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ABSTRACT

Background

Preventing and treating post-acute sequelae of SARS-CoV-2 infection (PASC), commonly
known as Long COVID, has become a public health priority. Researchers have begun to explore
whether Paxlovid treatment in the acute phase of COVID-19 could help prevent the onset of
PASC.

Methods and Findings

We used electronic health records from the National Covid Cohort Collaborative (N3C) to define
a cohort of 426,352 patients who had COVID-19 since April 1, 2022, and were eligible for
Paxlovid treatment due to risk for progression to severe COVID-19. We used the target trial
emulation (TTE) framework to estimate the effect of Paxlovid treatment on PASC incidence. We
estimated overall PASC incidence using a computable phenotype. We also measured the onset of
novel cognitive, fatigue, and respiratory symptoms in the post-acute period. Paxlovid treatment
did not have a significant effect on overall PASC incidence (relative risk [RR] = 0.98, 95%
confidence interval [CI] 0.95-1.01). However, it had a protective effect on cognitive (RR = 0.90,
95% CI 0.84-0.96) and fatigue (RR = 0.95, 95% CI 0.91-0.98) symptom clusters.

Conclusions

In this cohort, Paxlovid had a weaker preventative effect on PASC than in prior observational
studies. Differing effects by symptom cluster suggest that the etiology of cognitive and fatigue
symptoms may be more closely related to viral load than that of respiratory symptoms. Ongoing
clinical trials will help clarify Paxlovid’s overall effect on PASC, and future research should
explore potential heterogeneous treatment effects across PASC subphenotypes.
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INTRODUCTION

Post-acute sequelae of SARS-CoV-2 infection (PASC), commonly known as Long COVID, has
become a public health priority. PASC affects people from all walks of life, and it is difficult to
predict whether an individual will get PASC at the time of acute infection. Many people with
PASC continue to feel the impacts of the disease years after infection. Mechanisms causing
PASC remain largely unknown, and we have yet to identify a treatment that is consistently
effective across the array of PASC manifestations. Therefore, developing effective PASC
prevention strategies will be crucial to alleviating the long-term public health impact of
COVID-19. There is an urgent need for research on this topic, including identifying novel
interventions and assessing whether and how known interventions could help prevent PASC.

Nirmatrelvir with ritonavir (Paxlovid) was given an emergency use authorization (EUA) in the
United States in December 2021 for the treatment of patients with mild-to-moderate COVID-19
who are at high risk for progression to severe COVID-19. Paxlovid has proven effective at
preventing severe COVID-19, hospitalization, and death, with supporting evidence from clinical
trials and real-world evidence, although a recent study found that Paxlovid was less effective at
preventing hospitalization from SARS-CoV-2 Omicron subvariants compared to prior variants.1–7

In 2022, several teams published case reports where Paxlovid was used to treat PASC. Across
three early reports, treatment was effective in five of six treated patients.8–10 A larger 2023 report
found mixed effects in 13 patients, suggesting that Paxlovid treatment “may have meaningful
benefits for some people with Long COVID but not others”.11 In sum, this evidence motivated
several clinical trials, including RECOVER-VITAL, to evaluate Paxlovid as a potential treatment
for PASC.12 Results of smaller trials have begun to emerge. In Stanford University’s
STOP-PASC trial, which included 155 participants, Paxlovid did not show significant benefit in
improving extant fatigue, brain fog, body aches, cardiovascular symptoms, shortness of breath,
or gastrointestinal symptoms.13

In addition to treating PASC, researchers have begun to explore whether Paxlovid treatment in
the acute phase of COVID-19 infection could help prevent the onset of PASC. One plausible
pathway could be reducing infection severity. Several studies have found that more severe acute
infection or hospitalization is associated with a higher risk of PASC.14–17 Few studies have
explored Paxlovid as a PASC preventative, and results are mixed. The largest study to date
(281,793 individuals) used data from the US Department of Veterans Affairs (VA).18 The VA
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study found that Paxlovid treatment during the acute phase of COVID-19 reduced the risk of a
composite outcome of 13 post-acute sequelae, with a hazard ratio of 0.74.18 However, two
smaller studies found that Paxlovid treatment was not associated with a reduced risk of PASC: a
survey of 4,684 individuals from the Covid Citizen Science cohort and a survey of 500
individuals from Montefiore Medical Center.19,20 Although these studies are much smaller than
the VA study, they are more representative of the general population, and survey methods may
capture symptoms that electronic health record (EHR) data do not. Also, because there is still no
consensus definition of PASC, these studies use different outcome measures. In sum, the
relationship between Paxlovid treatment and PASC onset remains uncertain.

