
Comparison of Bayesian approaches for developing 

prediction models in rare disease: application to the 

identification of patients with Maturity-Onset Diabetes of the 

Young 
Pedro Cardoso

1
 ORCID: 0000-0002-1014-9058, Timothy J. McDonald

1
 ORCID: 0000-0003-

3559-6660, Kashyap A. Patel
1
 ORCID: 0000-0002-9240-8104, Ewan R. Pearson

2
 ORCID: 0000-

0001-9237-8585, Andrew T. Hattersley
1
 ORCID: 0000-0001-5620-473X, Beverley M. 

Shields
1
* ORCID: 0000-0003-3785-327X, Trevelyan J. McKinley

1
*� ORCID: 0000-0002-9485-

3236 

*Joint senior  
�Corresponding Author, t.mckinley@exeter.ac.uk 

Affiliations: 
1
University of Exeter Medical School. Address: Clinical and Biomedical Sciences, RILD 

Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter EX2 5DW, UK 
2
University of Dundee. Address: Division of Population Health & Genomics, Ninewells 

Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK 

Abstract 

Background: Clinical prediction models can help identify high-risk patients and facilitate timely 

interventions. However, developing such models for rare diseases presents challenges due to the 

scarcity of affected patients for developing and calibrating models. Methods that pool information 

from multiple sources can help with these challenges. 

Methods: We compared three approaches for developing clinical prediction models for population-

screening based on an example of discriminating a rare form of diabetes (Maturity-Onset Diabetes of 

the Young - MODY) in insulin-treated patients from the more common Type 1 diabetes (T1D). Two 

datasets were used: a case-control dataset (278 T1D, 177 MODY) and a population-representative 

dataset (1418 patients, 96 MODY tested with biomarker testing, 7 MODY positive). To build a 

population-level prediction model, we compared three methods for recalibrating models developed 

in case-control data. These were prevalence adjustment (“offset”), shrinkage recalibration in the 

population-level dataset (“recalibration”), and a refitting of the model to the population-level 

dataset (“re-estimation”). We then developed a Bayesian hierarchical mixture model combining 

shrinkage recalibration with additional informative biomarker information only available in the 

population-representative dataset. We developed prior information from the literature and other 

data sources to deal with missing biomarker and outcome information and to ensure the clinical 

validity of predictions for certain biomarker combinations. 

Results: The offset, re-estimation, and recalibration methods showed good calibration in the 

population-representative dataset. The offset and recalibration methods displayed the lowest 

predictive uncertainty due to borrowing information from the fitted case-control model. We 

demonstrate the potential of a mixture model for incorporating informative biomarkers, which 

significantly enhanced the model’s predictive accuracy, reduced uncertainty, and showed higher 

stability in all ranges of predictive outcome probabilities. 
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Conclusion: We have compared several approaches that could be used to develop prediction models 

for rare diseases. Our findings highlight the recalibration mixture model as the optimal strategy if a 

population-level dataset is available. This approach offers the flexibility to incorporate additional 

predictors and informed prior probabilities, contributing to enhanced prediction accuracy for rare 

diseases. It also allows predictions without these additional tests, providing additional information 

on whether a patient should undergo further biomarker testing before genetic testing. 

Keywords: MODY, Bayesian modelling, rare diseases, prior elicitation, recalibration  
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1. Background 
Clinical prediction models can be useful in rare diseases to aid earlier diagnosis and more 

appropriate management. However, developing these models can be challenging as suitable data 

sources for model development may be difficult to acquire. The prevalence of a rare disease in a 

population-of-interest can be informed by population cohorts [1], but low numbers of cases in these 

datasets limit the ability to identify risk factors and produce robust predictive models for disease risk 

in the general population [2]. Case-control studies [3] enrich the study population with more disease 

cases than a random sample from the population, facilitating more robust estimates of associations 

between patient features and disease risk using measures such as odds ratios. Furthermore, the rise 

of rare disease registries [4] makes recruiting larger case numbers for these studies easier. However, 

from a clinical perspective, disease risk probabilities are more natural metrics than odds ratios for 

diagnosis or screening purposes, but estimated risk probabilities from case-control data will be 

overestimated as they are not based on random samples from the general population [5, 6]. A key 

challenge is, therefore, how to produce well-calibrated estimates of individual disease risk 

probabilities for rare diseases in the general population, utilising information from different data 

sources. 

Various methods have been developed that borrow information from one population and 

recalibrate their outputs to be valid in another population [7, 8, 9, 10, 11, 12, 13]. These approaches 

include simple methods such as adjustments of the likelihood ratio based on the sensitivity and 

specificity of the test at various thresholds [14] or offset updating to adjust the overall model 

probabilities according to a more appropriate population prevalence [10, 11]. However, these 

approaches are limited and would not account for differences in patient characteristics that may 

occur in different datasets, which could be a particular problem in case-control studies when 

enriching for a particular disease or when only collecting specific controls, which would ignore more 

“grey-area” patients that may be seen in a population setting. More complex techniques are 

available, such as shrinkage methods to adjust the intercept and model coefficients [7, 12], or 

previous studies could be used to inform the prior belief of model parameters in Bayesian modelling 

[15]. Although more sophisticated, these approaches would need data from multiple sources that 

may not be available for rare diseases. In addition, datasets may not always contain the same 

information for rare diseases, and specific testing or features may only be available to a subset of 

patients. More flexible approaches are needed that would allow modelling in these situations. 

We use a specific motivating example of developing a prediction model for a rare form of 

diabetes called Maturity-Onset Diabetes of the Young (MODY) that can be used to inform referral 

decisions for genetic screening for the condition. In this study, we 1) evaluate a range of approaches 

for appropriately recalibrating model probabilities in prediction models for rare diseases utilising 

different data sources (including case-control data, prevalence estimates, and population datasets) 

and 2) develop a Bayesian hierarchical mixture modelling approach which can combine a clinical 

features risk model with additional informative biomarker test information, utilising prior 

information from other data sources to account for missing data and ensure that the recalibrated 

probabilities are clinically plausible given specific test results. This latter approach also allows for 

predictions for new individuals who do not have biomarker test results (since these are not currently 

routinely collected for MODY), which greatly facilitates using such a prediction model in clinical 

practice. We also show how the model can help inform on the utility of additional biomarker testing 

before making a final screening decision for MODY. 
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Motivating example 
Our motivating disease system in this manuscript is a rare young-onset genetic form of diabetes 

called Maturity-Onset Diabetes of the Young (MODY) [16], which is estimated to account for 1–2% of 

all diabetes cases [17, 18]. MODY is challenging to identify and is estimated to be misdiagnosed in up 

to 77% of cases [19]. Diagnostic genetic testing is expensive; however, it is crucial to properly 

diagnose as these patients do not require treatment with insulin injections [20], unlike the most 

common young-onset form of diabetes, type 1 diabetes (T1D). 

