of abdominal pain for six months or 
more 

77% 

If seen by a medical consultant for FBD 77% 

If suffering with evacuation difficulty 76% 

Change in stool types related to abdominal pain 75% 

Abdominal pain related to bowel movements 73% 

Irrigation use 73% 

If diagnosed as IBS by a doctor specifically 70% 

Diagnosis - functional constipation 69% 

Diagnosis - fecal incontinence  61% 

Diagnosis - functional diarrhea 52% 

Sex 51% 
 
Table 2. Out of sample test set performances for classification models. Model performance 
is given by percentage balanced accuracy, where a higher value indicates greater predictability 
from the remaining patient data. 
 
A key advantage of machine learning is its ability to undertake feature selection, automatically 
choosing the greatest determinants of a given modelling target to build the best performing 
model. In reviewing the feature importance and contributions across all model targets, it 
transpired that whilst patient factors of life impact, demographics, and bowel habit, were 
commonly selected by XGBoost, rarely was the patient’s diagnostic label, suggestive that 
diagnosis was in fact minimally helpful in predicting wider patient factors (Figure 3C). 
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Figure 3. Machine model performances and feature importance across all domains. A) 
Test-set performance for regression models (in R2). B) Test-set performance for classification 
models (in % balanced accuracy). C) Feature occurrence across all modelling tasks, 
illustrating the frequent use of life impact measures in machine model predictions, where 
diagnostic (nosological) data use was uncommon. All panels are stratified and color-coded by 
domain of data as shown on the y-axes. 

Determinants of symptom burden and quality of life 

Models predicted symptom burden and quality of life measures relatively well, relying 
predominantly on life-impact, mental wellbeing, and age to determine them, but importantly 
not diagnostic label. We provide a breakdown of performant models in determining symptom 
burden and quality of life metrics with SHAP plots in Figure 4, also further discussed within 
the supplementary material.  
 

 

 
Figure 4. Determinants of symptom burden and quality of life. SHAP plots for machine 
learning models quantifying patient A) personal health rating, B) pain severity, C) anxiety and 
depression severity, and D) modified PACQOL. Out-of-sample performance is shown by R2 and 
mean absolute error (MAE). Only the top 5 predictive factors of each target are shown for 
visualization purposes. For each panel, each point represents a patient, and each row an input 
feature to the model, where positive x-axis values depict positive impact on the model output, 
and redder points depict higher feature values. For example, panel A) shows the top predictive 
feature for personal health rating to be impact on ADLs, where a greater (i.e., more 
detrimental) impact on ADLs were associated with the patient reporting a lower (i.e., worse) 
personal health rating. Diagnosis was not selected by the models as informative in their 
prediction. 

A B C

Figure 3

Figure 4 Symptom and QOL burdens
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Determinants of life impact from functional bowel disorders 

Models predicted life impact targets highly accurately, determined largely by hospital 
attendance data, employment status, other life impact measures, mental wellbeing, and pain 
data, but not diagnostic label. We provide a breakdown of performant models in determining 
life impact with SHAP plots in Figure 5 and is further discussed within the supplementary 
material.  

 
 

 
 
Figure 5. Determinants of life impact. SHAP plots for machine learning models quantifying 
patient A) employment status, B) impact of bowel symptoms on daily activities, C) frequency of 
healthcare attendance for bowel symptoms, and D) impact of mental health and wellbeing from 
the pandemic. Out-of-sample performance is shown by % balanced accuracy and AUROC for 
classification models (A), with R2 and mean absolute error (MAE) for regression models (B-D). 
Only the top 5 predictive factors of each target are shown for visualization purposes. A 
description of interpreting SHAP plots is given in the legend to Figure 4. Diagnosis was not 
selected by the models as informative in their prediction. 

Determinants of patient-reported treatment effectiveness 

Model performance in predicting patient-perceived treatment effectiveness was more variable. 
Despite variable performance, patient-reported treatment response to one intervention was 
largely predictive for response to another. Conversely, those refractory to one intervention 
were likely to be refractory to others. We provide a breakdown of performant models in 
determining patient-perceived treatment effectiveness with SHAP plots in Figure 6. 