At the time of writing, the PANORAMIC trial in the United Kingdom and the CanTreatCOVID
trial in Canada are both recruiting for arms which will receive Paxlovid during acute
COVID-19.21,22 The PANORAMIC trial will focus on acute outcomes, but the CanTreatCOVID
trial will include follow-up at 90 days and 36 weeks. CanTreatCOVID will provide valuable
insight to the relationship between Paxlovid treatment and PASC onset, but as of March 5, 2024,
the trial has recruited only 393 participants, with a planned completion date of January 2025.23

Through the National Institute of Health's National COVID Cohort Collaborative (N3C), and as
part of the Researching COVID to Enhance Recovery (RECOVER) Initiative’s EHR data team,
we have the opportunity to study Paxlovid as a PASC preventative using a large, nationally
sampled cohort and an up-to-date study period consisting mostly of Omicron BA and later
subvariant infections.24,25 This study adds to the evidence base while we await results from
CanTreatCOVID and, hopefully, additional future trials. All analyses described here were
performed within the secure N3C Data Enclave, which integrates EHR data for 21 million
patients from over 230 data partners across the United States. N3C’s methods for data
acquisition, ingestion, and harmonization have been reported elsewhere.24,26,27

METHODS

Overview

We used the target trial emulation (TTE) framework to estimate the effect of Paxlovid treatment
in the acute phase of COVID-19 infection on the cumulative incidence of PASC among a cohort
of patients eligible for Paxlovid treatment (i.e., with one or more risk factors for developing
severe COVID-19).28 We followed the two-step process for emulating target trials with
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observational data suggested by Hernán and Robins.29 First, we articulated the causal question of
interest in the form of a hypothetical trial protocol. Second, we emulated each component of this
protocol using observational EHR data.

We measured overall PASC incidence using a machine learning-based computable phenotype
model, which gathers data for each patient in overlapping 100-day periods that progress through
time, and issues a probability of PASC for each 100-day period.30 The model was trained to
classify whether patients have a U09.9 (“Post COVID-19 Condition”) ICD-10 diagnosis code in
each period, based on the patients’ diagnoses during each period. Diagnoses surrounding known
COVID-19 infections are blacked out.

To measure PASC from a granular, symptom-based approach, we also measured the novel onset
of PASC symptoms in the cognitive, fatigue, and respiratory clusters proposed by the Global
Burden of Disease (GBD) Study (“GBD symptom clusters” henceforth).31 In our symptom
cluster-based approach, we examine the effect of treatment on both individual symptom clusters,
and a composite symptom-based measure based on the onset of any symptom across all
clusters.These clusters were the most frequently reported symptoms in a meta-analysis of Long
COVID studies.31 Their full definitions are cognitive problems (forgetfulness or difficulty
concentrating, commonly referred to as brain fog); persistent fatigue with bodily pain (myalgia)
or mood swings; and ongoing respiratory problems (shortness of breath and persistent cough as
the main symptoms).31

We also conducted two sub-analyses: the first using a “VA-like cohort” designed to mirror the
study period and demographics used in Xie et al. (2023)18 and the second including COVID-19
vaccination status as an additional covariate, conducted in a subset of sites with high-quality
vaccination data. Finally, we conducted several sensitivity analyses to test sensitivity to
estimation methods, computable phenotype prediction threshold, COVID-19 index definition,
and time period of outcome observation.

Ethics Approval

The N3C data transfer to the National Center for Advancing Translational Sciences is performed

under a Johns Hopkins University reliance protocol (IRB00249128). The RECOVER

Publications and Presentations Oversight Committee and the N3C Publications Committee
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approved this manuscript (manuscript IDs R_1OK0bL9LIsmS7Hu and 1020.56, respectively).

