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Abstract 
 
Importance: Wrist-worn activity monitors provide biomarkers of health by non-obtrusively measuring the timing and 
amount of rest and physical activity (rest-activity rhythms, RARs). The morphology and robustness of RARs vary by age, 
gender, and sociodemographic factors, and are perturbed in various chronic illnesses. However, these are cross-sectionally 
derived associations from recordings lasting 4-10 days, providing little insights into how RARs vary with time.  
 
Objective: To describe how RAR parameters can vary or evolve with time (~months).  
 
Design, Setting and Participants: 48 very long actograms (“VLAs”, ≥90 days in duration) were identified from subjects 
enrolled in the STAGES (Stanford Technology, Analytics and Genomics in Sleep) study, a prospective cross-sectional, multi-
site assessment of individuals > 13 years of age that required diagnostic polysomnography to address a sleep complaint. A 
single 3-year long VLA (author GD) is also described.   
 
Exposures/Intervention: None planned.  
 
Main Outcomes and Measures: For each VLA, we assessed the following parameters in 14-day windows: 
circadian/ultradian spectrum, pseudo-F statistic (“F”), cosinor amplitude, intradaily variability, interdaily stability, 
acrophase and estimates of “sleep” and non-wearing.    
 
Results: Included STAGES subjects (n = 48, 30 female) had a median age of 51, BMI of 29.4kg/m2, Epworth Sleepiness 
Scale score (ESS) of 10/24 and a median recording duration of 120 days. We observed marked within-subject undulations 
in all six RAR parameters, with many subjects displaying ultradian rhythms of activity that waxed and waned in intensity. 
When appraised at the group level (nomothetic), averaged RAR parameters remained remarkably stable over a ~4 month 
recording period. Cohort-level deficits in average RAR robustness associated with unemployment or high BMI (>29.4) also 
remained stable over time.  
 
Conclusions and Relevance: Through an exemplary set of months-long wrist actigraphy recordings, this study 
quantitatively depicts the longitudinal stability and dynamic range of human rest-activity rhythms. We propose that 
continuous and long-term actigraphy may have broad potential as a holistic, transdiagnostic and ecologically valid 
monitoring biomarker of changes in chronobiological health. Prospective recordings from willing subjects will be necessary 
to precisely define contexts of use.  
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Introduction 

Digital health data obtained from wearable devices currently informs medical decision making in diabetes mellitus (glucose 
monitors), atrial fibrillation (ECG monitors) and drug-refractory epilepsy (responsive neurostimulation). The endpoints 
assayed by these technologies provide monitoring biomarkers1 to appraise treatment response and detect (and potentially 
predict) adverse events. When assessed remotely2, these measures can provide objective real time correlates of disease 
worsening3,4 and opportunities to prevent hospitalization5. Actigraphy, the visualization and analysis of a subject’s rest and 
activity patterns, offers a powerful stream of continuous data that can be collected noninvasively through limb- or trunk-
worn accelerometers. Wrist actigraphy has made significant inroads in sleep medicine, offering a cost-effective and 
ecologically valid approach to monitor subjects with insomnia, narcolepsy, or circadian rhythm disorders6. Actigraphic 
estimates of sleep quality and quantity have been employed as endpoints in small clinical trials of pharmaceutical7 and 
behavioral interventions8 for sleep disorders. Wrist actigraphy has also been popularly embraced within consumer wearable 
devices/fitness trackers, providing personalized feedback and goals about activity levels (e.g., “step counts”) and 
sedentariness9,10.  
 
Separate from sleep and steps, continuously worn wrist-accelerometers can also appraise rest-activity rhythms (RARs), a 
term preferred over circadian rhythms, as RARs need not display robust circadian oscillations. By applying both parametric 
and nonparametric techniques to multi-day long epochs, RARs can be expressed as a set of scalars that depict the rhythm’s 
height (amplitude), timing (acrophase), robustness (pseudo-F statistic, or “F”) and the degree of within- and across-day 
irregularity (interdaily stability [IS], intradaily variability [IV], respectively)11,12. Through large-scale efforts to measure 
RARs in hundreds-thousands of community-dwelling subjects (e.g., NHANES [National Health and Nutritional 
Examination Survey], SOL (Study of Latinos), MESA (Multi-ethnic Study of Atherosclerosis)13-15], we know how these 
parameters vary by sex, age, BMI and active employment13,14,16-19. Cross-sectional case-control studies have also identified 
RAR abnormalities in a range of chronic illnesses20-29. Within neuropsychiatry, depression has received the greatest 
emphasis, with multiple studies linking the severity of prevalent depression symptoms to reductions in robustness/routines 
(low F and IS, high IV), amplitude and a delayed acrophase12,16,30-33. This general constellation of abnormalities has been 
described as a “weak RAR”19, and is also seen in obesity18, frailty34 and Parkinson’s disease35.  
 