 
 
 
 
 
 
 

Figure 5 Symptom and QOL burdens
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Figure 6. Determinants of treatment response. SHAP plots for machine learning models 
predicting effectiveness of A) laxatives, B) dietary changes, C) footstool usage during 
defecation, D) fluid intake changes, E) pelvic floor or sphincter exercises, F) probiotics, G) 
suppositories, and H) enemas. Out-of-sample performance is shown by R2 and mean absolute 
error (MAE). Only the top 5 predictive factors of each target are shown for visualization 
purposes. A description of interpreting SHAP plots is given in the legend to Figure 4. Diagnosis 
only features in one of eight treatment models, where predictive performance was also notably 
poor (panel G). 
 
The foregoing analyses illuminate relationships between singular aspects of the patient lived 
experience. Whilst disclosing non-linear and higher-order relationships between sets of 
factors in predicting another, the approach lacks an all-encompassing compact summary of 
the patient lived experience that only an unsupervised approach could offer. This is best 
approximated by a generative model of a network. A nested generative stochastic block model 
comprising all factors as nodes, with weighted directed edges as feature contributions to each 
machine model, revealed a sophisticated community structure of patient factors (Figure 7). 
This was broadly organized into the domains of nosology, life impact, treatment effects, and 
symptomology. The network structure reiterated the importance of symptom and life impact 
factors, as opposed to those related to diagnosis.  
 

A
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Figure 7. A generative network community structure for the lived experience of functional 
bowel disorders. Radial network of the nested, generative Bayesian stochastic block model 
community structure of patient factors. Nodes are individual circles with corresponding text 
label, sized according to their importance in predicting all other target nodes. Edges are 
weighted by the directional feature importance in predicting one feature over another, where 
edge width and color is proportional to the key. Node communities are similarly color coded 
as per the key at the second hierarchical level. Supplementary Figure 2 accompanies this 
figure with additional results. 
 
We extracted the weighted eigenvector, hub, authority, and centrality metrics of each 
community block at the second nested level. Eigenvector centrality is a measure of a node’s 
‘influence’ across the whole network29. The Hyperlink-Induced Topic Search (HITS) is a 
centrality algorithm historically developed for rating world-wide web pages, stemming from 
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the observation that when the internet was originally forming, certain web pages operated as 
large directories – hubs – yet were not authoritative with respect to information contained 
within them, although were indeed helpful as catalogues to direct people to the authoritative 
pages30,31. Framed differently, a ‘good hub’ of a network of the internet is one that points to 
many other pages, whilst a ‘good authority’ would be a page linked by many different hubs32.  
 
Analysis of our network found the node community consisting of constipation or diarrheal 
disease nosology had significantly greater hub centrality than all other node blocks (the 
measure of how often a node links to other factors irrespective of how informative or 
authoritative it may be) (one-way ANOVA with post-hoc Tukey p<0.0001) (Figure 8). Meanwhile, 
two communities consisting of treatment effects and life impact measures had significantly 
greater eigenvector centrality (the measure of a node’s ‘influence’ across the whole network) 
(one-way ANOVA with post-hoc Tukey p<0.0001). Similarly, the node community of treatment 
effectiveness related to probiotic and laxatives, and node community related to life impact, both 
yielded significantly greater authority centrality (the measure of how informative and 
authoritative a node is to the remaining network) (one-way ANOVA with post-hoc Tukey 
p<0.0001). 
 

