Abstract
Background Coronary artery calcium (CAC) scans contain actionable information beyond CAC scores that is not currently reported.
Methods We have applied artificial intelligence-enabled automated cardiac chambers volumetry to CAC scans (AI-CAC), taking on average 21 seconds per CAC scan, to 5535 asymptomatic individuals (52.2% women, ages 45-84) that were previously obtained for CAC scoring in the baseline examination (2000-2002) of the Multi-Ethnic Study of Atherosclerosis (MESA). We used the 5-year outcomes data for incident atrial fibrillation (AF) and compared the time-dependent AUC of AI-CAC LA volume with known predictors of AF, the CHARGE-AF Risk Score and NT-proBNP (BNP). The mean follow-up time to an AF event was 2.9±1.4 years.
Results At 1,2,3,4, and 5 years follow-up 36, 77, 123, 182, and 236 cases of AF were identified, respectively. The AUC for AI-CAC LA volume was significantly higher than CHARGE-AF or BNP at year 1 (0.836, 0.742, 0.742), year 2 (0.842, 0.807,0.772), and year 3 (0.811, 0.785, 0.745) (p<0.02), but similar for year 4 (0.785, 0.769, 0.725) and year 5 (0.781, 0.767, 0.734) respectively (p>0.05). AI-CAC LA volume significantly improved the continuous Net Reclassification Index for prediction of AF over years 1-5 when added to CAC score (0.74, 0.49, 0.53, 0.39, 0.44), CHARGE-AF Risk Score (0.60, 0.28, 0.32, 0.19, 0.24), and BNP (0.68, 0.44, 0.42, 0.30, 0.37) respectively (p<0.01).
Conclusion AI-CAC LA volume enabled prediction of AF as early as one year and significantly improved on risk classification of CHARGE-AF Risk Score and BNP.
Competing Interest Statement
Several members of the writing group are inventors of the AI tool mentioned in this paper. Dr. Naghavi is the founder of HeartLung.AI. Dr. Reeves, Dr. Atlas, Dr. Yankelevitz, and Dr. Li are advisors to HeartLung.AI and have received advisory compensation. Chenyu Zhang is a research contractor of HeartLung.AI. Kyle Atlas is a graduate research associate of HeartLung.AI. The remaining authors have nothing to disclose.
Funding Statement
This research was supported by 2R42AR070713 and R01HL146666 and MESA was supported by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168 and N01-HC-95169 from the National Heart, Lung, and Blood Institute, and by grants UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420 from the National Center for Advancing Translational Sciences (NCATS).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.