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Abstract 

Summary: The reliable and timely recognition of outbreaks is a key component of public 

health surveillance for foodborne diseases. Whole genome sequencing (WGS) offers high 

resolution typing of foodborne bacterial pathogens and facilitates the accurate detection of 

outbreaks. This detection relies on grouping WGS data into clusters at an appropriate genetic 

threshold, however, methods and tools for selecting and adjusting such thresholds according 

to the required resolution of surveillance and epidemiological context are lacking. Here we 

present DODGE (Dynamic Outbreak Detection for Genomic Epidemiology), an algorithm to 

dynamically select and compare these genetic thresholds. DODGE can analyse expanding 

datasets over time and clusters that are predicted to correspond to outbreaks (or ‘investigation 

clusters’) can be named with the established genomic nomenclature systems to facilitate 

integrated analysis across jurisdictions. DODGE was tested in two real-world genomic 

surveillance datasets of different duration, two months from Australia and nine years from 

the UK. In both cases only a minority of isolates were identified as investigation clusters. 

Two known outbreaks in the UK dataset were detected by DODGE and were recognised at an 

earlier timepoint than the outbreaks were reported. These findings demonstrated the potential 

of the DODGE approach to improve the effectiveness and timeliness of genomic surveillance 

for foodborne diseases and the effectiveness of the algorithm developed. 

Availability and implementation: DODGE is freely available at 

https://github.com/LanLab/dodge and can easily be installed using Conda. 

Supplementary information: Supplementary Tables, Results, Figure 1 and Figure 2 
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Introduction 

Foodborne pathogens are a major cause of morbidity globally with 550 million infections 

reported in 2010 (Kirk et al. 2015). Salmonella enterica is a common cause of these 

infections with 78 million cases per year with the two most common serovars being S. 

Typhimurium (STM) and S. Enteritidis (Hendriksen et al. 2011, Kirk et al. 2015). Once they 

reach the human population from agricultural and environmental reservoirs the control of 

these pathogens depends on the identification and elimination of outbreaks. Outbreaks are 

mostly caused by single strains that contaminate food and lead to many cases of disease over 

a short time span. The identification of an outbreak has therefore relied on identifying strains 

that share the same genetic or phenotypic makeup and have occurred over a short temporal 

window (Sabat et al. 2013). 

Whole genome sequencing (WGS) has offered new capacity to identify related clinical and 

food isolates at high resolution. Previous studies have demonstrated that isolates within an 

outbreak examined using WGS are often not genetically identical but are very closely related 

(Octavia et al. 2015). Therefore, there is a need to group isolates together using a genetic 

distance threshold. A single static genetic threshold is unlikely to be universally applicable 

due to differences in genetic diversity across bacterial populations and differences in the 

transmission pathways within the outbreak (Bekal et al. 2016, Gymoese et al. 2017, 

Leekitcharoenphon et al. 2014, Octavia et al. 2015, Phillips et al. 2016). We previously 

demonstrated the utility of a variable genetic threshold that depended on the local diversity of 

isolates over time and provided optimal sensitivity and specificity for outbreak detection 

(Payne et al. 2019).  

Therefore, there is a need for a method and software tool that can identify an outbreak using 

thresholds determined dynamically based on the population and evolutionary dynamics of the 
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pathogen. Public health genomic surveillance has become routine in many countries therefore 

any software solution must also be capable of identifying and tracking outbreaks over time in 

continuously expanding datasets. 

In this study we present DODGE (Dynamic Outbreak Detection for Genomic Epidemiology), 

a method and tool to identify outbreaks with dynamic genetic thresholds selected using 

temporal thresholds that can accommodate expanding datasets from ongoing surveillance 

(software available from https://github.com/LanLab/dodge). This method utilises 

retrospective genomic surveillance data to define a background dataset which is then used to 

identify distinct, new clusters that subsequently appear. The method was tested on two STM 

genomic datasets, genome sequences from all STM isolates from a two-month period from 

two Australian states and over 9 years from the United Kingdom. 