Statistical models that use patient characteristics to predict the probability of having MODY 

can aid decisions regarding which patients to refer for diagnostic MODY testing. One such set of 

models is routinely used in clinical practice via an online calculator [14] (found at: 

https://www.diabetesgenes.org/exeter-diabetes-app/ModyCalculator) and has been shown to 

improve positive test rates of new MODY cases [19]. These prediction models for MODY were 

developed using case-control data and recalibrated to population prevalences using conversion 

tables derived from the sensitivities and specificities at different probability thresholds [14]. There 

are several consequences of this approach for prevalence adjustment: i) the recalibrated 

probabilities end up being grouped; ii) individuals cannot have a recalibrated probability that is 

lower than the estimated prevalence in the general population; and iii) the recalibrated probabilities 

can be sensitive to the choice of grouping used. Addressing these limitations would be important, 

but the most appropriate approach for adjusting for the prevalence is unclear. 

In addition, since the original model development, biomarker screening tests (C-peptide and 

islet autoantibodies [21, 22]) have become routinely available clinically, and the results of these tests 

could significantly alter the probability of MODY. C-peptide is a measure of endogenous insulin 

secretion, and islet autoantibodies are markers of the autoimmune process in T1D. MODY is 

characterised by non-insulin dependence, so these patients produce significant amounts of their 

own endogenous insulin (have positive C-peptide), and they do not have the autoimmune process 

associated with T1D (negative islet autoantibodies), whereas being C-peptide negative (i.e. insulin 

deficient) or having positive islet autoantibodies is characteristic of T1D. Finding approaches to build 

these test results into the recalibration would have considerable advantages. 
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2. Methods 
Setting 
The diagnosis of MODY requires expensive genetic testing. Currently, patients are referred for 

diagnostic genetic testing on an ad-hoc basis when the clinician considers a MODY diagnosis. In line 

with guidelines (ISPAD [23] and NHS genomic testing criteria [24]), criteria for referring can include: 

- Clinical presentation and patient features (including age at diagnosis, BMI, treatment, 

measures of glucose control (HbA1c) and family history of diabetes). 

- Results of biomarker testing (C-peptide and islet autoantibodies) 

- The use of prediction models in the form of the MODY calculator (can be found at: 

https://www.diabetesgenes.org/exeter-diabetes-app/ModyCalculator) 

Study population 
For model development and recalibration, we used data from two sources comprising patients with 

confirmed MODY and insulin-treated patients with T1D, the predominant alternative diagnosis in 

young-onset patients: 

Case-control dataset (Fig. 1a) 
This dataset was used to develop the original MODY prediction model [14]. All participants were 

diagnosed with diabetes between the ages of 1 and 35. T1D was defined as occurring in patients 

treated with insulin within 6 months of diagnosis [14]. The dataset includes 278 patients with T1D 

and 177 probands with a genetic diagnosis of MODY obtained from referrals to the Molecular 

Genetics Laboratory at the Royal Devon and Exeter NHS Foundation Trust, UK. The dataset 

comprises the following variables: sex, age-at-diagnosis, age-at-recruitment, BMI, parents affected 

with diabetes and HbA1c (%). No biomarker data are available. 

Population-representative dataset (UNITED – Fig. 1b) 
The UNITED study [25] was a population-representative cohort that recruited 62% of all patients 

with diabetes diagnosed between the ages of 1 and 30 in two regions of the UK (Exeter and Tayside) 

(n=1418). Due to the expense of genetic testing, a screening strategy with C-peptide and islet 

autoantibody testing was used to narrow down the cohort eligible for MODY testing (Fig. 1b).  

For this model, consistent with the original model [14], we analysed all patients insulin-

treated within 6 months of diagnosis, corresponding to 1171 patients, of which 96 were tested for 

MODY (given that they were C-peptide positive and antibody negative) and 7 MODY cases were 

diagnosed (Fig. 1b). The dataset is comprised of the following variables: sex, age-at-diagnosis, age-

at-recruitment, BMI, parents affected with diabetes and HbA1c (%), with additional C-peptide and 

islet autoantibodies test results.  

Fig. 1: Structure of a) case-control and b) UNITED (population) datasets. MODY� corresponds to a 

positive test when genetically tested for MODY and MODY� corresponds to a negative test when 

genetically tested for MODY. C
+

 = C-peptide positive, C
-

 = C-peptide negative, A
+

 = Antibody positive, 

A
-

 = Antibody negative 
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Approaches for recalibration 
The analysis in this paper was split into three different scenarios to enable population-appropriate 

probabilities to be calculated with and without the additional biomarker information: 

Scenario a) Clinical features model ignoring biomarker information. For this analysis, we used all 

patients in the population-representative dataset (UNITED). This scenario assumes all those 

not MODY tested are  in the population cohort, i.e. 7 MODY positive patients and 

1,164 MODY negative (of which 1,075 were not tested for MODY but are assumed to be 

MODY negative for the analysis since the biomarker results are inconsistent with MODY). 

Scenario b) Clinical features model in only those pre-screened to be at increased probability of 

MODY based on the biomarkers. This included 96 patients, of which 7 are MODY positive 

and 89 MODY negative. This scenario only analyses patients in the population cohort who 

had genetic testing (i.e. tested C-peptide positive and autoantibody negative), so it provides 

more appropriate model probabilities in patients with these test results indicating a higher 

risk of MODY, but simply rules out MODY (does not provide a probability) in those who are 

C-peptide negative or antibody positive.  

Scenario c) Model fully incorporating both clinical features and biomarker information. We 

analysed all patients in the population cohort and included biomarker information. For this 

analysis, we included 96 patients who had testing for MODY (7 MODY positive and 89 MODY 

negative) and 1,075 patients who did not have testing for MODY. The biomarker information 

of those not MODY tested was used to more appropriately adjust the model probabilities 

(151 C-peptide positive and autoantibody positive, 924 C-peptide negative) (Figure 1b). 

We explored six approaches for producing predictions using different degrees of data 

availability, which fall into three groups: 

1. Approaches that only utilise case-control data and adjust to a known population prevalence: 

Original and Offset. 

2. Approaches that utilise a case-control dataset and additional calibration dataset (e.g. the 

UNITED population dataset in this study): Re-estimation and Recalibration. 