 
 
Figure 8. Diagnoses are hubs, but life impacts and treatment effects are authorities and 
influencers. Box and whisker plots illustrating centrality metrics of A) the nosology node 
community from the nested stochastic block model comprising if the patient suffers from 
diarrhea, constipation, or any form of evacuatory difficulty; B) life-impact including to self-care, 
mobility, ability to work, healthcare access and mental wellbeing; C) the treatment effectivity 
node community comprising the effects of probiotics, effects of laxatives, and also a diagnosis 
of functional diarrhea; and D) the treatment effectivity node community comprising the effects 
of pelvic floor/sphincter exercises, dietary or fluid changes, and footstool use during 
defecation. Refer to Figure 7 for radial representation of this network community structure. 
**** denotes a post-hoc Tukey significance test of p<0.0001 following one-way ANOVA.  
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Discussion 

The lived experience of functional bowel disorders 

Modern medicine has become an algorithmic science: the clinician assesses symptoms, 
orders tests, and classifies the illness into a diagnostic category on which therapy is based. In 
FBDs there are no objective measures that sub-classify patients based on pathophysiology; 
instead, symptom-based classifications are crafted to aid management. Whilst this can be 
helpful, it may over-simplify the portrayal of a complex multi-dimensional condition. We have 
conducted a holistic characterization of a large cohort of patients with FBD using a multi-
dimensional machine learning approach without prior assumptions on the determinants of the 
lived experience. The main pertinent findings are twofold: 
 
(1) we reveal in unprecedented detail the determinants of patient-reported symptom burden, 
quality of-life, life impact, and treatment effectiveness, as well as providing the framework for 
predicting them. These determinants are, in many ways, at odds with what we, as healthcare 
professionals, often assign as the determinants of health and wellbeing; examples are 
discussed below.  
 
(2) Our network analysis, summarizing the output of a comprehensive machine modelling 
framework, reveals the high-dimensional community structure of these patient factors. This 
process formally quantifies that, whilst the nosological domains of disease we categorize 
patients with are network hubs that link many aspects of patient health and wellbeing, they are 
poorly influential (or authoritative) in describing the broader aspects of patient health. Rather, 
it is a focus on patient-reported treatment effectiveness and impact on a patient’s daily life that 
are instead quantitatively authoritative and influential.  
 
The value in developing a suite of machine models to predict these characteristics is not merely 
the depiction of those with high performance (which is often the case in machine learning 
research). Rather, the process illuminates what can, but equally importantly what also cannot, 
be determined from data routinely available in a clinical setting. It should come as no surprise 
that a diagnosis of IBS can be predicted perfectly from metrics of abdominal pain and 
gastrointestinal disturbance: these factors are definitional for a diagnosis of IBS by current 
classification systems2,4. More important however is the fidelity of models to ascertain other 
aspects of patient health, such as the effect of young age or employment status, which are not 
as intuitive. 

The determinants of patient health and well-being 

Machine learning models are often described as sophisticated in their ability to formulate a 
decision based on nonlinear interactions amongst complex multivariate data11,12, but the reality 
is that the healthcare professional reviewing a patient undertakes similar processes to inform 
their clinical decision making11. To that end, we have described the determinants of ill health 
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from the perspective of the patient, such that these factors can be considered in the clinical 
consultation. 

Symptom burden and quality of life 

We find that the rating a patient ascribes to their personal health is not principally determined 
by severity of gastrointestinal symptoms or diagnosis, but instead by the impact of disease on 
their daily life, the presence of anxiety and depression, and being ill at a younger age. Whilst 
most of these factors are intuitive and unsurprising, the effect of young age on perception of 
well-being has not been previously highlighted. 
 
The greatest determinants of patient-reported pain severity were the impact of illness on daily 
life activities, the presence of anxiety and depression, and the patient’s personal health rating. 
Quality of life was best determined by impact of the illness on daily activities, the presence of 
anxiety and depression, and the impact of bowel symptoms on work. These results formalize 
the importance of considering not only the gastrointestinal symptoms of FBDs, but rather the 
impact they exert on patient life.  
 
Other than in suppository use for if there was a diagnosis of IBS-C (a trivial association), the 
diagnostic label that we as healthcare professionals assign to these patients as part of ‘best 
practice’ did not feature as a top 5 determinant for any machine model. Indeed, none of the top 
five determinants of a patient’s health rating specifically interrogated gastrointestinal 
symptoms, emphasizing the importance of quantifying the impact of life factors (such as 
employment and daily life) and mental wellbeing throughout their routine clinical care. 

