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Abstract

Acute hypoxemic respiratory failure (RF) occurs frequently in critically ill patients and is associated with
substantial morbidity, mortality and increased resource use. We used machine learning to create a
comprehensive monitoring system to assist intensive care unit (ICU) physicians in managing acute RF. The
system encompasses early detection and ongoing monitoring of acute hypoxemic RF, assessment of
readiness for tracheal extubation and prediction of the risk of extubation failure. In study patients, the model
predicted 80% of RF events at a precision of 45%, with 65% of RF events identified more than 10 hours
before RF onset. System predictive performance was significantly higher than standard clinical monitoring
based on the patient's oxygenation index and was successfully validated in an external cohort of ICU
patients. We have demonstrated how the estimated risk of extubation failure (EF) could facilitate prevention
of both, extubation failure and unnecessarily prolonged mechanical ventilation. Furthermore, we illustrated
how machine-learning-based monitoring of RF risk, along with the necessity for mechanical ventilation and
extubation readiness on a patient-by-patient basis, can facilitate resource planning for mechanical
ventilation in the ICU. Specifically, our model predicted ICU-level ventilator use within 8 to 16 hours into the
future, with a mean absolute error of 0.4 ventilators per 10 patients of effective ICU capacity.

Introduction

Acute hypoxemic respiratory failure (RF) is a common occurrence in intensive care unit (ICU) patients and
is associated with high morbidity, mortality and high resource use1,2. Hypoxemic RF (Type I RF) is the most
common type of respiratory failure3 and its severity is defined by the P/F (PaO2/FiO2) ratio, with values
below 200 mmHg corresponding to moderate and below 100 mmHg to severe RF. Treating patients with RF
involves a sequence of clinical evaluations, including identifying RF and the need for mechanical
ventilation, monitoring the recovery of lung function, determining the right time to stop mechanical
ventilation, and assessing the risk of complications after tracheal extubation.
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For optimal clinical decision-making, it is paramount to continuously monitor the patient's clinical state in an
attempt to predict their future clinical course. ICU physicians base their treatment decisions mostly on
intermittent clinical assessments and trend evaluation of monitored vital signs stored in electronic patient
data management systems. In the increasingly complex ICU environment, clinicians are confronted with
large amounts of data from a multitude of monitoring systems of numerous patients. The quantity of data
and the possibility of artifacts increases the risk that clinicians will not readily recognize, interpret, and act
upon relevant information, potentially contributing to suboptimal patient outcomes and increased ICU
resource expenditure4 compared to optimal care. Large datasets involving multiple data points on many
patients are ideal for automatic processing by machine learning (ML) algorithms5,6. To facilitate such
advancements, we previously published the High time Resolution Intensive care unit (HiRID) Dataset ,
which encompasses approximately 34,000 ICU admissions12. ML has been used to develop decision
support systems for various conditions in the ICU, such as acute respiratory distress syndrome (ARDS)7–11,
circulatory failure12, sepsis13–15, and renal failure16.

We aimed to develop a comprehensive, ML-based respiratory monitoring system (RMS), consisting of
multiple subsystems to simplify and expedite the management of individual patients with RF and to optimize
ICU resource planning. For individual patients, the system predicts the risk of hypoxemic RF (RMS-RF) and
the need for mechanical ventilation (RMS-MVStart), continuously monitors changes and improvements of the
respiratory state, and predicts the remaining time of required mechanical ventilation (RMS-MVEnd) and
probability of successful extubation (RMS-EF). We investigated how using respiratory state predictions on a
patient-by-patient basis could enable estimating the future number of patients in need of mechanical
ventilation on a shift-to-shift short-term basis (resource planning). In addition, we prepare a new version of
the dataset, HiRID-II, which we anticipate will significantly expand both the number of included patients and
the range of available clinical variables.

We hypothesized that our ML-system could predict the relevant respiratory events throughout the treatment
process of individual patients accurately and early; both in the development dataset and when validated in
externally sourced data. In addition, we intended to develop a resource management support tool to predict
ICU-level future mechanical ventilator use by integrating all RMS scores across ICU patients.

Results

Preparation of an extended HiRID dataset (HiRID-II)

We present the High time Resolution Intensive care unit Dataset II (HiRID-II), a substantial update to
HiRID-I17, that will be made available1 to the research community on Physionet.org18,19. This new dataset
contains 60% more ICU admissions than its predecessor (Table 1, Extended Data Fig. 1a). Additionally,
the number of variables has increased from 209 to 310 (Extended Data Fig. 1b). The dataset was
k-anonymized in regard to age, weight, height, and gender, reducing the number of admissions from 60,503
to 55,85820. Admission dates were randomly shifted to further reduce the risk of identification of individual
patients. To allow the assessment of model generalization to the future, the dataset was divided into
temporal splits while respecting k-anonymization (Extended Data Fig. 1c). A high-resolution external
evaluation dataset, extracted from the Amsterdam UMCdb21, was used to test the generalizability of RMS to
other health care systems (Extended Data Fig. 1d). Preliminary analysis of the HiRiD-II dataset revealed
strong correlations between the occurrence of RF and EF with ICU mortality, confirming prior results1 and
motivating our proposed RMS (Extended Data Fig. 2).

1 We currently work on the approvals for the release of the newer dataset and expect to have it ready at time of
publication of the manuscript.
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Table 1: Characteristics of the HiRID-I and HiRID-II datasets. Age is reported as median and interquartile range (IQR). The
statistics were computed on the HiRID datasets after k-anonymization. HiRID-II includes also patients from HiRID-I.