3. Approaches that utilise additional data on informative diagnostic tests and provide 

biologically plausible constraints: mixture model approaches (for both Re-estimation and 

Recalibration). This mixture model splits individuals into two groups according to their 

diagnostic test information (a C-peptide negative or antibody positive group: ; and a 

C-peptide positive and antibody negative group: ). We use an informative prior 

distribution to constrain the probability of having MODY in the  group and use one 

of the other recalibration methods in the  group. 
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The Supplementary Materials Notation section contains a glossary of mathematical symbols 

used throughout the article. We fit these models using the package NIMBLE [26, 27] (version 1.0.1) 

in the software R [28] (version 4.3.2). 

1. Training dataset only approaches  
Training data model 
Let ��

�  be a binary variable denoting whether an individual � in the case-control data set has MODY 

or not, such that 

��
� � �1   if individual � has MODY0   otherwise.                         � 

We then model: 

 ��
�|��

�~Bernoulli!"�
�# (1) 

where the log odds are given by:  

 
log % "�

�

1 & "�
�

' � (�
� ) (�

����
� ) * ) (�

����
�  

 

(2) 

with ���
�  +, � 1, … , "/ a set of " covariates for individual �. We put independent vague Normal+2 �

0, sd � 10/ priors on the regression parameters. 

The posterior for this model then takes the form: 

3+4|�� , ��/ 5 3+��|�� , 4/3+4/ 

where 4 � +(�
� ; , � 0, … , "/, with 3+·/ denoting the relevant probability (density) mass functions 

derived above for the model and joint prior distribution. 

Original approach 
This method was implemented by Shields et al. (2012) [14] during the development of the original 

MODY prediction model. The approach fitted a model to a case-control dataset using the patients’ 

characteristics and used the relationship: 

8+��|9�/
8+��|9�/ � 8+9�|��/

8+9�|��/ : 8+��/
8+��/ 

or 

post‐recalibration odds � sensitivity
1 & speci@icity : prior odds in population‐of‐interest, 

where �� is the event that the patient has MODY, and 9� is whether a hypothetical “test” is 

positive (and similarly for �� and 9�). In this case, 9� is derived by applying a threshold, "	, to the 

predicted probabilities "�
� obtained from a training model (see equation (2)) for a given individual �, 

such that an individual is classed as positive if "�
� A "	 and negative otherwise.  

Therefore, for a given choice of "	, estimates of the sensitivity, 8+9�|��/, and specificity, 

8+9�|��/, of these classifications at a range of thresholds were calculated using the case-control 

data. 8+��/ is then chosen as an estimate of the prevalence of MODY in the general population, 

which in the original model was given by 0.7% [14], which assumed no knowledge of biomarker test 

results. In this paper, we adjusted slightly differently depending on scenario a) or scenario b). In 

scenario a), we estimated the pre-test probability to be 0.6% (informed by the prevalence of MODY 
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in the UNITED dataset). For scenario b), we estimated the pre-test probability to be 7.3% (informed 

by the prevalence of MODY in those who were C-peptide positive and antibody negative in UNITED). 

For a new individual in the general population, with covariates �

	 say, then one can derive 

an estimate for "

� (based on equation (2)) as 

log % "

�

1 & "

� ' � (�

� ) (�
��
�

	 ) * ) (�
��
�

	  

before using Table 1 to map their predicted "

�  from the case-control model to a recalibrated 

probability of having MODY in the general population. 

Albert Offset approach 
This approach was proposed by Albert (1982) [10] and similarly to the method above, leverages the 

relationship: 8+��|�/
8+��|�/ � 8+�|��/

8+�|��/ : 8+��/
8+��/ , 

where � is a set of explanatory variables. In words: 

posterior odds �  likelihood ratio : prior odds. 
For the training data (C – case-control dataset), we use the same model for ��

� and "�
� as 

before (see equations (1) and (2)), and then the idea is that if we know the disease odds in the 

training data, then we can re-write equation (2) as: 

log % "�
�

1 & "�
�

' � C�
� ) (�

����
� ) * ) (�

����
� ) log+disease odds training/, 

hence the original (�
� � C�

� ) log +pre-test odds training/. Therefore, under the assumption that 

the likelihood ratio for any given set of covariates is the same in the training and calibration datasets, 

then for a new individual D in the general population, with covariates �

	, we can recalibrate as: 

log+post‐recalibration odds GP/ � (�
� ) (�

��
�
	 ) * ) (�

��
�
	  

& log +disease odds training/ 

) log+disease odds general/. 
This approach gives individual-level recalibration probabilities that do not rely on 

thresholding. The Albert Offset approach requires a training dataset for fitting the original model and 

an estimate of the disease odds in both the training data and the population-of-interest. For this 

cohort, as before, you could adapt the offset based on the prevalence of MODY of 0.6% based on 

scenario a) or 7.3% based on scenario b). We also explore an example where the likelihood ratio 

assumption is not maintained between datasets for illustrative purposes. We put independent vague 

Normal+2 � 0, sd � 10/ priors on the regression parameters. 

2. Population-representative dataset approaches 
Re-estimation approach 
This approach fits a new model directly to the population-representative dataset (UNITED), ignoring 

the case-control dataset entirely. Given sufficient cases and controls in a given dataset, this model 

fitted using, e.g. maximum likelihood, will give asymptotically unbiased estimates for the odds ratios 

and probabilities. However, for rare diseases, one would have to have very large sample sizes to get 

sufficient numbers of cases to develop an entirely new model. As a comparison, we use the model 
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structure developed in the case-control dataset and then refit the model to the population-

representative dataset (UNITED). Here, we denote the MODY status for individual D in the UNITED 

dataset as �

�, and model this as 

 �

�|�


� , 4~Bernoulli!"

�# (3) 

where 

 log % "

�

1 & "

�' � (�

� ) (�
��
�

� ) * ) (�
��
�

� , (4) 

with �
�
�  +, � 1, … , "/ a set of " covariates for individual D. We place independent vague 

Normal+2 � 0, sd � 10/ priors on the regression parameters. 

The posterior for this model then takes the form: 

3+4|��, ��/ 5 3+��|�� , 4/3+4/ 

where 4 � +(�
�;  , � 1, … , "/, with 3+·/ denoting the relevant probability (density) mass functions 

derived above for the model and joint prior distribution. 