Life impact 

Patient employment status could be determined by a machine learning model (the model 
correctly predicted employment status in 229 of 235 out-of-sample test cases). The greatest 
determinant of employment status was, by some distance, the degree of impact of bowel 
symptoms on daily activity. Conversely, the greatest determinant of patient-reported impact of 
bowel symptoms on daily activities was unemployment. It therefore seems reasonable to 
suggest simply ascertaining employment status is an especially strong predictor of life impact 
measures and something that should be considered in every consultation.  
 
One of the highest performing machine models were in delineating the frequency of patient 
healthcare attendance for bowel symptoms (which achieved an out of sample R2 of 0.71). The 
greatest determinants of healthcare attendance were the hours of work missed, whether the 
patient had already been seen by a GP, the impact to their mental health, employment status, 
and if seen by a medical consultant before. Vitally, the determinants of patient frequency of 
healthcare attendance for bowel symptoms were not predicted by bowel symptomology, but 
instead a combination of healthcare access/gatekeeping (i.e., if already known to the service), 
impact on employment and life, as well as mental wellbeing. This is in keeping with the 
previously known evidence of healthcare seeking in IBS33,34. Naturally, the ability to quantify 
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healthcare requirements is important, with implications in designing and budgeting for 
healthcare service provisions35.  
 
Lastly, we briefly draw focus to our model predicting the impact of mental health and wellbeing 
during the COVID-19 pandemic. The strongest determinants in this cohort were frequency of 
attendance for bowel symptoms. Put another way, mental health in this FBD population was 
most greatly affected by the ability to access healthcare during a time at which the health 
service was under particular strain. This finding conveys the priority we should place in 
maximizing patient healthcare access to safeguard mental wellbeing.  

Treatment effectiveness 

Several models aimed to quantify patient-reported effectiveness of routinely provided FBD 
treatments, both medicinal (laxatives, enemas, suppositories, probiotics) and non-medicinal 
(dietary or fluid changes, footstool use during defecation, and pelvic floor/sphincter exercises). 
We would be wary of drawing conclusions in comparing the effectiveness of certain treatments 
over another, for the study was not designed as a clinical trial to facilitate this. However, the 
key insight was in the determinants of patient-reported treatment effectiveness. Namely, the 
greatest determinant of patient response to any treatment was patient response to any other. 
Once again, symptomatology, and disease classification were minimally predictive of treatment 
response, but other factors (social, psychological, and comorbid) combined to create, in some 
patients, a state of refractoriness. It is these patients, who respond poorly to all treatments 
that are seen in secondary and tertiary care and require a holistic approach. More research is 
needed to understand refractoriness in FBD. 

The interacting structure of patient health and well-being 

We harmonized the findings to construct a Bayesian generative network revealing the 
community structure of factors affecting those living with FBDs. Broadly, these feature 
communities coalesce to nosology, life impact, treatment effects, and symptomology. 
Interestingly however, we show that the nosological branch of these factors – i.e., the domains 
of disease leading to diagnostic labels we assign to these patients – are ‘hubs’ in this network 
(a feature that points to many other) but are in fact minimally influential29,30,36. Instead, it is the 
communities of life impact and treatment effectiveness that are quantitatively more influential 
(with higher eigenvector centrality) and authoritative (with higher authority centrality) in the 
remaining aspects of their health. Taken together, these findings suggest that the assignment 
of disease labels to these patients is in fact often minimally helpful in disclosing or influencing 
the broader FBD lived experience, as shown elsewhere in the comparison of constipation-
predominant irritable bowel syndrome and functional constipation2,37. Instead, we should place 
greater efforts to reducing life impacts and improving treatment effects through a holistic 
approach. 
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Study limitations 

The study quantified a breadth of patient factors feasibly acquired during routine clinical care, 
ranging from demographic, diagnostic, symptomology, quality of life, healthcare access, and 
patient-reported effectiveness of regularly given treatments. One limitation is that we did not 
quantify more comprehensive and/or specialist investigations (e.g., microbiota, 
gastrointestinal imaging, genetic, or an exhaustive list of comorbidity data) since this would 
have limited applicability and generalizability of the findings to centers in which these are not 
part of routine care. To our strength, in maximizing the quantification of variables that are 
routinely available, we were able to sample a large cohort from which we could construct a 
suite of machine learning models with proven fidelity that could be evaluated and/or deployed 
in similar centers.  
 