Development of a continuous monitoring system for respiratory management

We developed a comprehensive ML-based respiratory monitoring system composed of four interrelated
predictive models that, together, cover the respiratory trajectory of patients. RMS-RF estimates every five
minutes the risk of moderate to severe hypoxemic respiratory failure (P/F ratio < 200mmHg) in the next 24
hours. RMS-MVStart predicts the need for mechanical ventilation, while RMS-MVEnd determines if the patients
will be ready to be liberated from ventilatory support; both tasks forecast risk within the subsequent 24
hours. Finally, RMS-EF evaluates the likelihood of successful extubation at given time points, when the
patient already meets formal criteria.

Patient state annotation and labeling. For each time point we determined if a patient is currently in
moderate or severe hypoxemic RF (P/F ratio < 200 mmHg), mechanically ventilated, or ready to be
extubated. Readiness to extubate (REXT) status at each time point was defined using a heuristic scoring
system determined by gas exchange, respiratory mechanics, hemodynamics and neurological status. A
score threshold was manually selected after inspection of the time series by an experienced ICU clinician
(Fig. 1b). At these time-points the patient could be extubated according to formal criteria, but extubation
failure can still occur. The current ventilation status was derived from the presence of ventilator-specific
parameters.

Positive labels for future RF were defined as time points when the patient was not currently in RF but would
exhibit RF in the next 24 hours (“impending RF”); while negative labels were assigned to time points when
the patient was not currently in RF and would remain stable during the next 24 hours. For every extubation
event, we determined whether it failed (reintubation necessary within 48h after extubation) and used it as
the label for extubation failure. Labels for ventilation onset and readiness to extubate prediction were
positive at time points when the patient was currently not ventilated/ready-to-extubate but would be in the
next 24 hours (Fig. 1b). In HiRID-II, 43.7% and 46.2% of all patients had RF events and required
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mechanical ventilation, respectively. The dataset contained 23,861 extubation events, of which 11.1%
extubations failed.

Continuous P/F ratio estimation. To measure PaO2, an arterial blood sample is necessary. PaO2 is
therefore only periodically available at a low temporal resolution. For continuous high-resolution hypoxemic
RF labelling, a continuous estimation of the current PaO2 is required. An underlying physiological principle
determines the binding and dissociation of oxygen and hemoglobin, yielding a sigmoid correlation between
arterial oxygen saturation (SpO2) and PaO2

24–26. A model based on the continuously available SpO2 can
therefore estimate continuous PaO2. We developed an ML algorithm to produce continuous estimates of
PaO2 based on SpO2 and other relevant variables determining the hemoglobin-oxygen dissociation curve.
The algorithm outperformed the existing non-linear Severinghaus-Ellis baseline27 for estimating PaO2

values from non-invasive SpO2 measurements (Extended Data Fig. 3). By integrating PaO2 estimates with
continuously available FiO2 data, we derived P/F ratio estimates on a five-minute time grid.

Development of RMS predictors. The RMS produces four individual scores active at different stages of
the RF management process. All four subsystems are based on manual feature engineering and
LightGBM22 predictors, similar to our previous work12. Prior analyses on HiRID-I for circulatory failure and a
related respiratory failure task have shown superior performance of LightGBM compared to other models
including deep learning12,23. The predictor for RF (RMS-RF) used 15 clinical variables (Supplemental Table
3). As in Hyland et al.12, the system triggered an alarm if the RF score exceeded a specified threshold. It
was silenced for 4 hours afterwards. The alarm system was reset when the patient recovered from an event
and could reactivate 30 minutes later. The extubation failure (RMS-EF) predictor used 20 clinical variables
(Supplemental Table 3). The RMS-RF & RMS-EF variable sets were identified separately for the two
tasks, using greedy forward selection on the validation set of five data splits. The models for ventilator use
(RMS-MVStart) and extubation readiness (RMS-MVEnd) used the union of the parameters of the two main
tasks, consisting of 26 variables in total (Supplemental Table 3).

We utilized the four risk scores to predict short-term mechanical ventilator resource requirements by
training a meta-model (Fig. 1c). The resource planning problem was divided into two sub-problems;
predicting the future ventilator use for already admitted ICU patients, and predicting the requirement for
mechanical ventilation for newly admitted non-elective patients in the near future. We excluded elective
patient admissions as their resource use is typically known well in advance (hence, no prediction is
needed). The predictor uses date and time information as well as summary statistics regarding ventilator
use and patient numbers derived from the ICU dataset. A LightGBM22 regressor was trained to solve both
sub-problems. For admitted ICU patients, it predicts the necessity for mechanical ventilation in the
short-term future, as well as the total number of ventilators required for all admitted patients as an
aggregate of the individual predictions (Fig. 1d).
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Fig. 1: Overview of the RMS decision support system for Respiratory State Management, and its extension for ICU-level resource
planning. a. Flow diagram for the development of RMS predictors at the individual patient level. Time series were extracted from
the HiRID-II dataset and gridded to a five-minute resolution, and features were computed. Respiratory
failure/ventilation/ready-to-extubate periods were annotated and machine learning labels created. b. The respiratory monitoring
system consists of four scores which are active during different time periods of the ICU stay, according to the current respiratory
and ventilation state of the patient c. Flow diagram for the development of a resource monitoring system at the ICU level. For all
current patients in the ICU, the four scores were integrated to predict the probability that a patient will require mechanical ventilation
within a future time horizon. d. Example time period of 3 months, displaying the actual number of ventilated patients and the
predicted number as estimated by RMS in the next 8 to 16 hours. e. Overview of prediction tasks solved by RMS for individual
patients (RMS-RF/RMS-EF/RMS-MVStart/RMS-MVEnd) as well as on the ICU-level. For RF, MVStart and MVEnd we provide the event
prevalences in the test set at times when the patient is stable, not ventilated, or ventilated, respectively.