Recalibration approach 
In the context of the models developed here, the Recalibration approach [7] uses a model fitted to 

the case-control dataset to generate predictions of the linear predictor for each individual in the 

population-representative data set (UNITED). In the training data, for individual �, ��
�  and "�

� are 

modelled as before (see equations (1) and (2)), and then for each individual D in the calibration 

dataset (UNITED), with predictors �

�, the linear predictors G
 � β�

�I ) β�
�I�
�

� ) * ) β�
�I�
�

�  are 

calculated, where (�
�I  is a point estimate of the ,th regression parameter from the case-control 

model. These G
 terms are then used as covariates in a second (shrinkage) model: 

 log % "

�

1 &  "

�' � J� ) J�G
 . (5) 

 

This approach [7] can have the effect of scaling the odds ratios and intercept terms where 

necessary, and a side-effect is that if no recalibration is required, then J� � 0 and J� � 1. Again, 

these approaches could be built using scenarios a) and b), dependent on the assumptions we are 

willing to make with UNITED. The method used by Steyerberg et al. (2004) [7] uses the point 

predictions for G
 based on the maximum likelihood estimates from the case-control data, which 

ignores the uncertainty in the estimations of G
 . Instead, we develop a joint Bayesian hierarchical 

model where we simultaneously fit both models and propagate the uncertainties directly from the 

case-control model to the recalibration model [29]. We put independent vague Normal+2 � 0, sd �
10/ prior distributions on the regression parameters, with a Normal+2 � 0, sd � 10/ prior for J� 

and a Normal+2 � 1, sd � 10/ prior for J�. 

The posterior for this joint model then takes the form: 

3+4, �� , �� , �� , ��/ 5 3+��|�� , 4/3+��|�� , 4�/3+4/ 

 

where 4 � +4� , 4�/ corresponds to the full vector of parameters, with 4� � +J� , J�/ and 4� � +(�
� ; , � 1, … , "/, with 3+·/ denoting the relevant probability (density) mass functions derived 

above for the different component models and joint prior distribution. 
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3. Mixture model approach 
One area of development in this manuscript is how to incorporate biomarker test information into 

the model when the biomarker tests can place very strong constraints on the post-recalibration 

probabilities depending on their specific values. For example, a simple way to include a binary test 

result would be to add another covariate into the linear predictor in one of the previous methods. In 

the analysis, the biomarker data only exists in the calibration data (UNITED) but not the training data 

(case-control), so this approach would only use information from the calibration data to estimate 

the parameters relating to the biomarkers. Since there are few cases in the calibration data, this 

would necessarily result in large standard errors for the estimated effects and could lead to 

biologically implausible estimates. For example, an individual who is C-peptide negative or antibody 

positive can be considered to have a very low probability of having MODY, justified through prior 

data and biological plausibility (C-peptide negativity means that an individual is producing negligible 

amounts of their own insulin, which defines T1D). In clinical practice, an individual with these 

biomarker results would be treated as having T1D, which is equivalent to assuming that the 

probability of having MODY given these results is exactly zero. However, this approach does not 

allow for the rare (but possible) event that an individual has a positive genetic MODY test but is 

antibody positive or C-peptide negative (which would ideally also allow for imperfect sensitivities 

and specificities of the biomarker tests). 

Using the mixture model approach in scenario c), it is possible to incorporate a non-zero 

prior probability of having MODY in these cases, where we use independent data sets to inform the 

prior distribution for this probability. We note that the mixture model allows for different prior 

constraints to be used for different subsets of the data: here the prior probability of having MODY is 

very low for C-peptide negative or antibody positive individuals [21, 22], but is not similarly 

constrained for C-peptide positive and antibody negative individuals. Similar ideas could be used for 

other diseases where the prior information may not be as strong.  

For the UNITED data, we let 

�

� � K1   if individual D has MODY0   otherwise,                          � 

with  

L

� � K1   if individual D is L�

0   otherwise,                � 
and 

M

� � �1   if individual D is M�

0   otherwise.                � 
We then set:  

N

� � O1 if individual D is PM� Q L�R0 otherwise.                   � 

Letting �

� be a vector of additional covariates for individual D, we can model �


� as 

 
�


�|�

� , N


�~Bernoulli!"�|��,��
#  

 
(6) 

where  

 
"�|��,��

� O"�|��� ��        if N

� � 1,

"�|��� �� ,��
   if N


� � 0.�  
 

(7) 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2024. ; https://doi.org/10.1101/2024.01.22.24301429doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.22.24301429
http://creativecommons.org/licenses/by/4.0/


 

We model "�|��� ��  using a Beta+S �  2.2, ( � 7361.3/ prior probability distribution (see 

Supplementary Materials Prior elicitation section for a justification of this choice). We then model 

"�|��� �� ,��
 differently, depending on whether we use the Re-estimation or Recalibration 

approaches (see below). 

Re-estimation approach 
For the Re-estimation approach we model 

 
log % 8�|��� �� ,��1 & 8�|��� ��,��

' � (�
� ) (�

��
�
� ) * ) (�

��
�
�

 

 

(8) 

and to finalise, we put independent vague Normal+2 � 0, sd � 10/ priors on the regression 

parameters. 

Recalibration approach 
For the Recalibration approach we also utilise the case-control data. If we let ��

� be the MODY 

status for individual � in the case-control dataset, with vector of covariates ��
� , then ��

� and "�
� are 

modelled as before (see equations (1) and (2)). Then, for individual D in the UNITED dataset (with 

M

� X L


�), we model 

 log % "�|��� ��,��1 & 8�|��� �� ,��

' � J� ) J�G
 (9) 

where  

 G
 � (�
� ) (�

��
�
� ) * ) (�

��
�
� . (10) 

 

Incorporating biomarker test results 
To allow for predictions in the absence of biomarker test results (which are not routinely collected in 

clinical practice), we model 

 N

�~Bernoulli+Y
/ (11) 

 log Z Y
1 & Y


[ � (�
	 ) (�

	�
�
	� ) * ) (�

	�
�
	� (12) 

with �	� comprised of the variables BMI, age-of-diagnosis, age-of-recruitment and parents affected 

with diabetes (here we use restricted cubic splines with 3 knots to model the continuous variables). 

In this case the predicted probability of MODY for an individual with unknown test results will be a 

weighted average of the "�|��� ��  and "�|��� �� ,��
, weighted by the probability of being 

M� Q L� based on suitable individual-level characteristics. We place independent vague 

Normal+2 � 0, sd � 10/ prior distributions on the regression parameters, with a Normal+2 �
0, sd � 10/ prior on J� and a Normal+2 � 1, sd � 10/ prior on J�. 