To define these nomothetic RAR associations, virtually all studies have utilized ~4-10 day-long recordings13,17,19,36, which 
provide little insights into whether fluctuations in symptom burden are temporally associated with fluctuations in RAR 
parameters. For example, despite decades of research, we have a limited understanding37,38 of whether the onset of 
depression coincides with, precedes, or succeeds a reduction in F and/or amplitude. Similarly, RAR amplitude reductions 
in patients on antiseizure medication (ASM) polytherapy16 may reflect a potentially remediable form of psychomotor 
retardation (“toxicity”), or a pre-existing circadian endophenotype linked to drug-refractoriness. There have been no 
NHANES-scale efforts to longitudinally collect actigraphy recordings in healthy or vulnerable populations, which has limited 
our fundamental understanding of the dynamic range and stability/volatility of RAR parameters. This knowledge is an 
essential requisite for the application of wrist actigraphy as a monitoring biomarker, one that may be measured 
repeatedly/continuously to assess disease status and/or treatment response1. Important examples include many serum 
assays, such as prostate specific antigen levels39 or HIV viral load40. In contrast, many neuropsychiatric symptoms (e.g., pain, 
depressed mood, sleepiness) lack precise and objective monitoring biomarkers, and have traditionally relied on psychometric 
instruments that are poorly suited for frequent and repeated sampling. In this report, we utilize a set of prolonged actigraphic 
recordings to describe how RARs vary over time. These very long actograms (“VLAs”) were discovered serendipitously 
amongst recordings provided by subjects enrolled in the STAGES study (Stanford Technology, Analytics and Genomics in 
Sleep). To further illustrate how RARs can dynamically change, we analyze a single contemporaneously annotated 3-year 
long VLA provided by author GD13,41,42.  
 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2024. ; https://doi.org/10.1101/2024.01.22.24301243doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.22.24301243
http://creativecommons.org/licenses/by-nc/4.0/


 4 

Methods 
Actigraphy and demographic data from all STAGES subjects were downloaded with permission from the National Sleep 
Research Resource (NSRR13,14, www.sleepdata.org). STAGES is a prospective, cross-sectional, multicenter study to (i) 
understand the genetic architecture of sleep, and to (ii) improve the detection, treatment, and prevention of sleep disorders. 
To be included, subjects had to be ≥ 13 years of age and require an in-lab sleep study. Subjects were excluded if they (i) 
were unable to understand or read English, (ii) were pregnant, (iii) did not have a smartphone to pair with the actigraphy 
device, (iv) needed a sleep study for purely treatment purposes, (v) were unwilling to complete all required study assessments, 
or (vi) displayed an acutely unstable medical or psychiatric condition that would impact subject safety. Enrolled subjects 
provided responses to a comprehensive questionnaire designed to collect information about current medical comorbidities, 
prescription medications and responses to a set of validated psychometric surveys, including the ESS (Epworth Sleepiness 
Scale), MEQ (Morning-Eveningness Questionnaire), PHQ-9 (Patient Health Questionnaire), GAD-7 (Generalized Anxiety 
Disorder Questionnaire) and FSS (Fatigue Severity Scale). Subjects were instructed to wear a Huami Arc-style actigraphy 
device (Huami Inc)43 for at least two weeks and were welcome to provide more than 2 weeks of data. From a total sample of 
1881 subjects, we identified 85 VLAs containing at least 90 days of actigraphy data, from which an additional 37 VLAs were 
excluded due to substantial rates of nonwearing (Fig. S1). Demographic features of included subjects are summarized in Fig. 
3A. Examples of actigraphy recordings from individual subjects are shown in Figures 1 and 2. To preserve their anonymity, 
ages are provided in non-overlapping 5-year bands/ranges (e.g., 56-60, 61-65, 66-70, etc.) Actigraphy in Figure 5 (author 
GD) was collected through a Motionwatch 8 device (CamNtech Ltd.) in 1s epochs, which were downsampled to 60s epochs 
to align with STAGES analysis. The first year of author GD’s actigraphy data is publicly available at the NSRR13,14.  
 