Open source release All elements of the developed system (Fig. 1e), including data preprocessing,
annotation, prediction task labeling , and both training and prediction pipelines are made available under an
open source license facilitating the reproducibility and reuse of the methodology and results.

Page 5

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.01.23.24301516doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.23.24301516
http://creativecommons.org/licenses/by-nc/4.0/


RMS-RF predicted RF early with high precision and reduced false alarms compared
to clinical baselines
We developed a model that continuously evaluates the likelihood of a patient developing hypoxemic RF
within the next 24 hours, updating its predictions every five minutes throughout the ICU stay. We define RF
as a moderate or severe reduction in oxygenation, reflected by a P/F ratio below 200 mmHg. To focus on
impending deterioration, the model only generates predictions when the patient is not currently
experiencing RF. Conversely, if the patient remains stable and does not meet criteria for RF over the
subsequent 24 hours, the model recognizes a low-risk state. The early prediction of hypoxemic RF is
crucial for timely intervention and may reduce the number of unfavorable patient outcomes and improve
overall healthcare quality. By accurately forecasting these events, RMS-RF may not only improve clinical
decision-making but also allow physicians to commence treatment early, thereby mitigating the risk of more
severe respiratory complications.

The RMS-RF model achieved an area under the alarm/event precision recall curve12 (AUPRC) of 0.559 with
an alarm precision of 45% at an event recall of 80%. The model had an area under the receiver operating
characteristic curve (AUROC) of 0.839 (Extended Data Fig. 4a). We observed that RMS-RF significantly
outperformed two comparator baselines, a decision tree that uses the current value of respiratory and other
parameters (SpO2, FiO2, PaO2, Positive end-expiratory pressure (PEEP), RR, Ventilator presence, HR,
GCS) as well as a clinical threshold-based system based on the SpO2/FiO2 ratio (Fig. 2a). RMS-RF was
well calibrated, in contrast to the two baselines (Extended Data Fig. 4b). The system detected 65% and
78% of respiratory failure events at least 10 hours before they occurred when set to an event recall of 80%
and 90% respectively (Fig. 2b). Compared to the SpO2/FiO2 threshold, our system generated two-thirds
fewer false alarms per day on days without respiratory failure. (Fig. 2c). The model performance increased
with inclusion of data up to 25% of the total dataset size, while no further improvements were observed
when using more data (Extended Data Fig. 4c). Model performance was highest in patients across
cardiovascular and respiratory diagnostic groups (alarm precisions 55% and 60% at 80% event recall,
respectively). Lower performance was observed in neurologic and trauma patients (Fig. 2d). Performance
varied in groups determined by age and gender28 (Extended Data Fig. 4d/e). RMS-RF exhibited
physiologically plausible relationships between risk and clinical variables, according to SHapley Additive
exPlanations (SHAP)29 values (Fig. 2e, Extended Data Fig. 5).

The proposed RMS-RF model used a small number of physiological parameters and ventilator settings.
Slightly diminished performance was observed when the HiRID-II-based model was externally validated in
the Amsterdam UMCdb dataset21. There was no significant performance improvement observed through
retraining with local data (Fig. 2f; both have 38% alarm precision at 80% event recall). We excluded
medication variables to reduce the effect of differences in medication policies in different hospitals. A
variant of RMS-RF including medication variables (RFS-RF-p) achieved only minor gains in internal HiRID
performance (Fig. 2g) and exhibited poor transfer performance to UMCdb (Extended Data Fig. 6a).
Medication policy differences between HiRID-II and UMCdb were analyzed to investigate these drops in
transfer performance, indicating that these were generated by differences in the use of loop diuretics,
heparin, and propofol (Fig. 2g, Extended Data Fig. 6b/c).
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Fig. 2: RMS-RF: Model performance / feature inspection of the respiratory failure prediction model. a. Model performance of
RMS-RF compared with a decision-tree based clinical baseline and a threshold-based alarm system based on the current
SpO2/FiO2 ratio. b. The RMS-RF system's performance was evaluated in terms of earliness of its alarms. Specifically, this is
measured as the proportion of respiratory failure events for which it provides early warning during a fixed prior time period and
considering only events with a prior sufficient stability period. c. Comparison of generated false/true alarm counts of RMS-RF
compared with a fixed threshold alarm system, both for patients with events, and patients without events on a given day. d. Alarm
precision at event recalls of 80% and 90% of the RMS-RF model by admission diagnostic group category. The model was
re-calibrated for each sub-group using information available at admission time, to achieve a comparable event recall. e. Feature
inspection using SHAP values for the most important features for predicting respiratory failure, depicting the relationship between
feature values and SHAP values. f. External validation of RMS-RF in the Amsterdam UMCdb dataset21. Internal, transfer as well as
retrain performance in UMCdb is displayed. g. RMS-RF performance changes as the most important variables are added
incrementally to the model, for the internal HiRID setting, and the transfer setting to UMCdb. Model transfer issues between the two
hospital centers existed if medication variables were included in RMS-RF, denoted as the RMS-RF-p model variant. Markers
denote the variables included in the models, and red colors denote variables which decrease performance when added to the
model in the transfer setting.