For the Re-estimation mixture, the posterior then takes the form: 

3+4|��, ��, �	� , N�/ 5 3!��\�� , N� , 4� , "^�|�����#3+N� , �	� , 4�/3+4/, 
where 4 � !4� , 4� , "^�|�����# corresponds to the full vector of parameters, with 4� �
+(�

�; , � 1, … , "/ and 4� � +(�
	; , � 1, … , ]/ with 3+·/ denoting the relevant probability (density) 

mass functions derived above for the different component models and joint prior distribution. 
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For the Recalibration mixture, the posterior then takes the form: 

3+4|�� , �� , N� , �� , ��/ 5 3!��\N� , �� , 4� , "^�|�����#3+N�|�	� , 4�/3+��|�� , 4�/3+4/ 

where 4 � +4� , 4� , "^�|����� , 4�/ corresponds to the full vector of parameters, with 4� �
+J�, J�/, 4� � +4�

� ; , � 1, … , "/ and 4� � +(�
	; , � 1, … , ]/, with 3+·/ denoting the relevant 

probability (density) mass functions derived above for the different component models and joint 

prior distributions. 

Assessment of model performance, calibration and stability analysis 
In scenario a), we validate fitted probabilities for all patients in UNITED (setting those with missing 

MODY testing to MODY�). In scenarios b) and c), we only validate fitted probabilities on M� Q L� 

patients as these were the only patients who had pre-screening based on biomarkers and had 

genetic testing of MODY genes. The area under the receiver operating characteristic (AUROC) curve 

was used as a measure of overall discrimination performance. Calibration curves were plotted to 

visualise how well the predicted probabilities were calibrated against the observed data. For the 

calibration curves, predicted probabilities were grouped by quintiles and plotted against the 

observed probability of positive individuals within each quintile. To assess convergence, we 

monitored the available parameters for evidence of convergence and Gelman-Rubin 9̂ values [30]. 

Further validation procedures are explained in the Supplementary Materials Stability analysis 

section. 
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3. Results 
Comparing datasets 
In the case-control dataset, 177 out of 455 patients had MODY, leading to an enriched proportion 

with MODY of 40%. In contrast, in the recalibration population (UNITED) cohort, 7 out of 1171 

patients (0.6%) had MODY, much more consistent with the prevalence of MODY in the population. 

The characteristics of patients in the two datasets were broadly similar (sFig. 1). 

Models and their recalibration from the 6 different approaches 
All models in this study converged quickly, so we ran four chains of 500,000 iterations, with the first 

300,000 discarded for burn-in in each case (sFig. 2-4).  

The first, recalibration approach, the Original approach achieved an 9̂ � 1.0 for all 

parameters. As expected, the choice of prevalence used for recalibration affected the conversion 

probabilities. Table 1 shows the different post-recalibration probabilities of having MODY using the 

different prevalences for both scenarios a) and b), with post-recalibration probabilities more 

appropriately higher in scenario b) to allow for the biomarker results in those who were C-peptide 

positive and antibody negative. 

Table 1: Probability conversion table for MODY using the Original method with an adjusted pre-

test probability. (A) Model using clinical features only adjusting to population prevalence of MODY 

(0.6%), (B) model using clinical features but adjusting to population prevalence of MODY based on 

patients who are C-peptide positive and antibody negative (7.3%). Parentheses are used to signify 

that an endpoint value is not included. Bracket are used to signify that an endpoint value is included. 

(A) Original model adjusting 

probabilities for prevalence [scenario 

a)] (pre-test probability = 0.6%) 

(B) Original model adjusting probabilities 

assuming patients have biomarker tests 

suggesting increased risk of MODY [scenario 

b)] (pre-test probability=7.3%) 

Case-control model 

probability (%) 

Post-recalibration 

probability (%) 

Case-control model 

probability (%) 

Post-recalibration 

probability (%) 

(0, 10) 0.6 (0, 10) 7.3 

[10, 20) 1.6 [10, 20) 17.9 

[20, 30) 2.3 [20, 30) 23.2 

[30, 40) 3.4 [30, 40) 31.6 

[40, 50) 4.2 [40, 50) 36.6 

[50, 60) 5.5 [50, 60) 43.1 

[60, 70) 6.2 [60, 70) 46.5 

[70, 80) 7.1 [70, 80) 49.9 

[80, 90) 10.9 [80, 90) 61.6 

[90, 100] 45.4 [90, 100] 91.6 

 

Table 2 describes the model parameter estimates for the Albert Offset and Re-estimation 

approaches in scenarios a) and b). The Albert Offset approach achieved an 9̂ � 1.0, and the Re-

estimation approach achieved an 9̂ � 1.0 for all parameters. Coefficients were quite different in the 

various approaches. 
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Table 2: Model parameter estimates for Albert Offset and Re-estimation approaches for scenarios 

a) and b). Scenario a) adjusts model probabilities based on the population prevalence. Scenario b) 

adjusts model probabilities for just those who were C-peptide positive and autoantibody negative 

(n=96). The numbers in the parentheses correspond to the 95% credible intervals. 

   Scenario a) Scenario b) 

Model 

parameters 
Original Model Albert Offset Re-estimation Albert Offset Re-estimation 

Intercept 
1.85 (-0.39;4.14) -2.81 (-5.06;-

0.52) 

-12.70 (-

24.12;-4.24) 

-0.24 (-

2.49;2.05) 

-9.85 (-21.66;-

0.84) 

At least one 

parent 

affected with 

diabetes 

3.22 (2.56;3.93) 
3.22 

(2.56;3.93) 

3.60 

(1.52;6.42) 

3.22 

(2.56;3.93) 

4.14 (1. 

49;7.65) 

Age at 

recruitment 

(years) 

-0.09 (-0.11;-0.06) 
-0.09 (-0.11;-

0.06) 

-0.02 (-

0.11;0.06) 

-0.09 (-0.11;-

0.06) 

0.04 (-

0.07;0.15) 

Hba1c (%) -0.68 (-0.89;-0.48) 
-0.68 (-0.89;-

0.48) 

-0.45 (-

1.04;0.07) 

-0.68 (-0.89;-

0.48) 

-0.78 (-1.59;-

0.15) 

Age at 

diagnosis 

(years) 

0.10 (0.06;0.15) 
0.10 

(0.06;0.15) 

0.07 (-

0.04;0.19) 

0.10 

(0.06;0.15) 

-0.10 (-0.30;-

0.11) 

Sex (baseline 

Male) 
1.35 (0.67;2.06) 

1.35 

(0.67;2.06) 

4.75 

(1.33;10.22) 

1.35 

(0.67;2.06) 

6.14 

(1.92;12.29) 

 

The Recalibration approach achieved an 9̂ � 1.0 for all parameters. In scenario a), estimates 

were J� � &4.39 (95%CI -5.41;-3.56) and J� � 0.96 (95%CI 0.49;1.54) and in scenario b), the 

estimates were J� � &2.26 (95%CI -3.33;-1.37) and J� � 0.86 (95%CI 0.31;1.57).  