Secondly, the study was not designed to clinically trial specific treatments. Rather, it was 
designed as a cross-sectional study, where patients could self-report the effectiveness of the 
range of therapies they had experienced throughout their care. This limits inference that could 
be drawn from an experimental allocation i.e., a randomized controlled trial, but it does 
quantify the response to treatment with explicit emphasis on the individual patient experience 
(as opposed to any biochemical/investigatory endpoint). In any case, our emphasis was to 
illuminate the determinants of patient-reported response to treatment in general, as opposed 
to quantifying the superiority/non-inferiority of one treatment over another. 
 
Thirdly, our study was not designed to investigate directional effects. One might suggest a 
plausible directionality of impaired GI health leading to a triad of increased healthcare 
utilization, loss of productivity/employment, and worsening QoL/mental wellbeing, but must 
conform to the appropriate criteria for establishing causality38. An additional analytical route 
would be the use of dedicated causal inference, a task for future research39. 

Conclusion 

We characterize the lived experience of FBDs with a machine learning approach. Our 
framework reveals new insights into the determinants of patient-reported symptom burden, 
quality of-life, impact on daily life, and treatment effectiveness in a large representative cohort. 
These determinants are often at odds with what we, as healthcare professionals, typically pre-
suppose are the greatest determinants of patient reported health. Instead of disease 
classification or symptom severity, this was defined by the impact on daily life, by employment 
status, access to healthcare, and mental wellbeing. To safeguard mental wellbeing, patient 
access to healthcare must be attainable and a holistic approach to the consultation is required. 
Patients tend to be responsive to multiple therapies or refractory to all, and a deeper 
understanding of refractoriness should form a future research priority. 
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2 

Method 

Algorithmic approach 

Handling of data missingness 

In line with standard practices, we removed patients with missing data for >40% of feature 
columns (n=1), and conversely removed features with missing data for >40% of patients (f=19), 
resulting in 59 features. We established that the data was  missing at random (MAR), and used 
multivariate imputation via chained equations (MICE)1 with predictive mean matching, 50 
multiple imputations and 50 iterations (i.e., x10 the default for each), to impute remaining 
missing values. 

Visualization of the patient-feature space 

We next created a visualization of the feature space across all patient domains of demographic, 
nosological, pain, bowel habit, treatment, life impact, healthcare, and COVID-19, in the form of 
a cluster map. We computed the pairwise Pearson correlation matrix of all features and 
performed hierarchical clustering by Euclidean distance metrics to produce a dendrogram2-5. 
P values were adjusted by False Discovery Rate6. For cross-group comparisons, including 
patient reported treatment effectivity, we conducted one-way ANOVAs were post-hoc Tukey 
testing. 

Machine learning 

While Euclidean distance derived dendrograms can display linear, pairwise feature 
relationships, we anticipated that FBD complexity would necessitate machine learning models 
capable of capturing non-linear, interacting relationships within the feature space.  

Data pre-processing 

We partitioned data into 80:20 train (n=940) and test (n=235) sets; the latter was completely 
held out and evaluated only after complete development of all models. All hyperparameter 
optimisation was performed using cross-validation in the training set only.  
 
To avoid trivially reductive predictions, we removed features that were directly related to the 
target with regular expression. For example, if the target involved irrigation, all predictive 
features involving irrigation were dropped. We retained features that were explicitly related to 
a given diagnosis (e.g., the presence of abdominal pain when predicting IBS) to be used as 
benchmark models ensuring appropriate fidelity with the modelling architectures and 
hyperparameters7,8. 
 
Targets where the class imbalance exceeded 20:1 were excluded entirely due to insufficient 
data support. For those remaining, we used Synthetic Minority Over-sampling (SMOTE) to 
handle class imbalances9, a well-established technique that oversamples the minority class 
by creating new cases over a learnt linear manifold9. All data were clamped along the 0.1th 
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and 99.9th percentile and normalised to limit influence of extreme outliers and variance of 
scale, in line with standard practices.  