Materials and Methods 

DODGE inputs 

DODGE is primarily designed for use with cgMLST allele profiles and can accept this data 

directly downloaded from MGTdb or Enterobase (Kaur et al. 2022, Payne et al. 2020, Zhou 

et al. 2020). Temporal and nomenclature data (MGT STs or hierCC clusters) were extracted 

from metadata files that can be obtained from the corresponding databases. To facilitate ad 

hoc analyses using DODGE, SNP based inputs can also be used. Inputs using SNP analysis 

are vcf files and masked genomes produced by the program snippy (Seemann 2015).  

DODGE algorithm 

In order to identify genetic clusters of bacteria that are likely to correspond to point source 

outbreaks DODGE uses a temporal threshold to dynamically select the best genetic threshold 

for each cluster independently. The stages of the DODGE algorithm are as follows (Figure 
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1A and B). Firstly, calculate pairwise distances between all isolates and perform single 

linkage clustering, clusters at each allowed thresholds are saved. Secondly, identify all 

genetic clusters at the maximum single linkage distance allowed (e.g., 5). For each cluster, if 

it is above the minimum size (e.g., 5 strains) check for the timespan of the collection times of 

isolates within the cluster. For clusters with timespans greater than the temporal threshold 

(e.g., 28 days) reduce the genetic threshold by one and check temporal threshold again. This 

is repeated until the timespan of the cluster is below the temporal threshold. This cluster is 

then stored as an investigation cluster which denotes a cluster that may warrant further 

examination using more detailed traditional epidemiological analysis. The minimum genetic 

threshold that retains the initial investigation cluster size is selected (e.g., if a cluster with 

threshold of 3 and 2 are identical threshold of 2 will be retained).  

For the temporal window to be effective in selecting genetic thresholds a set of background 

isolate data should also be included. This background dataset is composed of isolates 

collected before the start date of the main investigation and is processed by DODGE to 

identify existing genetic clusters without calling any for investigation. Any cluster that 

originated in this time period is treated as background and will not be reported.  

To track investigation clusters over time, each cluster is named based on the genomic 

identities of its constituent isolates and the genetic threshold used to identify it. For cgMLST 

data obtained from the MGTdb website each investigation cluster will be assigned an MGT 

ST. For data obtained from Enterobase a hierCC cluster name will be assigned (Zhou et al. 

2021). The name is selected at the highest resolution level where greater than 70% of isolates 

in the cluster share the same ST (for MGT) or cluster (for hierCC). For example, in a cluster 

of 20 isolates, 20 (100%) have the same MGT6 ST, 17 (85%) the same MGT7 ST and 12 

(60%) the same MGT8 ST, the MGT7 ST is then chosen as the investigation cluster name. 
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The same process is used for hierCC progressing from larger to smaller threshold hierCC 

clusters. Because SNP based analyses have no standardised nomenclature, numerical 

investigation cluster names are assigned per analysis. The second part of the investigation 

cluster name is the genetic threshold chosen by DODGE so that the full name is “genomic 

identity:genetic threshold”. 

DODGE pipeline 

Most genomic analyses operate on a static set of isolates. However, pathogen surveillance 

occurs continuously, and the analyses must be able to absorb additional isolates on a regular 

basis. For this reason, the DODGE pipeline was designed to run the DODGE algorithm with 

any input dataset divided into segments (1 week or 1 month) and runs once for each segment 

(Figure 1C). For example, if a dataset contains 2 months of data and the time period was set 

to week based then the DODGE pipeline would run 1 background run on data sampled from 

prior to those 2 months and then 9 separate detection runs, one for each of the 9 weeks in the 

2 months. The first run would identify clusters in the background dataset. Each subsequent 

detection run would include all previous investigation and non-investigation clusters (from 

previous weeks and background) and would identify if an investigation cluster was new, 

expanded or unchanged from one week to the next. In this way DODGE produces the same 

results from a large dataset over multiple years whether that data was added prospectively 

week by week or retrospectively in one run. Importantly investigation cluster names assigned 

by the DODGE algorithm are inherited across time periods to allow ongoing surveillance and 

tracking of the cluster. Additionally, once the cluster is identified as an investigation cluster, 

temporal thresholds used for cluster identification are no longer applied to allow long lived 

investigation clusters to be reported. The DODGE pipeline can also be run with a single static 

genetic threshold (bypassing the DODGE algorithm) if needed. 
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DODGE case study datasets and algorithm settings 

The Australian dataset includes genomic data for all STM isolates collected and sequenced at 

NSW and QLD public health laboratories in January and February 2017. All isolates in the 

STM MGTdb from Australia before 2017 were used as the background dataset. DODGE was 

run on this dataset with 5 isolate minimum cluster size and 28-day temporal threshold (ie, 5 

cases in a 28 day window as signal of an outbreak) and an initial genetic threshold of five.  