For scenario c), fully incorporating the biomarker information into the model, probabilities 

could be obtained using the Recalibration and Re-estimation mixture approaches. The Recalibration 

mixture approach achieved an 9̂ b 1.01 for all parameters, with an estimated J� � &2.26 (95%CI -

3.33;-1.37) and J� � 0.86 (95%CI 0.32;1.58). The Re-estimation mixture approach achieved an 

9̂ b 1.01. The model that estimates N achieved an AUROC of 0.76 (95%CI 0.75;0.77) in both mixture 

approaches, with model parameters described in sTable 1. 
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Discrimination and calibration of the models developed using the 6 
different approaches 
All approaches led to good model discrimination, with the Re-estimation approaches having the 

highest AUROC (Table 3). 

Table 3: Area under the receiver operating characteristics (AUROC) for all approaches in both 

scenarios. In scenario a): ignoring biomarker information (n=1171); Scenario b): only analysing 

patients which tested C-peptide positive and autoantibody negative (n=96); Scenario c): analyse all 

patients, adjusting for biomarker results in the model (n=1,171, validated in n=96). CI: credible 

interval 

 Approach Mean CI: 2.5% CI: 97.5% 

Scenario a) Original 0.93 0.90 0.94 

Albert Offset 0.93 0.90 0.94 

Re-estimation 0.94 0.90 0.96 

Recalibration 0.93 0.92 0.94 

Scenario b) Original 0.86 0.81 0.89 

Albert Offset 0.86 0.82 0.89 

Re-estimation 0.92 0.89 0.94 

Recalibration 0.87 0.84 0.90 

Scenario c) Re-estimation mixture 0.92 0.87 0.94 

Recalibration mixture 0.87 0.84 0.90 

  

In scenario a), for the approaches that used only the case-control dataset and adjusted for a 

known prevalence, the Original approach overestimated the observed probability of MODY in the 

UNITED population and had large uncertainty at higher percentages. In contrast, the Albert Offset 

approach slightly underestimated the observed probability of MODY in the UNITED population. 

Looking at the approaches that used the population-representative dataset (UNITED), both the Re-

estimation and Recalibration approaches slightly underestimated the observed probability of MODY 

with slightly more uncertainty in the predictions from the Re-estimation approach (Fig. 2). 
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Fig. 2: Calibration of scenario a) in UNITED. Scenario a): assume all not MODY tested are MODY�(based on strong clinical knowledge (n=1,171). 

 

 

In scenario b), for the approaches that used the case-control dataset alone, with adjustment 

for known prevalence, the Original approach overestimated the observed probability of MODY in the 

UNITED population. In contrast, the Albert Offset approach was able to calibrate well. Looking at the 

approaches that used an additional calibration dataset (UNITED), both the Re-estimation and 

Recalibration approaches calibrated well, but the Re-estimation approach demonstrated more 

uncertainty in the probability predictions (Fig. 3). In scenario c), the Re-estimation and Recalibration 

mixture approaches demonstrated similar performance to the equivalent models that did not use a 

mixture model approach, with similar levels of uncertainty in probability predictions (Fig. 3). In this 

case, the Albert Offset method worked well, but it relies on the assumption that the likelihood ratio 

is the same in the two populations. For illustrative purposes, we also provide an example setting 

where the likelihood ratio is different between the training and calibration datasets (violating the 

assumption). In this latter example, the Albert Offset approach fails to calibrate well. In contrast, 

the Recalibration approach can scale the odds ratios and calibrates well (sFig. 5), so this method 

would be preferred if a recalibration dataset is available. 
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Fig. 3: Calibration of scenario b) and c) in UNITED. Scenario b): only analyse patients which tested C-

peptide positive and autoantibody negative (n=96) – Original, Albert Offset, Re-estimation and 

Recalibration approaches. In scenario c): analyse all patients (n=1,171, validated in n=96) – Re-

estimation mixture and Recalibration mixture approaches. 
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Stability plots for the mixture models in scenario c) 
The bootstrap stability test was made for both mixture approaches. Both mixture approaches were 

ran 50,000 iterations with the first 30,000 discarded for burn-in, with an average 9̂ � 1.02 (95% 

1.0;2.1) for the Re-estimation mixture approach and an average 9̂ � 1.01 (95% 1.0;1.6) for the 

Recalibration mixture approach (the higher 9̂ values occurred in bootstrapped datasets with less 

than 3 positive MODY cases, but this only occurred in 8/1000 datasets and made no difference to 

the plots in Figure 4, and so we left these runs in). Both recalibration approaches showed some 

variability in the estimated probabilities, with the Re-estimation mixture approach demonstrating 

higher uncertainty across all estimated probability levels (Fig. 4). However, we can see that because 

the Recalibration mixture approach borrows weight from the case-control data, the estimates were 

more stable than the Re-estimation mixture method. We also noted that by using the hierarchical 

modelling approach, the Recalibration mixture model uncertainty included the uncertainty in the 

case-control predictions. Thus, these uncertainty estimates are larger than a model where this 

additional predictive uncertainty is ignored. 

Fig. 4: Stability plots for Re-estimation and Recalibration mixture approaches. Estimations of 

MODY probability from bootstrapped models are plotted against estimated MODY probabilities from 

the developed model. 

 

 

Final recalibrated probabilities 
The approach chosen for our final models was the Recalibration mixture approach, which 

incorporated the most information with the lowest uncertainty in probability predictions. The 

mixture model ensures that those with biomarkers consistent with T1D (the M� Q L� individuals) are 

predicted to have a very low probability of MODY, consistent with independent prior information. 

Fig. 5 shows the predicted probability of MODY in the remaining M� X L� individuals. Considering 

only 0.6% of the cohort had MODY, the model produced a wide range of probabilities. Most non-

MODY cases were predicted to have a low probability of MODY, with 97.2% (1,132/1,164) of 

individuals having an upper 95% CI probability of MODY under 10%. In contrast, 7 out of the 7 MODY 

cases had an upper 95% CI probability >10%. This would mean that if using a >10% threshold to 

initiate MODY testing for the population, 39 patients would be tested, giving a positive predictive 

value of 17.9% (Fig. 5), equivalent to the Original approach.  
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Fig. 5: Estimated probabilities of MODY from the Recalibration mixture model in C-peptide 

positive, antibody negative patients, split by whether patients tested positive for MODY or not. All 

patients with negative C-peptide or positive antibodies (n=1,075) had probabilities close to 0 and are 

not shown.  
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4. Discussion 
This paper explored recalibration methods for adapting a statistical model from case-control data to 

the general population for rare disease prediction.  