From all raw actograms, partial-day tail recordings were discarded, resulting in an integer number of full “days” (defined as 
midnight to midnight). Actograms lasting n days were transformed into a matrix containing 20160 rows (14 days x 1440 
rows/days) and n-13 columns, summarizing days 1-14, days 2-15, and so on. Each column of data was spectrally decomposed 
through the Lomb Scargle periodogram16,44 over a discrete set of period lengths (MATLAB). RAR parameters for each 14-
day window were individually quantified as described previously (github.com/JessLGraves/RAR)16,33,45, regressing log-
transformed actograms to a sigmoidally transformed cosine curve, generating measures of  RAR robustness (“pseudo”-F 
statistic, or simply “F”) and acrophase.  Amplitude measurements were derived from a standard cosinor regression46. 
Nonparametric measures (intradaily variability [IV] and interdaily stability [IS])11 were calculated using 
github.com/wadpac/GGIR. Epochs of nonwearing were defined as bouts of contiguous zero activity lasting ≥ 100 minutes. 
In the absence of detailed sleep diaries over these extended recordings47, we estimated the occurrence of “sleep” bouts as 
epochs containing between 4-99 minutes of contiguous zero activity16, providing a measure of mean daily total sleep times 
over 14d epochs.  
 
Spectrograms (shown as surface plots) were plotted using the Matlab surf function. All other graphs and statistical analyses 
were prepared using Prism GraphPad 10. A student’s T test was employed to conduct pairwise comparisons in Fig. 3D. A 
mixed effects model was implemented to examine group-wise variations of RAR parameters over time, using restricted 
maximum likelihood and the Geisser-Greenhouse correction (Fig. 4). Changes in subject-specific RAR parameters over time 
(Fig. 1 and 2) were smoothed with a 2nd order polynomial averaging 10 nearest neighbors. Multiple linear regression was 
employed to determine the odds ratios with which age, female sex, BMI, employment status and psychometric scores at 
consent (ESS, PHQ-9, GAD7, MEQ and FSS) impacted within subject standard deviations in RAR parameters calculated 
over the first 90 days of recording (Fig. S2B). For all models, variance inflation factors for all parameters were < 4.0.  
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Results 
From a total of 85 VLAs that contained at least 90 days of actigraphy data, we excluded recordings from 37 subjects with 
substantial nonwearing, particularly within the first 30 days (Fig. S1). Compared against the remainder of all STAGES 
enrollees, our 48 included subjects were older (odds ratio 1.03 [1.01 to 1.06]) and displayed lower MEQ scores (odds ratio 
0.91 [0.84 to 0.96]), but were not significantly different in sex, BMI or ESS, FSS, PHQ-9 and GAD-7 scores. Fig.1 illustrates 
an exemplary VLA from a 61-65yo female subject that provided a 294-day long recording. At consent, the subject was 
unemployed, reported comorbidities of hypertension and hyperlipidemia, and was taking gabapentin, atorvastatin, losartan 

and melatonin. She 
displayed psychometric 
evidence of excessive 
subjective sleepiness (ESS ≥ 
9) but low/normal levels of 
prevalent depression 
(PHQ9), anxiety (GAD7) 
and fatigue symptoms (FSS). 
As shown in Fig. 1A, 
circadian rhythmicity is 
difficult to discern from a 
compressed raw actogram of 
this length.  When spectrally 
decomposed, prominent 
peaks of rhythmicity were 
observed at period lengths 
corresponding to the 
circadian oscillator (1 day), 
12 hours and 4.8 hours. 
Well-defined infradian peaks 
(e.g., 7 days or 28 days) were 
not observed in this subject.  
 