RMS-EF predicted extubation failure with high precision and was well-calibrated

The accurate prediction of extubation failure is a critical aspect of patient management in intensive care,
enabling clinicians to make informed decisions about the ideal timing of extubation. By utilizing RMS-EF to
predict the risk of extubation failure, physicians could judiciously determine whether to proceed with or
delay extubation based on a quantifiable risk threshold, potentially reducing the likelihood of complications
associated with both, premature extubation or unnecessary prolongation of mechanical ventilation. We
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compared the developed RMS-EF predictor to a threshold-based scoring system, which counts the number
of violations of clinically established criteria for readiness to extubate at the time point when the prediction
is made (REXT status score). RMS-EF significantly outperformed the baseline (Fig. 3a) with an AUPRC of
0.535 and an AUROC of 0.865 (Extended Data Fig. 7a). We also analyzed calibration and observed a high
concordance between observed risk of extubation failure and RMS-EF with a Brier score of 0.078; in
contrast to the baseline (Fig. 3b). The precision for predicting extubation failure was 80% at a recall of 20%
indicating that RMS-EF can effectively identify the patients at highest risk. RMS-EF predicted successful
extubation at least 3h prior to the time point when extubation effectively takes place in 25% of events (Fig.
3c). As with RMS-RF, no major improvements in model performance were observed when using more than
25% of the training data (Extended Data Fig. 7b). Performance across diagnostic groups was similar, with
RMS-EF performing best in respiratory patients (Fig. 3d). We observed that the performance in female
patients and older age groups was slightly inferior (Extended Data Fig. 7c/d). As RMS-EF is based almost
exclusively on variables that are influenced by clinical policies (Fig. 3f, Extended Data Fig. 8) which likely
differ in different hospitals, it transferred poorly to the UMCdb dataset21 (External Data Fig. 7e). However, a
variant of our model can be constructed without medication variables, which transferred well to the UMCdb
dataset with slightly reduced internal performance (Fig. 3e; AUPRC 53.5% vs. 49% for HiRID). Accordingly,
the analysis of medication policies revealed major differences for ready-to-extubate patients between
HiRID-II and UMCdb (Extended Data Fig. 7f/g). SHAP value analysis30 showed that the RMS-EF risk
score was dependent on several parameters determined by treatment-policies (Fig. 3f, Extended Data
Fig. 8). Severe loss of transfer performance resulted from the inclusion of sedatives and vasopressors in
the model (Fig. 3g).
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Fig. 3: RMS-EF: Model performance analysis and feature inspection. a. Model performance compared with a baseline based
on clinically established criteria for readiness to extubate in terms of recall/precision. b. Risk calibration of the score for predicting
extubation failure at the time of extubation, compared with the baseline. c. Distribution of time span between the earliest extubation
success prediction of RMS-EF prior to the time point of successful extubation, for correctly predicted successful extubations. The
earliest time is defined as the first time point from which RMS-EF continuously predicts ‘extubation success’ while the patient is
ready-to-extubate. Red dashed lines denote the 25, 75 percentiles, and the red solid line denotes the median, respectively. d.
Performance stratified by admission diagnostic group in terms of precision at 80% and 20% recall. The model was re-calibrated for
each sub-group using information available at admission time, to achieve a comparable recall. A * next to a bar indicates
significantly different from average performance. e. Performance of the RMS-EF-lite model, which is obtained by excluding
medication variables from RMS-EF, when trained/tested on the HiRID-II dataset, transferred to the UMCdb dataset, and retrained in
the UMCdb dataset. f. Summary of SHAP value vs. variable distribution for the most important feature of each of the top 10
important variables contained in the RMS-EF model. g. Performance of the RMS-EF and RMS-EF-lite models in the internal and
transfer settings as variables are added incrementally to the model ordered by performance contribution (greedy forward selection
performance on the validation set). Red marked percentages on the orange curve denote relative performance loss in the transfer,
when adding the variable to the model. Variables are in red font if their inclusions lead to performance loss in the transfer setting.

Predicting intubation and readiness-to-extubate for individual patients

We evaluated prediction of ventilation onset (RMS-MVStart) and readiness to extubate (RMS-MVEnd) within
the next 24h also on a patient-level. We observed high discriminative performance with AUROCs of 0.914
and 0.809 (Extended Data Fig. 9a/b), event-based AUPRCs of 0.528 and 0.910 (Extended Data Fig.
9c/d), for RMS-MVStart and RMS-MVEnd respectively, and the models were well calibrated (Extended Data
Fig. 9e/f).

Integrating all RMS scores of individual patients for planning ICU-level resource
allocation

Using the predictions for the four models focusing on respiratory failure (RMS-RF), extubation failure
(RMS-EF), ventilation onset (RMS-MVStart), and readiness to extubate (RMS-MVEnd), we developed a
combined model predicting the number of ventilators in use for non-elective patients at a specific future
horizon. Preliminary analysis of the HiRID-II dataset demonstrated substantial variation in demand for
ventilators each day, underscoring the need for a model to aid resource planning (Fig. 4a).

We trained a meta-model using the four scores to predict the number of ventilators in use in the ICU at
future time horizons every hour (4-8h, 4-12h, 8-12h, 8-16h, 16-24h; Fig. 4b). We compared it with a
baseline that predicts that the number of non-elective patients requiring mechanical ventilation remains
stable. We observed that the proposed model clearly outperforms this baseline in terms of mean absolute
error (MAE), with the largest relative gain in longer prediction horizons (Fig. 4b). In 39% of time points the
model’s predictions were at least two ventilators closer to ground-truth, for predicted ventilator use in 8-16
hours (Fig. 4c/d). RMS outperformed the baseline for the majority of ICU ventilator utilization scenarios
(Fig. 4e) with the largest improvement over the baseline when the respirator use is below the maximum
capacity (Fig. 4e) and for predictions of ventilator use during day hours (Fig. 4f).
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Fig. 4: Model performance of the integrated system for resource planning (RMS) in an ICU with an effective capacity of 42
beds. a. Observed ventilator usage pattern in the HiRID-II dataset, in terms of days on which a particular number of ventilators is
used. b. Performance of RMS compared with the baseline, in terms of mean absolute error (MAE) for predicting the maximum
number of used ventilators at a fixed horizon in the future. c. Example of a typical ICU setting shown for a duration of one day,
annotated with ground-truth, RMS and baseline predictions. In the rug plot, relevant better predictions are marked for the offsets
1-4. d. RMS compared with the baseline, for different absolute differences of predictions (1-4) in the rows, for a prediction horizon
of 8-16 hours in the future. The table entries denote the proportion of time points in which either RMS or the baseline is better by at
least the difference of the row. e. Performance of RMS for different current ventilator ICU usage scenarios, ranging from low usage,
to high usage, compared with the baseline, for a prediction horizon of 8-16 hours in the future. The number of time points falling
into each bin is denoted in parentheses. f. Performance of RMS, by hour of the day when the prediction is performed, compared
with the baseline, for a prediction horizon of 8-16 hours in the future.