We have shown that the calibration of disease risk probabilities can be improved via various 

methods, and in particular, our results show the added benefits of utilising a secondary 

(recalibration) dataset that corresponds to a random sample from the general population despite 

there being few cases in the latter. In addition, the recalibration data contains additional information 

on biomarker tests, which are highly informative about disease risk, but only for certain subsets of 

test results; because of this, some biomarker information is only available for subsets of individuals. 

Our Recalibration mixture model allows the inclusion of (incomplete) biomarker information and 

informative prior information (derived from previous studies) about disease risk for specific subsets 

of test results to ensure clinically valid risk probabilities in those cases. 

The Recalibration mixture model has several other advantages. It allows for predictions to be 

made in clinical practice even if the biomarker information is not available. We can also propagate 

parameter uncertainties from the case-control model to the recalibrated population predictions by 

utilising the Bayesian framework. This gives a more robust estimate of the underlying predictive 

uncertainty than classical models that ignore this uncertainty. Furthermore, the predictions for 

individuals without biomarker test information also propagate the uncertainties from the missing 

information. Finally, since this model is used to help inform which individuals should be screened for 

MODY using expensive genetic testing, for those individuals who have missing biomarker 

information, we show how the mixture model can also be used to inform clinicians about the added 

utility of performing a biomarker test before making a final decision of whether to send individuals 

for genetic testing. Although highlighted with a specific application, these ideas could be adapted to 

other rare diseases.  

We compared several approaches for recalibrating probabilities when developing prediction 

models for rare diseases. We showed that the Original method tends to overestimate the 

probabilities in the general population, but that the Albert Offset [10], Re-estimation and 

Recalibration [7] approaches achieve good calibration of MODY probability predictions in both the 

model of the overall population and also in the model examining only the subset who were M� X L� 

(those genetically tested for MODY). The Albert Offset [10] and Recalibration [7] approaches 

achieved the smallest uncertainty around the observed probability of MODY. The Recalibration 

mixture model showed stability in our study and was the only approach that appropriately 

constrained the probability of MODY in M� Q L� individuals to be consistent with the strong prior 

information available in this setting. When developing prediction models for rare diseases in 

practice, different approaches will be plausible in different scenarios based on the available data 

sources. Table 4 provides an overview of the advantages and disadvantages of all modelling 

approaches explored in the manuscript. 

Table 4: Summary of key characteristics of the several modelling approaches. 

Modelling Approaches Advantages Disadvantages 

Original - Model can be built in one 

training dataset (e.g. case-

control) but probabilities can be 

updated based on information 

of prior probability from other 

studies. 

- Individuals cannot have a 

recalibrated probability lower than 

the estimated prevalence in the 

general population. 

- Probabilities are aggregated into 

groups. 
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- The recalibrated probabilities can 

be sensitive to the choice of grouping 

used. 

Albert Offset - Model can be built in one 

training dataset (e.g. case-

control) and probabilities can be 

updated based on information 

of prior probability from other 

studies. 

- Assumes the likelihood ratio for any 

given set of covariates is the same in 

the training data and 

calibration/target population. 

Re-estimation - Model can be built on one 

training dataset (population-

representative) so no 

recalibration necessary. 

- Requires a large sample size from 

the general population if model 

development required. 

- A lot of uncertainty in a rare disease 

setting due to very low number of 

positive cases. 

Recalibration - Scales odds ratios allowing for 

easy recalibration so that the 

model can be used in different 

settings (e.g.: general population 

or lab referral usage). 

- Requires two datasets: a training 

dataset (e.g. case-control) and 

recalibration dataset (e.g. general 

population). 

Re-estimation mixture - The model can be specified to 

include additional information 

on biomarker testing. 

- Requires a large sample size from 

the general population. 

- Model can be built on one 

training dataset (population-

representative) so no 

recalibration necessary. 

- A lot of uncertainty in a rare disease 

setting due to very low number of 

positive cases. 

Recalibration mixture - The model can be specified to 

include additional information 

on biomarker testing. 

 

- Requires two datasets: a training 

dataset (e.g. case-control) and 

recalibration dataset (e.g.: general 

population). 

- Scales odds ratios allowing for 

easy recalibration so that the 

model can be used in different 

settings (e.g.: general population 

or lab referral usage). 

 

When only a training dataset (case-control dataset in our setting) is available, and the aim is 

to adjust probabilities based on population prevalence, then the Albert Offset approach was the 

preferred method as it estimated the probability of MODY well in both our scenarios, with 

reasonable uncertainty in the predictions. In contrast, the Original approach [14] relies on 

thresholding probabilities and overestimates the probability of MODY in both scenarios. The Albert 

Offset approach has also been compared to other recalibration methods in other studies. Chan et al. 

(2008) had similar findings and deemed the Albert Offset the best approach [11]. In contrast, Grill et 

al. (2016) described this approach as the worst-performing one in their study [12]. These differences 

may relate to the Albert Offset approach's strong assumption that the covariate distribution is the 

same in the training dataset as in the population for which the probabilities are adjusted [10, 11], 

and as we showed in sFig. 5, the Albert Offset approach can perform poorly for datasets where the 

covariate distribution is different. When recalibrating models for different settings, the likelihood 
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ratio assumption could become harder to justify depending on the specific setting, and particular 

caution would be required in populations where the clinical characteristics of the patients differ 

substantially from the case-control dataset used for original model development. Establishing 

whether the similarities between covariate distributions are sufficient for pre-assessing the 

performance of the Albert Offset method is of interest for future research. 

When only a population-representative dataset is available, the Re-estimation approach 

would be necessary. The Re-estimation approach calibrates well in the general population dataset 

for both scenarios but demonstrates high uncertainty surrounding the model predictions. In 

contrast, Grill et al. (2016) describe the Re-estimation approach as having equivalent performance to 

the Albert Offset, with both performing worse than all other approaches [12]. The high uncertainty 

in our analysis can be attributed to the fact that there are only 7 positive MODY cases in the general 

population dataset (prevalence of 0.6%) and that the distribution of predicted probabilities is 

skewed towards zero. This highlights the problem with fitting models for rare diseases to population 

data [31], where the low prevalence means very large sample sizes would be required to reduce the 

uncertainty around the predictions, and it would be important to assess the adequacy of the sample 

size prior to model fitting [32]. When both training and population-representative datasets are 

available (as in our study), we showed that the Recalibration approach demonstrates good 

calibration in the population-representative dataset for both scenarios. This approach combines the 

information captured from the training data with information from the calibration dataset [7, 33], 

producing relatively low uncertainty in the model predictions compared to other approaches 

explored in this paper. 