To observe how specific 
RAR parameters varied as a 
function of time, we divided 
the recording into 
overlapping 14-day epochs 
(e.g., days 1-14, days 2-15, 
etc.) Fig. 1B depicts the 
spectral features of these 14-
day epochs as a surface plot, 
showing marked fluctuations 
in the power/amplitude of 
the circadian oscillator over 
time. Variations in the 
power of 12h-long rhythms 
(circasemidien or 
semicircadian48,49) were also 
observed, occurring largely 
independent of the circadian 
power. Using the same 14-
day windows, we also 
examined how a set of RAR 

Figure 1. Fluctuations in RAR parameters within a 294-day long VLA (very long actogram). A: Actigraphy data can be visualized across multiple time 
scales, and (RIGHT) can be spectrally decomposed into constitutive frequencies. B: Three-dimensional spectrogram capturing the power of oscillations with period 
lengths between 2h and 28h using overlapping 14-day windows. C: Variations in RAR parameters for the same 14-day windows (grey), and smoothed (blue). BMI 
(body mass index), HTN (hypertension), HLD (hyperlipidemia), ESS (Epworth Sleepiness Scale), PHQ9 (9 item Patient Health Questionnaire), GAD7 (7 item 
Generalized Anxiety Disorder Scale), FSS (Fatigue Severity Scale).  
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parameters evolved over time (Fig. 1C). “F” scores (or the “pseudo-F statistic”) displayed up to three-fold variation (ranging 
from 1000-3000), mirroring changes in circadian amplitude. Acrophase also vacillated between 1400-1600. Among 
nonparametric RAR measures11, we observed considerable fluctuations in both IS (stability across days) and IV (measuring 
rhythm fragmentation). IS strongly correlated with F and was correlated inversely with IV. Averaged total daily “sleep” 
times (see Methods) ranged between ~8-10h/d. While the burden of missing values was low, estimates of average watch 
nonwearing measured as high as 10% (~2.4h/d).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Other representative VLAs. A: This VLA captures well-formed ultradian rhythms of activity with period lengths of 12 and 8h. Estimates of total sleep 
time varied between 7-10h/d.  B: In this subject, poor circadian rhythmicity at the start of the recording associated with a relatively delayed acrophase and low F, all 
of which appeared to resolve over the course of 5-6 months. C: 6, 8 and 12h ultradian rhythms were observed in this VLA. D: Another exemplary VLA demonstrating 
a transient boost in semicircadian power occurring in concert with a transient reduction in circadian power. E: VLA demonstrating a gradual reduction in circadian 
power over time, associated with an acrophase advance. Each graph depicts both raw RAR parameters in 14-day windows (grey) and smoothed (blue). HTN 
(hypertension), HLD (hyperlipidemia) DMII (Type 2 diabetes mellitus), CHF (congestive heart failure).  
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We conducted a similar analysis for the remaining 47 VLAs and highlight some representative trends/motifs in Fig. 2. 
Approximately 8 months of data was provided by a 66-70yo male subject with excessive sleepiness (Fig. 2A), who displayed 
prominent 12- and 8h-long ultradian rhythms of activity. Estimates of total “sleep” time varied between 7-10h/d and could 
not be explained by nonwearing. Fig. 2B summarizes another ~8-month long recording from a 71-75yo morbidly obese 
unemployed man with hypertension and congestive heart failure, who reported high rates of fatigue and PHQ-9 scores 
compatible with severe depression. At the start of the recording, this subject’s circadian and semicircadian peaks of spectral 
power were remarkably similar in amplitude. Over time (or secondary to unknown treatment), the subject demonstrated a 
gradual improvement in circadian power, an acrophase advance and an improvement in total “sleep” times. The subject in 
Fig. 2C provided a ~5-month long VLA with a rich constellation of 12-, 8- and 6h long ultradian rhythms of activity. Fig. 
2D depicts a ~5-month long VLA from a morbidly obese 46-50yo employed woman with PHQ-9 scores compatible with 
moderate depression. This recording captured a transient boost in semicircadian power associated with a corresponding 
transient reduction in circadian power. And finally, Fig. 2E shows a ~4 month-long VLA from a 46-50yo employed obese 
woman with particularly high ratings of fatigue. In this example, we observed a gradual reduction in F over time, associated 
with an expected increased IV and decreased IS. This record did not feature any well-defined ultradian peaks. Together, 
these examples illustrate how measures of RAR morphology, robustness/stability and “sleep” calculated during the first 14-
day epoch varied substantially over subsequent weeks/months.  
 