For the UK dataset all STM isolates from the UK from 2014 to 2022 that had year and month 

metadata were extracted from the STM MGTdb database. DODGE was run using a 5 isolate 

minimum cluster size, 5 genetic distance maximum and a two month temporal window. 

Results 

Application of DODGE to two months of Australian surveillance data using MGT 

A total of 517 STM genomes from NSW and QLD sequenced in January and February 2017 

were used to identify investigation clusters using DODGE (data available at 

https://github.com/LanLab/dodge/tree/main/examples/). Existing publicly available 

Australian isolates collected prior to 2017 were used as background data and included 1030 

isolates over 26 years (Supplementary Table 1). Fourteen investigation clusters including 214 

isolates (41.4%) were identified from the 2 months of surveillance (Figure 1D, 

Supplementary Figure 1, Supplementary Table 2). The average investigation cluster timespan 

was 29.3 days, average size was 15.3 isolates and average maximum pairwise distance was 

4.7 allele differences. Of the 208 isolates in investigation clusters, 35 (16.8%) were collected 

before the cluster was identified as an investigation cluster, 77 (37.0%) were collected in the 

week the cluster was identified and 96 (46.2%) were collected after the identification. The 

Australian dataset was also run using SNP inputs and investigation clusters showed good 
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agreement with MGT based clusters with a kohens kappa score of 0.91 (Supplementary 

Results). 

Application to UK data 

Publicly available STM genomic surveillance data from the United Kingdom between 2014 

and 2022 was evaluated as it is the most complete large dataset that includes month and year 

metadata (n=13251, Supplementary Table 3). Isolates from 2014 and 2015 were used as 

background data (n=2912) and the remaining 7 years of isolates (n=10339) were used to 

detect investigation clusters. A total of 93 investigation clusters were identified 

(Supplementary Table 4, Supplementary Figure 2) containing 1727 isolates (16.70% of 7 

year dataset). The average investigation cluster timespan was 9.19 months, average size was 

19.38 isolates and average maximum pairwise distance was 3.75 allele differences. Of the 

1727 investigation cluster isolates, 105 (6.1%) were collected before the corresponding 

cluster was identified as an investigation cluster, 719 (41.5%) were collected in the week the 

corresponding cluster was identified and 909 (52.4%) were collected after the identification. 

Two epidemiologically confirmed outbreaks were matched to publicly available 

representative genomic data within the UK dataset. The first was identified in April 2020 and 

caused 104 confirmed cases in the UK (European Centre for Disease Prevention and Control 

2020). A representative from this cluster fell within the MGT9 ST22592:1 investigation 

cluster which contained 90 isolates and was assigned as an investigation cluster in February 

2020.  

The second outbreak was reported in February 2022 and consisted of two distinct clusters 

which caused 102 and 7 epidemiologically linked cases in the UK, respectively (Larkin et al. 

2022). Two representatives for Cluster 1 fell within the investigation cluster MGT7 

ST21164:4, which contained 108 isolates and was assigned as an investigation cluster in 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2024. ; https://doi.org/10.1101/2024.01.21.24301506doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.21.24301506
http://creativecommons.org/licenses/by/4.0/


January 2022. Two representatives for Cluster 2 fell within investigation cluster MGT9 

ST30910:3, which contained 7 isolates and was assigned as an investigation cluster March 

2022. 

Discussion  

The identification of point source outbreaks using automated methods often rely on 

epidemiological data such as time, location and strain phenotype without considering detailed 

genetic relationships between isolates (Latash et al. 2020, Salmon et al. 2016, Zhang et al. 

2021). The increased uptake of WGS for prospective public health surveillance of different 

bacterial pathogens has the potential to provide this genetic context. However, the 

identification and reporting of emerging outbreaks from large datasets requires significant 

time and expertise. A recent promising approach for outbreak threshold detection employs 

temporal metadata and evolutionary modelling to select optimal genetic clusters (Duval et al. 