We also explored a scenario where additional biomarker testing was available but 

performed only on a limited subset of patients. Screening using biomarkers is common in clinical 

practice and often used in rare diseases where universal testing is not cost-effective or could be 

invasive (e.g. screening for chromosomal defects in pregnancy [34]). We developed a Bayesian 

hierarchical mixture model to follow the referral process involved in MODY testing and, therefore, 

utilise the additional biomarker tests for further refinement in the prediction of MODY probabilities. 

As a Bayesian model, we can incorporate additional information from other studies into the prior 

distributions for certain parameters, something previously explored by Boonstra et al. [15] in a 

different setting where additional information is only present for a subset of individuals. This 

approach has a further advantage in that predictions can still be made for patients with missing 

additional biomarkers, which are modelled using patient characteristics. This is important for our 

setting in which instead of ignoring the biomarker results altogether, the model has used this 

information to improve predictions so that even when biomarker information is missing, the MODY 

probabilities are a weighted sum across the latent biomarker test results, where the weights are 

informed by a model relating potential biomarker test outcomes conditional on a set of clinical 

features. We also combined the mixture model with the Re-estimation and the Recalibration 

approaches for just M� X L� individuals. Both approaches showed uncertainty levels in the 

probability predictions consistent with the previously observed uncertainty estimates. Furthermore, 

both approaches were tested for stability using bootstrapped versions of the population-

representative dataset [35], demonstrating that the Recalibration mixture approach was more stable 

with the predicted probabilities of MODY than the Re-estimation mixture approach. 

Other approaches for recalibration have been considered in previous work. Chan et al. 

(2008) [11] compared three methods to update pre-test probability with information on a new test: 

the Albert (Albert Offset in our study) [10], Spiegelhalter and Knill-Jones (SKJ) [36] and Knottnerus 

[37] approaches. The SKJ represents an alternative to the Albert Offset approach, with similar 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2024. ; https://doi.org/10.1101/2024.01.22.24301429doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.22.24301429
http://creativecommons.org/licenses/by/4.0/


performance in their paper. The Knottnerus approach was more suited to cases with sequential 

biomarker testing, which was not appropriate for our work since we did not have data on some 

combinations of tests, instead we grouped biomarkers into a composite measure N. The Knottnerus 

approach could be compared to the mixture model approaches (allowing for non-independence 

between both biomarkers), and examining these approaches when considering sequential testing of 

more than one biomarker could be considered in future work. Grill et al. (2016) compared several 

methods for incorporating new information into existing risk prediction models: logistic-new 

(equivalent to Re-estimation), LR-joint, LR-offset (Albert Offset), and LR-shrink (equivalent to SKJ 

from reference [11, 36]). In contrast to our study, their original models were built in population data, 

and the new datasets with additional features were either cohort or case-control data [12]. In the 

context of rare diseases, case-control data is likely to provide the best dataset for initial model 

development since this gives the most power for estimating model parameters, and the population-

representative model can then borrow information from the case-control model. In cases where the 

additional data are only available in the case-control setting, and original models were built on 

population data, the joint model approach (Recalibration) could be adaptable to this scenario. 

The model we recommend for the available MODY data is the Recalibration 

mixture approach. A major strength of this procedure is that it allows predictions for patients with 

missing biomarker testing, and this weighted prediction of MODY probability can be used to inform 

whether a patient should be referred for further testing [38]. This model allows for the incorporation 

of strong prior information regarding the probability of having MODY for M� Q L� individuals, 

propagates uncertainties regarding the missing data in the UNITED study, and borrows weight from 

the case-control model through the recalibration procedure [7], thus improving the stability of 

predictions [35]. This model provides sensible predictions for the probability of MODY for patients 

with/without additional testing for C-peptide and antibodies. Patients with missing MODY testing 

(i.e. M� Q L�) could have been set as a negative result test for all approaches due to the strong 

clinical knowledge of these tests being consistent with a T1D diagnosis. However, this may not be 

the case for other settings, where patients with missing outcomes could be believed to have a higher 

probability of the outcome, and therefore, assuming that the outcome is negative may be less 

justifiable. 

There are some limitations to the Recalibration Mixture approach. We currently use 

biomarker tests as binary (positive/negative) results; in practice, biomarkers may be on a continuous 

scale. As such, the model could be adapted to include the biomarker results as additional covariates, 

which could be numerically integrated out if predicting to an individual that was missing this 

information in practice [38]. We are also limited by the small sample sizes in rare diseases [39], and 

even with our final model utilising two datasets, model predictions still have some uncertainty. 

However, we still saw good separation between MODY and T1D, and even accounting for the 

uncertainty, probability thresholds could be defined that rule out clear non-MODY cases and can be 

used to determine positive test rates at different probabilities in practice. These thresholds would 

balance the amount of testing to be carried out against the potential for missing genuine MODY 

cases, depending on how conservative the choice of threshold is. The model has yet to be validated 

in a hold-out dataset, but the stability plots using bootstrapped datasets provide some insight into 

the stability of model predictions [35]. Although the 95% credible interval of bootstrapped 

probabilities is relatively wide at higher values, the 50% credible interval is narrow for all 

probabilities around the equal line. 

This paper provides a comparison of several recalibration approaches. The development of 

our recalibration approach uses established methodologies, and we have shown how it could apply 
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to identifying patients with a high probability of MODY to allow more targeted diagnostic testing, 

but these ideas could be applied to other diseases. In practice, other settings could benefit from a 

similar Bayesian hierarchical model structure where informative biomarkers or additional testing 

information are available but only in a subset of patients due to its invasive nature or high cost of 

testing. With this structure, the model can be used to consider whether additional testing should be 

carried out when the individual already has a low probability (not on the cusp of referral), something 

explored previously in treatment selection for Type 2 diabetes [38]. Furthermore, this modelling 

structure could be particularly useful in other rare diseases with low sample sizes since it borrows 

weight from multiple datasets through recalibration, improving predictions. 

5. Conclusion 
We have compared several approaches to developing prediction models for rare diseases. We found 

the Recalibration mixture model approach to be the best approach, combining case-control and 

population-representative data sources. This approach allows the incorporation of additional data 

on biomarkers and appropriate prior probabilities. 
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