Results downloads were approved per N3C Attribution and Publication Principles.32

Eligibility Criteria

The study period spanned April 1, 2022, to August 14, 2023, with an index cutoff date of

February 28, 2023 (180 days before the end of the study period). We excluded the period

between December 21, 2021 (date of Paxlovid EUA) and March 31, 2022 due to the variability

in case counts and prescription patterns during the first wave of the Omicron variant.33 We used

data from RECOVER release v141 (August 2023) in the N3C Enclave.

Our inclusion criteria emulated the target trial’s eligibility criteria: 1) having a documented

COVID-19 index date within the study period (with index date defined as the earliest date of

either a COVID-19 diagnosis [ICD-10 code U07.1] or a positive SARS-CoV-2 test result), 2)

being ≥ 18 years of age at the COVID-19 index date (due to potential differences in clinical

characteristics and prescription practices between pediatric and adult patients34,35), and 3) having

≥ 1 risk factor for severe COVID-19 per CDC guidelines (age ≥ 50 years or diagnosis of a

comorbidity associated with higher risk of severe COVID-1936). For patients with > 1 COVID-19

index date in the study period, we selected a single index date per the following criteria: 1) if

Paxlovid was prescribed within 5 days of one index date, use that index date, 2) if Paxlovid was

prescribed within 5 days of > 1 index date, use the first, and 3) if Paxlovid was not prescribed

within 5 days of any index date, use the first index date.

We also applied a set of exclusion criteria, to exclude: 1) patients who were hospitalized on the

COVID-19 index date, 2) patients with PASC (see Treatment and Outcome) prior to or on the

COVID-19 index date, 3) patients who were prescribed a drug with a severe interaction with

Paxlovid in the 30 days prior to the COVID-19 index.37 Furthermore, to ensure that data were

captured from sites with high fidelity and adequate coverage, we only included data from 28 sites

with at least 5% of eligible patients, and a minimum of 500 patients, treated with Paxlovid during

the study period.

Treatment and Outcome
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Eligible patients were categorized by their treatment exposure. The treatment group was defined

as having been prescribed Paxlovid within 5 days of their COVID-19 index date. The control

group was defined as the complement, with one exception. Patients who were prescribed

Paxlovid within 5 days of COVID-19 index, but were hospitalized prior to treatment, were

included in the control group and censored at the date of Paxlovid prescription (see Statistical

Analysis for more on censoring). We took this approach because inpatient Paxlovid treatment

(presumably after COVID-19 is already severe) is a different treatment modality, and we

intended to study on-label outpatient treatment. We selected a treatment window of 5 days from

COVID-19 index to adhere as closely as possible to treatment guidelines (within 5 days of

symptom onset) with the available data. We identified 10 Observational Medical Outcomes

Partnership [OMOP] concepts that correspond to Paxlovid in N3C and used these concepts to

measure treatment.38

We considered two measures of the PASC outcome. To measure PASC overall, we used a

computable phenotype: a machine learning model trained to predict PASC diagnoses (ICD-10

code U09.9). An earlier version of this computable phenotype was used in prior work.39 For this

study, we used an updated version better suited for the later phase of the pandemic.39,40 The

model gathers data for each patient in overlapping 100-day periods that progress through time,

and issues a probability of PASC for each 100-day period. The model was trained to classify

whether patients have a U09.9 (“Post COVID-19 Condition”) ICD-10 diagnosis code in each

period, based on the patients’ diagnoses during each period. We followed patients for 180 days

following their COVID-19 index date. PASC date was defined as the start date of the 100-day

period which had the maximum computable phenotype prediction above a threshold of 0.9, or, if

present, the date of U09.9 diagnosis, whichever was earlier. Patients over 100 years old at

COVID-19 index did not receive model scores and were excluded from analysis of this outcome

To measure PASC at a more granular level, we examined the PASC symptom clusters--cognitive,

fatigue, and respiratory--proposed by the Global Burden of Disease (GBD) Study.31 These

clusters were the most frequently reported symptoms in a meta-analysis of Long COVID studies.

Their full definitions are cognitive problems (forgetfulness or difficulty concentrating,

commonly referred to as brain fog); persistent fatigue with bodily pain (myalgia) or mood
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swings; and ongoing respiratory problems (primarily shortness of breath and persistent cough).