Explorative joint analysis of RMS scores throughout the ICU stay

We analyzed the relationship of the four RMS scores produced at each time point of the ICU stay by
embedding the most important parameters for respiratory failure and extubation failure prediction (union of
the top 10 variables identified for each task, current value feature) using t-distributed stochastic neighbor
embedding (t-SNE31) with subsequent discretization into hexes. This approach produces a two-dimensional
hex-map that defines subsets of comparable patient states that can be compared across different
characteristics, i.e. between the panels for the hex. We observed that the space is divided into two distinct
states, corresponding to time points when the patient is ventilated or not ventilated (Fig. 5a). The region of
ventilated patients is further subdivided, with patients in the upper part being more likely to be
ready-to-extubate (Fig. 5b). As expected, the ventilated and not ready-to-extubate region has the highest
observed 24h mortality (Fig. 5c). Patients experiencing respiratory failure were concentrated in a compact
region in the area corresponding to non-ventilated patients, as well as scattered throughout the area
corresponding to ventilated patients (Fig. 5d). States with high risk of future ventilation need according to
RMS-MVStart are close to the boundary of the ventilated region (Fig. 5e). Readiness to extubate scores
show a less clear pattern, but scores tend to be higher in the upper part of the ventilated region, which is
also enriched in states in which patients are ready-to-extubate (Fig. 5f). For RMS-EF, high scores are
concentrated in two distinct regions at the edge of the ventilated region (Fig. 5g). Lastly, RMS-RF scores
are high close to the boundary of patients already in respiratory failure (Fig. 5h). The median risk scores of
hexes for respiratory failure/ventilation need are strongly positively correlated with an R2 of 0.471 (Fig. 5i).
Likewise, respiratory failure and extubation failure scores were moderately positively correlated (Fig. 5j).
For RMS-EF/RMS-MVEnd scores, no correlation could be observed (Extended Data Fig. 10). For three
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exemplary hexes with predominantly (1) non-ventilated patients but high RMS-RF score, (2)
ready-to-extubate patients but high RMS-EF score, and (3) not-ready-to-extubate patients but high
RMS-RF score, the distribution of clinical parameters was analyzed, showing plausible relationships with
clinical parameters. For instance, the non-ventilated patients with the highest RF risks had low PaO2, high
(supplemental) FiO2 and high respiratory rates (Fig. 5k).

Fig. 5: Joint analysis of the four scores produced by RMS overlaid on a t-SNE embedding based on important respiratory
parameters. In all plots, x,y axes represent the two dimensions of the two-dimensional t-SNE embedding space. a. Hexes are
colored by the proportion of time points in the hex for which the patient is ventilated. b. Hexes are colored by the proportion of time
points in the hex for which the patient is ready-to-extubate given the patient is ventilated. c. Hexes are colored by observed 24h
mortality risk. d. Hexes are colored by the proportion of time points in the hex for which the patient is in respiratory failure. e-h. The
color of the hex denotes the median RMS-MVStart/RMS-MVEnd/RMS-EF/RMS-RF scores of the time points assigned to the hex,
respectively. i. Relationship of median respiratory failure score (RMS-RF) and median ventilation need score (RMS-MVStart) in hexes
for time points where both scores are active. The p-value of a Wald test for a non-zero regression line slope is 1.5ᐧ10-36. j.
Relationship of median respiratory failure score (RMS-RF) and median extubation failure score (RMS-EF) in hexes for time points
where both scores are active. The p-value of a Wald test for a non-zero regression line slope is 2.7ᐧ10-5. k. Score and input value
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distribution of time points assigned to three selected hexes for the 16 variables used as input for the t-SNE. The median is
reported, and numbers in square brackets refer to the interquartile range.

Discussion
We presented a ML-based system for the comprehensive monitoring of the respiratory state of ICU patients
(RMS). RMS consists of four highly accurate scoring models that predict the occurrence of respiratory
failure, start of mechanical ventilation, readiness to extubate as well as tracheal extubation failure. By
combining the prediction scores of all admitted patients at any time point and by accounting for the
likelihood of future admissions, RMS facilitated the accurate prediction of the near future cumulative
number of patients requiring mechanical ventilation, which may help to optimize resource allocation within
ICUs.

The HiRID-II dataset released alongside this work is a rich resource for broad-scale analyses of ICU patient
data. It represents an important advance over HiRID-I, both in terms of the number of included patients and
the number of clinical parameters that are included. Our initial analysis of the HiRID-II dataset identified
clinically significant links; both the presence and duration of respiratory failure, as well as extubation failure,
were associated with increased ICU mortality, indicating distinct yet interconnected risk factors. These
insights highlight the critical need for advanced alarm systems for clinical settings to reduce the risks
associated with respiratory and extubation failure. The release of the HiRID-II dataset on Physionet18,19 will
offer numerous opportunities for further research, allowing for more in-depth investigations into various
aspects of ICU patient care and outcomes.