Next, we shifted our focus to examine how RAR parameters behaved when averaged across the cohort. 30/48 subjects were 
female and 25/48 were employed (Fig. 3A). Overall, subjects displayed a median age of 51, a median BMI of 29.4kg/m2 
and high median ESS scores (10, Fig. 3A). All subjects provided at least 90 days of recording (defining their inclusion), and 
24 subjects provided greater than 121 days of recording (Fig. 3B). In Fig. 3C, we tallied the mean and variance of observed 
RAR parameters over time. In contrast to the dynamic changes observed within individual subjects, group-level RAR 
parameters remained relatively stable over the first 120 days of recording, including days 90-120, where the overall standard 
deviation (SD) remained stable despite the sample size dwindling by ~50%. When we aligned subject data by calendar date, 
we did not detect any obvious seasonal fluctuations in RAR parameters (Fig. S2A), although this analysis is limited by sub-
annual recording durations and substantial variations in start dates50. To qualitatively assess the extent of within-subject 
RAR fluctuations, we compared the daily standard deviations of each RAR parameter across all 48 subjects to standard 
deviations within individual subjects across the first 48 recording epochs. On average, within-subject standard deviations 
were approximately a third of those measured across subjects over a single epoch (Fig. 3D). To understand whether certain 
demographic and psychometric characteristics impacted within-subject variability, we developed independent multiple 
linear regression models for each RAR (Fig. S2B). RAR amplitudes and daily “sleep” times were more invariant in younger 
subjects. High ESS and PHQ9 scores (at consent) predicted greater variations in IV, while low MEQ scores (“evening” 
chronotypes) predicted greater stability in acrophase (Fig. S2B).  
 
Since the PHQ-9 is a widely utilized survey of prevalent depression symptoms, we explored whether depression-related 
RAR changes were at all present in our cohort, and whether they remained stable over time (Fig. 4A). Using a median-split 
of PHQ-9 responses, we segregated a low (≤5) and high (>5) depression subgroups. Subjects in the high PHQ9 cohort were 
significantly younger, more likely to be female, and scored significantly higher on GAD-7 and FSS surveys. Scores of F and 
amplitude were similar initially and across time (potentially due to age and sex differences19). High PHQ9 subjects also 
accumulated greater total sleep time (group x time, F106, 4490 = 2.32, p<0.0001). Community-derived associations between 
obesity and RAR changes have revealed similar results, whereby high BMI scores are associated with lower amplitudes18 
and F scores16,18. Using a similar median split, we found that F scores in high BMI subjects were consistently and significantly 
elevated throughout the recording period (group x time, F106, 4390 = 1.95, p<0.0001, Fig. 4B). We also examined associations 
with employment status: unemployed individuals tend to display lower amplitudes, acrophase delay, lower F and higher 
total “sleep” times16. All four of these relationships were observed in unemployed subjects (Fig. 4C), including amplitude 
(group main effect F1,46 = 4.4, p<0.05), acrophase (group x time F106,4432 = 4.4, p<0.05), F (group main effect F1,46 = 6.33, p<0.05), 
total daily “sleep” (group x time F106,4490 = 1.4, p<0.01).  
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Figure 3. RAR 
parameters averaged 
across the cohort. A: 
Demographic and 
psychometric data from 
selected STAGES subjects. 
Vertical bars depict median 
(blue – male, red-female). 
B. 48 subjects provided at 
least 90 days of recording, 
and 24 subjects provided at 
least 121 days of recording. 
C: RAR parameters 
averaged over time, by 
aligning start dates of 
recordings, depicting 
standard deviation and 
standard errors of the mean 
for all parameters. D: Over 
the first 48 daily actigraphic 
parameters (summarizing 
61 days [48+13]) across all 
48 subjects, within-subject 
standard deviations were 
approximately a third of 
across-subject standard 
deviations. **** denotes p 
<0.0001.  
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Figure 4. RAR stability in demographically or psychometrically defined cohorts of subjects. A. Subjects with higher (than median) PHQ-9 scores were also younger, more 
likely to be of female sex and displayed significantly higher GAD7 and FSS scores. Subjects with BMI > 29.4 (B) and those that were unemployed (C) displayed reductions in F that were stable 
across the recording duration. D: 48 subjects were manually divided into matched groups, simulating a protracted “baseline” observations period prior to treatment or placebo exposure. ***, 
**** denote p<0.001, 0.0001 respectively.  
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Finally, to simulate the utilization of RAR parameters as a clinical trial biomarker, we manually divided our 48 subjects into 
two equally sized cohorts matched in demographic and survey responses (Fig. 4D). Cohorts “1” and “2” defined in this 
fashion displayed similar RARs at onset, and F, amplitude and “sleep” measures remained similar over the recording 
duration.  
 