Model training 

For all predictive modelling, we used eXtreme Gradient Boosting (XGBoost)10, an architecture 
that employs a parallel ensemble of gradient boosted weak-learner decision trees, which has 
shown superior performance in multiple machine learning tasks10. Models were constructed 
as classifiers for categorical targets, and regressors for continuous targets. All training runs 
of a single XGBoost model (for one given target, e.g., patient sex) were undertaken with 5-fold 
cross-validation, and hyperparameters were optimised by gridsearch across learning rate, 
number of estimators, maximum depth, subsampling, gamma, and the minimum sum of the 
instance weight (inside the 80% training data partition), using negative log loss for classifiers 
and root mean squared error for regressors. This required 16,200 individual model fits per 
target, which across all 59 targets equated to 955,800 model fits, which took approximately 4 
days on a NVIDIA 2080Ti GPU.  

Feature importance 

We derived feature importance scores for all model runs by the number of times a feature is 
used to split the data across all trees (i.e., the XGBoost default10), as well as feature 
directionality with SHapley Additive exPlanations (SHAP)11. 

Out of sample evaluation 

After identifying the optimum fit, we evaluated model performance on the test set, for 
classifiers deriving the balanced accuracy, precision, recall, and F1 (all macro-averaged), and 
for regressors deriving the mean absolute error, mean squared error, RMSE, and R2. MAE and 
MSE were reported as a function of normalised and z-scored targets to facilitate performance 
comparison across targets with varying ranges (e.g., the age range was 20-85 years, whereas 
personal health rating was between 6-100). 

Bayesian generative graph models of complex nonlinear feature relationships 

The foregoing analyses characterise feature relationships criterion on predicting a singular 
task: the gender of a patient, their quality of life, burden of disease, et cetera. Whilst innovative 
in disclosing the non-linear and interacting relationships between sets of features in predicting 
another, the approach lacks an all-encompassing compact summary that only an 
unsupervised approach could offer. To that end we turned to graph theory for our solution. 
Graph theory provides a powerful method of modelling complex systems that combines 
flexibility with intelligibility12-17. It treats individual factors of interest as the “nodes” of a 
network, and their interactions as the connections, or “edges”, between them. Here, nodes 
were all patient features, and edges were the feature importance indices from XGBoost 
predictive models, the importance metric of one feature in predicting another. The value in this 
approach over simple metrics of pairwise similarity (e.g., correlation), is that each edge 
between features captures the importance of that feature in predicting another. This 
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definitionally incorporates the impact of other features in the graph to yield a high-dimensional 
community structure, whilst formally implementing Occam’s razor by Bayesian inference17. 
 
We evaluated the community structure of this graph with a non-parametric Bayesian 
hierarchical weighted stochastic block model. Having derived a community structure of patient 
features, we extracted block partitions and derived weighted centrality metrics. These 
centrality metrics were: i) eigenvector (a measure of node ‘influence’ on the overall graph), ii) 
authority centrality (a measure of node authority in information to other nodes), and iii) hub 
centrality (a measure of the propensity for a node to link many other nodes). The full 
mathematical derivation of these metrics is beyond the scope of this article, but well 
established, and discussed in significantly further detail elsewhere2,12,13,18-20. 
 
A stochastic block model (SBM)21 is a generative model of the community structure of a graph 
composed of 𝑁 nodes, divided into 𝐵 blocks with edges 𝑒!" between blocks 𝑟 and 𝑠. The model 
can be framed hierarchically, where edge counts 𝑒!" form block multigraphs with nodes 
corresponding to individual blocks and edge counts arising as edge multiplicities between 
block pairs, including self-loops. We seek to infer the most plausible partition (𝑏𝑖)	of the nodes, 
where (𝑏$) ∈ 	 [1, 𝐵]% identifies the block membership of node 𝑖 in observed network 𝐺, with 
maximisation of the posterior likelihood 𝑃(𝐺|(𝑏$)). The result is a hierarchically organised 
community structure of nodes assigned into blocks that yields the most compact 
representation of the graph, as indexed by its minimum description length22, ∑. The general 
approach is described in further detail elsewhere21. Directed feature importance weights were 
modelled as exponential. Having initialised a fit, we used simulated annealing to further 
optimise it, with a default inverse temperature of 1 to 10. We did not specify a finite number of 
draws, rather we specified a wait step of 1000 iterations for a record-breaking event, to ensure 
that equilibration was driven by changes in the entropy criterion, instead of driven by a finite 
number of iterations, as per2,12,23. 