RMS-RF predicts respiratory failure throughout the ICU stay, and alarms for impending failure were typically
triggered at least 10 hours before the event. This early warning has the potential for clinicians to optimise
medical therapy and potentially prevent the need for intubation. The transparent break-up of the model’s
alarm output into SHAP values of the most relevant parameters may inform clinician understanding and
guide their actions. RMS-RF outperformed a baseline representing standard clinical decision-making based
on SpO2 and FiO2, and significantly reduced the number of false alarms. It produces RF-specific alarms
and silences them within a specified period of time after the model triggers an alarm, reducing alarm
fatigue, which is a major issue for ventilator alarms32. Prior to respiratory failure, only 1.5 alarms per
patient/day were raised, which is manageable for the clinical personnel, and unlikely to cause alarm fatigue.
Reassuringly, only variables directly associated with respiratory physiology or ventilator settings were found
to be predictive of impending respiratory failure. RMS-RF demonstrated its highest precision in individuals
admitted with cardiovascular or respiratory admission diagnoses, while its performance notably declined in
neurologic patients. In these patients ventilatory management is often determined by the need to protect a
compromised airway in patients with altered levels of consciousness and not by the presence of RF per
se33. To date, few externally validated ML models continuously predicting acute respiratory failure in the ICU
have been reported. Recent works by Le et al.10, Zeiberg et al.34, and Singhal et al.35 focus on mild
respiratory failure (P/F index < 300 mmHg). Other models predict respiratory failure at the time of ICU
admission or are only valid for specific cohorts36–38.

RMS-EF predicts tracheal extubation failure and significantly outperformed a clinical baseline derived from
common clinical criteria for assessment of readiness to extubate status. The model was well calibrated,
with almost ideal concordance of the prediction score and observed risk of extubation failure. A potential
use case would be to assess the predicted failure risk to determine whether to accelerate or delay the
extubation of the patient. At 80% recall, a quarter of correctly predicted extubation successes were
recommended more than 3h before the actual extubation. This exceeds the recall of routinely used
readiness tests and suggests that our model could help clinicians to extubate patients earlier. However, in
our analysis we could not ascertain whether a patient was not extubated for reasons not apparent from the
data, such as availability of staff. For clinical use the model could also be operated at 20% recall with very
high precision (80%), to identify patients with a high likelihood that extubation will be unsuccessful. This
could caution clinicians from prematurely extubating high-risk patients. For the prediction of extubation
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failure, various models have been proposed39–44. The largest cohorts to date were used in the works by
Zhao et al.44, who only validated the model in a cardiac ICU cohort, which limits the generalizability of the
results, and Chen et al.45, who restricted the evaluation to ROC-based metrics, and do not discuss the
clinical implications of the model’s performance.

ML has previously been used to develop support systems for the management of RF patients in the ICU.
These included models for detection of ARDS7–11 and COVID-19 pneumonitis patients35,46, prediction of
readiness-to-extubate47–49, need for mechanical ventilation50,51, and detection of patient-ventilator
asynchrony52. Existing work focused on single aspects of RF management, often in specific patient cohorts
only. Our approach aims to comprehensively monitor the respiratory state throughout the RF treatment
process, by integrating relevant respiratory-system related tasks and allowing for joint analysis of risk
scores and trajectories. We believe a single and universally applicable system is much more likely to be
successfully implemented than multiple fragmented models relating to specific disease entities. A further
distinguishing feature of RMS is the five-minute time resolution at which predictions are made, enabling
longitudinal analysis of risk trajectories. The dynamic prediction, which is a central feature of our model, is
more flexible than traditional severity scores, which are evaluated at fixed time points, such as at 24 h after
ICU admission53, mainly to predict ICU mortality54.

For successful external validation of RMS-RF, it was key to exclude medication variables from the model,
as their inclusion was detrimental to model transferability. We hypothesize that this difficulty is caused by
the observed medication policy differences between centers. Interestingly, ventilator settings, while also
policy-dependent, did not compromise transfer performance in the same way. Investigating and quantifying
the underlying policy differences, which made transfer difficult, needs additional research. Model
transferability is an important topic in robust ML algorithms for ICU settings, where it has been recently
studied in risk prediction in sepsis15,55,56 and mortality57. Our results suggest that medication variables
require special attention to enable transfer. In contrast to RMS-RF, we suggest that RMS-EF to be
re-trained and fine-tuned using the data from the center where it should be applied. The policy differences
between different centers proved more detrimental to its performance than for RMS-RF.

Clinical prediction models for individual patients have been extensively studied. Resource planning in the
ICU has received little attention in the ML literature, but came into renewed focus due to the COVID-19
crisis58. The first ML-based models to predict ICU occupancy were proposed during the pandemic.
Lorenzen et al.58 predicted daily ventilator use as well as, more generally, hospitalization up to 15 days into
the future59. The RMS presented here clearly outperformed a baseline method for predicting future
ventilator use at the ICU level. With a mean absolute error of 0.39 ventilators per 10 ICU patient beds used
during the next shift (8 to 16 hours), the model is sufficiently precise for practical purposes. Since resource
allocation in the ICU depends on local policies and procedures, such a system likely needs to be retrained
for every clinical facility for reliable predictions. External validation was not feasible as all public ICU
datasets have random date offsets and therefore no information on concurrent patients in the ICU60.