In Figure 5, we illustrate a 1094-day long VLA provided by author GD41,42. At the start of the recording (June 2016), the 
subject was a 61-65yo employed man (BMI 26.3kg/m2) with a history of uncomplicated cholelithiasis and nephrolithiasis, 
taking only acetaminophen for mild arthritis-related pain as needed. Two days after a 2016 Christmas day lunch with his 
family, he (and several members of his family) fell sick with a particularly severe case of the flu, requiring several days of 
bedrest. This incident was associated with a relatively steep but transient drop in circadian power and F. A second health 
issue occurred in 2018, when the subject experienced retinal detachment with hemorrhage on March 26 and March 28. 
Given the severity of hemorrhage, the subject was instructed to maintain total bed rest until surgery could be performed 
(April 24, 2018). More limited bedrest was required for the next several months, as the subject underwent repeated rounds 
of laser therapy. At around the onset of his symptoms in March, we observed an expected reduction in circadian power 
together with a notable patch of ultradian silence. In July of that year, a more protracted reduction in circadian power was 
accompanied by a boost in semicircadian power, with stable F scores. Clinically, this period was associated with a 
reinstitution of his daily walks.  
 

  

Figure 5. Fluctuations in RAR parameters within a 1094-day long VLA (very long actogram). Yellow arrow: depicting a steep but transient drop 
in F, amplitude, IS associated with a case of the flu. Red arrow: Patient experiences two retinal hemorrhages in two days, followed by strict bed rest for several 
weeks. This is associated with a step wise decline in amplitude, F and “sleep”. Green arrow: A boost in semicircadian power is observed as the patient resumes 
his normal activity levels, associated with a gradual restoration of circadian power by October.    
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Discussion 
As quantitative biomarkers of chronobiological health, RARs reflect the functional output of brain circuits subserving 
circadian rhythmicity, which in turn modulate (and are modulated by) closely interconnected brain networks that may be 
dysfunctional (e.g., stroke, epilepsy), exogenous environmental (e.g., sunlight exposure, exercise) or iatrogenic influences 
(e.g., sleep aids), and/or socioeconomic differences (e.g., employment, race/ethnicity). RAR differences by health-related 
variables may inform public health interventions designed to mitigate demographic disparities in healthy aging, morbidity 
and mortality12,17-19,33,51. By comparing RAR features between cohorts (e.g., controls vs affected) using data from days-long 
recordings, we have implicitly assumed that these differences remain stable over time.  Our study visualizes this cohort-level 
stability through real-world recordings of subjects that shared a requirement for in-lab polysomnography, and a willingness 
to provide months of actigraphy data. Beyond this selection bias, our sample was quite heterogeneous in age, BMI and 
extent of neuropsychiatric comorbidity. We found that even in relatively small cohorts (24-48 subjects) over 90-120 day 
recording durations (aligning with length of many clinical trials52-54), averaged RAR parameters remained stable over time, 
as did demographically mediated differences in RAR (e.g., low F in high BMI or unemployed subjects). This stability 
occurred in the absence of any planned or coordinated intervention, approximating a placebo or “standard of care” cohort. 
We hypothesize that continuous actigraphic surveillance, applied as an adjunct clinical trial biomarker, may connect 
clinically meaningful improvements in wellbeing/quality of life with objective stereotyped RAR changes. In neurological 
conditions that feature motor decline as a core symptom, parallel efforts that longitudinally survey daytime activity counts3 
and total steps4 are already underway. The simultaneous incorporation of RAR parameters may signal biomarkers of 
improvements in non-motor symptoms, including sleep and mood. This approach would also transparently depict the 
neurobehavioral “costs” of an intervention, for example, by quantifying the increased somnolence that occurs with 
anticonvulsant treatment, or the reductions in robustness that may associate with the depressive side effects of interferon 
treatment.  
 