Software 

Analyses were predominantly performed within a Python (version 3.6.9) environment with the 
following software packages: graph-tool24, imblearn25, Matplotlib26, NumPy27, pandas28, 
SciPy4,29, Scikit-learn29, seaborn3, SHAP11 and XGBoost10. MICE was performed in R (version 
4.1.3)1. 

Hardware 

Analyses were predominantly performed on a local 32-core Linux workstation housing 135Gb 
of RAM and an NVIDIA 2080Ti GPU. 
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Results 

 

Supplementary Figure 1: Machine model performances and feature importance heatmaps. 

Heatmaps of a) regression, and b) classification machine models, where target is shown on 
the y-axis, and input feature is shown across the x-axis. In regression models (a), y-axis target 
order is per the out-of-sample R2 performance, whereas in classification models (b), order is 
by out-of-sample balanced accuracy (bracketed values). Input features across the x-axes are 
coloured by the XGBoost feature importance index, with darker squares more important in 
target prediction. X-axis is sorted by mean-feature importance: features with higher mean 
importance scores in predicting the y-axis target tend to the left side of the heatmap. 

 
 

Supplementary 1
A
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Symptom burden and quality of life 

First, a machine model could predict a patient’s personal health rating an out-of-sample 
performance of R2 of 0.35 and MAE of 0.34. The top five determinants of personal health rating 
were, in descending order: i) impact on ADLs, ii) anxiety and depression severity, iii) age, iv) 
impact on selfcare, and v) modified PACQOL. A machine model could predict pain severity with 
an out-of-sample performance of R2 of 0.37 and MAE of 0.33. The five most predictive 
determinants of patient-reported pain severity were, in descending order: i) impact on mobility, 
ii) impact on ADLs, iii) modified PACQOL, iv) personal health rating, and v) anxiety and 
depression severity. A machine model could also predict anxiety and depression severity with 
an out-of-sample performance of R2 of 0.54 and MAE of 0.38. The five most predictive 
determinants of anxiety and depression severity were, in descending order: i) modified 
PACQOL, ii) impact on ADLs, iii) personal health rating, iv) impact of mental health and 
wellbeing from the pandemic, and v) impact of bowel symptoms on daily activities. Lastly, a 
machine model could predict PACQOL with an out-of-sample performance of R2 of 0.46 and 
MAE of 0.37. The five most predictive determinants of PACQOL were, in descending order: i) 
impact on ADLs, ii) anxiety and depression severity, iii) impact of bowel symptoms on work, iv) 
impact of bowel symptoms on daily activity, and v) personal health rating.  

Life impact from functional bowel disorders 

A machine model could predict patient employment status with an out-of-sample balanced 
accuracy of 96% and AUROC 0.96. The five most predictive determinants employment status 
were, in descending order: i) impact of bowel symptoms on daily activities, ii) impact of bowel 
symptoms on work, iii) impact of mental health and wellbeing from the pandemic, iv) hours of 
work missed for non-GI reasons, and v) frequency of attendance for bowel symptoms. A 
machine model could predict the impact of bowel symptoms on daily activities with an out-of-
sample performance of R2 of 0.67 and MAE of 0.18. The five most predictive determinants of 
impact on daily activities from bowel symptoms were, in descending order: i) employment 
status, ii) modified PACQOL, iii) faecal incontinence, iv) personal health rating, and v) pain 
severity. A machine learning model could predict frequency of patient attendance for bowel 
symptoms with an out-of-sample performance of R2 of 0.71 and MAE of 0.28. The five most 
predictive determinants of attendance were, in descending order: i) hours of work missed for 
non-GI reasons, ii) if already seen by a GP, iii) impact of mental health and wellbeing during 
the pandemic, iv) employment status, and v) if previously seen by a medical consultant. Lastly, 
a machine learning model could predict impact of patient mental health from the pandemic 
with an out-of-sample performance of R2 of 0.51 and MAE of 0.26. The five most predictive 
determinants of mental health and wellbeing during the pandemic were, in descending order: 
i) frequency of attendance for bowel symptoms, ii) anxiety and depression severity, iii) impact 
of sleep from the pandemic, iv) effectiveness of pelvic floor or sphincter exercises, and v) if 
seen by a GP.  
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Treatment effectiveness 