2023). However, it was tested on a small set of simulated data with addition of only one real-

life outbreak . Another published method does allow for clusters to be named and tracked 

over time from large datasets but does not select or adjust thresholds nor identify potential 

outbreak clusters (Mixao et al. 2023). A third method can identify whether an isolate should 

be included in an existing outbreak but cannot detect those outbreaks initially (Radomski et 

al. 2019). 

DODGE is designed to identify a potential outbreak cluster by dynamically selecting the 

genetic threshold appropriate for the given investigation cluster using large, long term 

ongoing genomic surveillance datasets. This is achieved by identifying a genetic threshold for 

a given cluster that is stringent enough to exclude all isolates that occur more than a certain 

time in the past. In this way when sufficient background data is available, DODGE can adapt 
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to the diversity of different clades in a population to provide more accurate outbreak cluster 

detection. 

Other key features of DODGE are the ability to analyse data in on-going surveillance while 

maintaining cluster identity through existing bacterial genomic nomenclature systems (MGT 

and hierCC). These nomenclature systems have been applied to all public global data for 

STM allowing investigation clusters to be placed in broader genomic context while also 

facilitating simple communication of outbreak types.  

Two investigation clusters from the UK dataset were matched with previously described 

outbreaks (European Centre for Disease Prevention and Control 2020; Larkin et al. 2022). In 

both cases representative isolates from the outbreaks were found within investigation clusters 

predicted by DODGE. These investigation clusters matched the size and timeframe reported 

for the outbreaks. Importantly, in both cases investigation clusters were identified prior to the 

date the cluster was originally reported (1 month earlier for MGT7 ST21164:4, 2 months 

earlier for MGT9 ST22592:1). This potential improvement in detection speed could allow 

more rapid responses to outbreaks, potentially reducing the overall number of outbreak cases. 

Additionally, in both the Australian and UK datasets, a significant proportion of isolates in 

investigation clusters were sampled after their respective investigation clusters were first 

detected (46.2% and 52.4%, respectively). These clusters represented likely community 

outbreaks and if they were investigated in a timely manner and preventative measures were 

implemented, the public health and societal burden of such clusters could be substantially 

reduced. 

DODGE provides a means to identify, name and track outbreak clusters using dynamic 

thresholds from prospective genomic surveillance datasets and can be incorporated within 

laboratory surveillance and analysis workflows. The program is publicly available 
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(https://github.com/LanLab/dodge) and could be used to accelerate the identification and 

control of point source outbreaks in any bacterial species where appropriate quality 

surveillance data is available.  

 

Figure legends 

Figure 1. The DODGE pipeline, algorithm and Australian dataset investigation clusters. 

A. Flowchart describing 6 stages of the DODGE algorithm. B. Example investigation cluster 

detection with the same 6 stages marked. Blue circles represent isolates, red numbered lines 

are genetic distances. At each genetic threshold isolates within the grey shaded area are the 

cluster being evaluated. C. High level schematic of the DODGE pipeline including the 

DODGE algorithm. Genetic data in the form of allele profiles (Enterobase or MGTdb) or 

SNPs (output by snippy) for isolates from a given temporal window (a week or month) are 

combined with previous time periods to generate a combined distance matrix. Distances 

between isolate pairs that are not in an optional input distance matrix (Blue arrow) are 

calculated and added. Clusters are identified using single linkage clustering from the distance 

matrix. These clusters are compared to existing investigation and non-investigation clusters 

from previous time periods (blue arrow) to identify expanded or unchanged investigation 

clusters. Remaining non investigation clusters are then used to identify novel investigation 

clusters using the DODGE algorithm detailed in B and C. Green boxes are input files, red 

outlined boxes are output files, blue arrows represent outputs from one time period used as 

inputs in the next. D. Investigation clusters identified from the Australian dataset over time. 

X axis is date of collection by week. Y axis is investigation cluster with MGT ST based ID. 

The area of circles is proportional to number of isolates in that investigation cluster in that 

week. Colour represents the genetic threshold used for that investigation cluster. Red outline 
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indicates the week in which the cluster was identified as an investigation cluster by the 

DODGE algorithm. 
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