Simultaneously, we observed relative volatility in RAR parameters when appraised within individual subjects, with variations 
that paralleled RAR differences in well-defined demographic or health-related changes. For example, from over 12,000 7-
day long recordings of subjects between 3-80 years of age (NHANES), average IS scores decreased with age (from ~1 to 
~0.8), while IV increased with age (from ~0.6 to ~0.9)19. We observed fluctuations of a similar magnitude within individual 
subjects over a timescale of a few weeks (Figs. 1,2). Similarly, in a study of community dwelling women aged ≥ 65 (Study of 
Osteoporotic Fractures, SOF), subjects with high prevalent depression symptoms displayed a significant ~20% reduction in 
F (~740 vs ~918 in controls)30. F scores in our 48 subjects displayed an average coefficient of variation of ~27% (i.e., with a 
standard deviation that was 27% of the mean). As patient-driven interest in wearable technologies continues to grow, our 
findings provide a starting point to integrate actigraphy-derived RAR assessments routinely into the individualized 
management of chronic illness, beyond those that primarily impact motor function. At the very least, such RAR 
“dashboards” would provide objective estimates of sleep and activity levels, endpoints that are notoriously prone to response 
distortion. Our study illustrates one such dashboard prototype that concisely provides a top-down view of subject-specific 
trends in RARs that may be captured in between routine clinic follow up visits, and which may be annotated prospectively 
by both physicians and patients. Just as achieving specific “step count” targets may improve cardiovascular fitness55, we 
hypothesize that setting personal goals for RAR robustness and timing may positively impact mental wellbeing.    
 
We outline several key limitations. First, compared with community-derived actigraphy efforts (e.g., NHANES, SOL, 
MESA, SOF), our sample is relatively small. Without event or symptom diaries, we cannot make any inferences about the 
whether our observed RAR fluctuations were at all linked to improvements or deteriorations of health.  By virtue of our 
selection criteria (≥ 90-day recordings), we cannot rule out the possibility that estimates of RAR volatility within these 
subjects was linked to their greater motivation to engage with a research actigraphy recording. Second, like most wearable-
derived data streams, our time series contained missing values and epochs of nonwearing. We elected to transparently 
juxtapose these epochs with RAR parameters, and rather than interpolating missing segments, we chose to minimize their 
acute influences on RAR parameters by adopting a wide 14-day window of analysis. This approach intentionally filters out 
higher frequency oscillations and focuses on underlying smooth trends in circadian behavior. We recognize that certain 
clinical scenarios may require wider or narrower windows of observation. Third, as with any actigraphy-derived estimation 
of sleep occurrence or timing, our algorithm may mis-classify epochs of quiet wakefulness. Absent sleep diaries (which are 
incomplete even in shorter actigraphic recordings47), our estimates of total “sleep” time may include naps that occur outside 
the main sleep period.  
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Conclusions 
In an exploratory analysis of months-long wrist actigraphy, we find that the morphology and robustness of rest-activity 
rhythms vary markedly with time when assessed within individual subjects. In contrast, when such longitudinally assessed 
RAR parameters are averaged across a demographically defined cohort of subjects, these biomarkers remain stable. To 
further define the monitoring biomarker potential of wrist actigraphy-derived RARs, we require long-term prospectively 
annotated recordings from willing subjects.  
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Supplemental Data 

 
 

 
 

Supplementary Figure 1. 85 STAGES subjects provided actigraphic recordings ≥ 90 days, from which the above 
37 were excluded due to significant nonwearing, especially when it occurred close to recording onset (when health-
related data, prescribed medications and psychometric surveys were collected.    
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Supplementary Figure 2. A: Mean, standard deviation and standard errors of the mean for RAR parameters 
aligned by calendar date. Top curve depicts real-time cohort sample size. B: Odds ratios (ORs) and 95% confidence 
intervals from multiple linear regression models examining the influence of age, sex, BMI, employment status and 
psychometric variables (ESS, PHQ9, GAD7, MEQ and FSS) on the standard deviation of RAR parameters over 
the first 90 days of recording.  * denotes p <0.05.   
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