Patient reported effectiveness of laxatives could be predicted with an out-of-sample 
performance of R2 of 0.16 and MAE of 0.57. The five most predictive determinants of laxative 
effectiveness were, in descending order: i) effectiveness of footstool use during defaecation, ii) 
effectiveness of pelvic floor or sphincter exercises, iii) modified PACQOL, iv) effectiveness of 
change to fluid intake, and v) frequency of attendance for bowel symptoms. Effectiveness of 
diet changes could be predicted with an out-of-sample performance of R2 of 0.37 and MAE of 
0.47. The five most predictive determinants of diet change effectiveness were, in descending 
order: i) effectiveness of change to fluid intake, ii) pain severity, iii) impact on mobility, iv) 
frequency of attendance for bowel symptoms and v) effectiveness of footstool use during 
defaecation. Meanwhile, effectiveness of footstool use during defaecation could be predicted 
with an out-of-sample performance of R2 of 0.18 and MAE of 0.66. The five most predictive 
determinants of footstool effectiveness were, in descending order: i) effectiveness of pelvic 
floor or sphincter exercises, ii) laxative effectiveness, iii) personal health rating, iv) impact of 
mental health and wellbeing during the pandemic, and v) effectiveness of change to diet. 
 
Patient reported effectiveness of changes to fluid intake could be predicted with an out-of-
sample performance of R2 of 0.38 and MAE of 0.45. The five most predictive determinants of 
effectiveness in modifying fluid intake were, in descending order: i) effectiveness of change to 
diet, ii) effectiveness of pelvic floor or sphincter exercises, iii) effectiveness of probiotics, iv) 
abdominal pain, and v) impact of sleep from the pandemic. Patient reported effectiveness of 
pelvic floor or sphincter exercises could be predicted with an out-of-sample performance of 
R2 of 0.41 and MAE of 0.46. The five most predictive determinants of effectiveness in pelvic floor 
or sphincter exercises were, in descending order: i) impact of mental health and wellbeing 
from the pandemic, ii) effectiveness of footstool use during defaecation, iii) effectiveness of 
fluid intake changes, iv) modified PACQOL, and v) effectiveness of laxatives. Lastly, patient 
reported effectiveness of probiotics, suppositories, and enemas could only be predicted with 
an out-of-sample performance of R2 of 0.10 and MAE of 0.42; R2 of 0.08 and MAE of 0.20; and 
R2 of 0.09 and MAE of 0.11, respectively. The five most predictive determinants of effectiveness 
in probiotic use were, in descending order: i) effectiveness of change to fluid intake ii) frequency 
of attendance for bowel symptoms, iii) effectiveness of change to diet, iv) impact of mental 
health and wellbeing during the pandemic, and v) pain severity. Relatively few patients reported 
effects with enemas and suppositories, so were wary of drawing much inference as to their 
determinants of positive effect. For completion, we provide these in Figure 6, but would suggest 
some caution in their interpretation by virtue of the smaller sampling size). 

Generative graph community structure 

Model entropy, a goodness of fit criterion) was -635.54 nats after MCMC by simulated 
annealing, with iteration curve indicative of model convergence (Supplementary Figure 2). 
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Supplementary Figure 2.  Line-plot of stochastic block model entropy withs simulated 
annealing. 
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