In this study, we developed predictors of key aspects of respiratory state management, including RF,
extubation failure, the need for mechanical ventilation, and readiness for tracheal extubation. These
predictors collectively describe various aspects of a patient's respiratory status in the ICU which can be
used for exploratory analysis. The joint analysis and visualization of risk scores alongside other vital clinical
variables yielded discernible clusters that correspond to specific patient states, indicating the potential for
risk stratification within a patient population. We observed a separation of patient states into two main
clusters that align with ventilated and non-ventilated states, with substructures within these clusters. The
patients with highest 24h mortality risk identified on the hex-map often had depressed levels of
consciousness, were more likely to require mandatory modes of mechanical ventilation, had higher peak
airway pressure and required higher PEEP; all indicators of more severe underlying lung pathology. We
also identified a cluster of patients who are clinically ready to be extubated, and have a low risk of RF but a
very high extubation failure risk. These patients required relatively higher airway ventilation pressure and
had a low respiratory rate, which are all established risk factors for extubation failure.
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The hex-map visualization allows for the monitoring of individual patient states over time with updates, akin
to those seen in methodologies like T-DPSOM61,62. This dynamic tracking is based on the automated
integration of multiple respiratory state dimensions and uses nonlinear dimensionality reduction to provide the
position of an individual patient on the map of respiratory health states. We expect that hex-map
visualization has the potential to assist clinicians in identifying changes in patients’ clinical states, although
the practical implications of this feature require further validation. This represents a different approach to
previous work, that mainly tries to understand biological phenotypes of ARDS patients63–66 or longitudinal
sub-phenotypes of a more specific patient set, like COVID-19 patients67,68. Overall, while the hex-map
visualization provides an interesting perspective for monitoring of respiratory state in the ICU and can serve
as a tool for a more detailed exploration, the presented analysis is exploratory only. Further research is
needed to substantiate the clinical relevance of the identified clusters and to explore how this system might
integrate into the decision-making processes within the ICU.

Our study tried to avoid certain limitations of retrospective model development studies. Unlike typical
single-center studies, our research utilized data from two distinct centers, one for development and another
for validation. This approach reduced the risk of overfitting models to a local patient cohort, although it is
important to note that external applicability may still vary and retraining on local data will be needed for
parts of the proposed RMS. We have incorporated improvements based on our previous work into our
models. Unlike earlier systems that were heavily reliant on sporadic clinical measurements, such as serum
lactate concentration12, our current model uses continuous SpO2 monitoring and ventilator data. Use of
automated continuous data reduces the influence of clinician-driven decisions on our alarm systems,
ensuring a more objective assessment of the patient's condition. However, the retrospective nature of our
data collection is still a limitation. Missing data was partially imputed for respiratory failure annotation, and
while this aids in model development, it introduces potential biases. This study does not address how
integrating the system into everyday clinical practice might influence treatment or monitoring strategies (a
phenomenon known as domain shift69). Specifically, if the model would rely heavily on clinician-driven
interventions (such as changes in PEEP or the administration of diuretics) as predictors of respiratory
failure, any future alterations in clinician behavior (possibly driven by the model implementation) could
reduce the model’s predictive accuracy. We constructed clinical baselines as best-effort reference points for
comparison, derived from the data available in our cohort. As such, they are not established standards and
may miss important clinical elements, such as respiratory effort, that are not routinely recorded but
available to physicians in practice. Lastly, our assessment of the extubation failure risk score was limited to
scenarios of actual extubation events. While we think that the accuracy of this score would be similar in
patients nearing readiness for extubation, this cannot be definitively concluded from our retrospective data.
Future prospective implementation studies are needed to fully understand the implications of our model in a
live clinical setting.

In summary, we have developed a comprehensive monitoring system for the entire respiratory failure
management process. We have shown that our system has the potential to facilitate early identification and
assessment of deteriorating patients, aiming to enable rapid treatment; and to simplify resource planning
within the ICU environment. The physiological relationship between risks and individual predictions can be
inspected using SHAP values, thereby hopefully offering valuable insights to clinicians, and ultimately
increasing trust in the system70. The potential benefit of the system in improving patient outcomes needs to
be validated in prospective clinical implementation trials.
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Extended data figures

Extended Data Fig 1. Patient inclusion & Experimental design. a. Patient inclusion schema in the HiRID-II dataset. b. Inclusion
of clinical parameters in the data extraction pipeline of the HiRID-II dataset. c. Split design schema for performance evaluation. A
fixed test set consisting of admissions starting in Mid June 2018 to the end of 2019 was used, which is shared by all five temporal
splits, and is marked by a black block in all five splits. The remaining patients were randomly partitioned five times into a training
and validation set, each defining a temporal split, which is indicated by the horizontal white and grey bars. d. Patient inclusion
schema in the UMCdb dataset used for external validation.
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Extended Data Fig 2. Association of ICU Mortality with Respiratory Failure / Extubation Failure / Ventilation. a. Mortality
statistics for patients with respiratory failure at some time during their ICU stay, and those without respiratory failure during their ICU
stay. b. Relationship of ICU mortality with fraction of the ICU stay in which patients experience respiratory failure. c. Mortality
statistics for patients with extubation failure, and those without extubation failure but with at least one successful extubation. d.
Mortality statistics for patients receiving mechanical ventilation during their ICU stay, and those not ventilated. e. Relationship of
ICU mortality rate with fraction of their stay during which patients are mechanically ventilated.

Extended Data Fig 3. Performance of PaO2 estimation model. a. Performance evaluation of PaO2-estimation model on HiRID-II
test set in terms of MAE vs. ground-truth PaO2 from invasive blood tests, compared with the non-linear Severinghaus-Ellis baseline.
Error bars were obtained by re-sampling the test set with 50 %, 5 times at random, using complete patients. b. Example time series
of predicted and ground-truth PaO2 values, as well as SpO2 values, and baseline predictions. A patient was selected at random for
which the median absolute error of both model and baseline is close (within 1 mmHg) to their population median reported in panel
a. The rug plot indicates time-points for which each model performs better than the other.
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Extended Data Fig 4. Evaluation of RMS-RF. a. ROC-based performance of the RMS-RF score, compared with the two
baselines. b. Calibration of the RMS-RF model compared with the two baselines. c. Performance of the RMS-RF model, as the
training set size is varied, in terms of complete patients d. Performance of the RMS-RF model by age group, for event recalls of
80/90 %. The model was re-calibrated for each sub-group using information available at admission time, to achieve a comparable
event recall. When the prevalence of an event decreases, a greater proportion of positive results will be false, reducing the test’s
precision. e. Performance of the RMS-RF model by gender, for event recalls of 80/90 %. The model was re-calibrated for each
sub-group using information available at admission time, to achieve a comparable event recall.

Extended Data Fig 5. Model introspection of RMS-RF. SHAP value - feature value interactions of the top feature of the top 10
most important variables contained in RMS-RF.
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Extended Data Fig 6. External validation of RMS-RF-p / Medication policy comparison HiRID-II/UMCdb. a. Performance of
the RMS-RF-p model, which additionally includes medication variables, when trained and tested on HiRID-II, transferred to UMCdb
and retrained in the UMCdb dataset b. t-SNE embedding of time points in the test set of a pooled dataset between samples from
HiRID-II and UMCdb (1:1 ratio of two datasets), of physiological parameters. Only time points when the patient is not in respiratory
failure are taken into account, for which the RMS-RF-p model is active. The color indicates the proportion of time points in the
UMCdb dataset in a given hex. c. The same t-SNE embedding as in b is displayed separately for time points from the HiRID-II
dataset, and the UMCdb dataset, corresponding to the rows. The hexes in the t-SNE are colored by the mean drug dosage of all
time points assigned to the hex. The four medication variables, for which transfer issues of the RMS-RF-p model were detected,
are analyzed in the columns. Medication policy differences are visible for all four variables, in particular for Heparin & Propofol.
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Extended Data Fig 7. Evaluation of RMS-EF / Medication policy comparison HiRID-II/UMCdb. a. ROC-based performance of
RMS-EF, compared with the baseline. b. Performance of RMS-EF as the training set size is varied between 1 % and 100 % of the
original dataset size, by subsampling complete patient records in the training set. c. Performance of RMS-EF stratified by gender,
at recall of 80/20 %. The model was re-calibrated for each sub-group using information available at the time of admission, to
achieve a comparable recall. d. Performance of RMS-EF for different age groups, at recalls of 80/20 %. The model was
re-calibrated for each sub-group using information available at the time of admission, to achieve a comparable recall. e.
Performance of the RMS-EF model, when trained/tested in the HiRID-II dataset, transferred to the UMCdb dataset, and retrained in
the UMCdb dataset. f. t-SNE embedding of time points in the test set of a pooled dataset between samples from HiRID-II and
UMCdb (1:1 ratio of two datasets), of physiological input variables. Only time points when the patient is ready-to-extubate are taken
into account, for which the RMS-EF model is active. The color indicates the proportion of time points in the UMCdb dataset in a
given hex. g. The same t-SNE embedding as in g is displayed separately for time points from the HiRID-II dataset, and the UMCdb
dataset, corresponding to the rows. The hexes in the t-SNE are colored by the mean drug dosage of all time points assigned to the
hex. The four medication variables, for which transfer issues of the RMS-EF model were detected, are analyzed in the columns.
Medication policy differences are visible for all four variables, in particular for Benzodiacepine & Norepinephrine.
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Extended Data Fig 8. Model introspection of RMS-EF. SHAP value - feature value interactions for the top feature of the top 10
most important variables contained in the RMS-EF model.

Extended Data Fig 9. Evaluation of RMS-MVStart/RMS-MVEnd. a. ROC-based performance of RMS-MVStart, predicting ventilation
onset within the next 24h. b. ROC-based performance of RMS-MVend, predicting being newly ready to extubate within the next 24h.
c. Event-based PRC of the RMS-MVStart alarm system. d. Event-based PRC of the RMS-MVEnd alarm system. e. Calibration of the
RMS-MVStart score. f. Calibration of the RMS-MVEnd score.
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Extended Data Fig 10. Joint task analysis details. Scatter plot of median respiratory failure vs. median readiness to extubate
score in the hexes analyzed in the explorative joint analysis of RMS scores (see Fig. 5). A light positive correlation between
respiratory failure and readiness to extubate scores can be observed, which is barely significant at 5 % level. A Wald test which
tests non-zero slope of the regression line (shown in red) was performed.
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Supplemental Materials
Supplemental Table 1. Details on the clinical parameters extracted in the HiRID-II dataset (downloadable XLSX file).

Supplemental Table 2. Details on the imputation parameters, such as normal value, and imputation models, for the clinical parameters
(downloadable XLSX file).

Supplemental Table 3. List of important variables used for computing complex features, as a basis for variable selection, and for
building the final models RMS-RF/RMS-EF/RMS-MVStart/RMS-MVEnd (downloadable XLSX file).

Supplemental Table 4. List of severity levels for computing ‘instability history’ features, for a subset of the important variables. (downloadable XLSX
file).

Supplemental Table 5. Model training parameters and grid used for selection of hyperparameters for the LightGBM library (downloadable XLSX
file).
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Supplemental Table 1. Details on the clinical parameters extracted in the HiRID-II dataset (downloadable XLSX file).
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Supplemental Table 2. Details on the imputation parameters, such as normal value, and imputation models, for the clinical parameters
(downloadable XLSX file).

hirid2_imputation_parameters

Supplemental Table 3. List of important variables used for computing complex features, as a basis for variable selection, and for
building the final models RMS-RF/RMS-EF/RMS-MVStart/RMS-MVEnd (downloadable XLSX file).

rms_models_included_variables

Supplemental Table 4. List of severity levels for computing ‘instability history’ features, for a subset of the important variables. (downloadable XLSX
file).
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Supplemental Table 5. Model training parameters and grid used for selection of hyperparameters for the LightGBM library (downloadable XLSX
file).
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