For the GBD symptom cluster outcomes, we conducted two distinct types of analyses. First, we

examined the effect of treatment on the onset of each GBD symptom cluster independently, with

PASC date defined as the first diagnosis date of any novel symptom in the cluster at least 28 days

after COVID-19 index (we defined novel symptoms as symptoms that did not occur in the three

years prior to COVID-19 index). Second, we examined the effect of treatment on a composite

symptom-based outcome, with PASC date defined as the earliest post-acute onset date of any

novel symptom in any of the three GBD symptom clusters (henceforth referred to as “Any GBD

Symptom”). We interpret this along with the computable phenotype outcome to assess robustness

to the choice of PASC outcome measure. The list of ICD-10 codes to define each GBD symptom

cluster cluster was based on the GBD study and is presented in Table 1.

A positive prediction from the computable phenotype model does not necessarily imply that a

patient must have a positive outcome for one or more symptom clusters. The model considers

many more diagnosis codes than those included in the symptom clusters (see the “SNOMED

Roll Up” section in the supplement of Crosskey et al., 2023), and a positive prediction may be

based on other diagnosis codes.30 Also, the computable phenotype model does not include a

novelty restriction. For example, if a patient had a dyspnea diagnosis in the three years prior to

index, a post-acute dyspnea diagnosis would not count for the respiratory symptom cluster, but it

would be considered by the computable phenotype model.

Statistical Analysis

Our estimand was the cumulative incidence of PASC from 29 to 180 days after COVID-19

index. We applied a potential outcomes framework to compare the rate of PASC among patients

who received treatment to those who did not. We use inverse probability of treatment (IPT)

weighting to emulate random assignment through exchangeability between treatment arms.

Our treatment model included the following pre-treatment covariates: sex, age (binned), race and

ethnicity, prior history of individual comorbid conditions captured in the Charlson Comorbidity

index, value of the composite Charlson Comorbidity Index (CCI; binned), prior history of

conditions associated with risk of severe COVID-19 (as defined by the CDC Paxlovid eligibility
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criteria36), Community Well-Being Index (CWBI; binned), number of visits in the year prior to

index (binned), number of hospitalizations in the year prior to index (binned), month of

COVID-19 onset, and site of care provision. We selected these covariates based on a theoretical

causal model, which the author team - consisting of clinicians, epidemiologists,

bioinformaticians, data scientists, and patient representatives with lived experience - developed

collaboratively. Our causal model is shown as a directed acyclic graph in Figure 1. Our specific

rationale for selected covariates is as follows. Many studies have shown disparity in COVID-19

treatment and outcome by race, ethnicity, and social determinants of health.41–44 Sex, age, and

comorbidities are known to affect care seeking and the outcome of COVID-19. Past healthcare

utilization could affect the likelihood of treatment seeking and PASC documentation. Finally, the

index month was included because Paxlovid treatment rates, viral variants, and infection rates

changed during the study period. CCI was coded as missing when no condition records were

present in N3C prior to index. CWBI was coded as missing when patient ZIP code was not

reported.

We used this treatment model to generate stabilized IPT weights trimmed at the 99.5th

percentile. We assessed covariate balance using absolute standardized differences. To estimate

the cumulative incidence of PASC, we used IPT-weighted Aalen-Johansen estimators. We used

bootstrapping with 200 iterations to estimate the 95% confidence interval at a two-sided alpha of

0.05.

We censored patients at the following events: 1) death, 2) last documented visit in the study

period, 3) PASC outcome within 28 days of COVID-19 index, and 4) 180 days after index (end

of study period). We also censored patients in the control group if they received Paxlovid. This

could occur if they received Paxlovid within 5 days of index, but after hospitalization (see

Treatment and Outcome). It could also occur if they received Paxlovid later in the study period,

but not within 5 days of a COVID-19 index (see Eligibility Criteria). By treating death as a

censoring event rather than a competing risk, we estimate the direct effect of Paxlovid treatment

on PASC incidence, rather than the total effect.45 The total effect would include any effect of

Paxlovid treatment on PASC incidence that is mediated by death, which is less interpretable.

In addition, we conducted two subanalyses and five sensitivity analyses.
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Subanalyses

In the first subanalysis, we attempted to mirror the cohort used in Xie et al (2023). We refer to

this as the VA-like cohort subanalysis. In this analysis , we used the same study start and end

dates as Xie et al. (January 3, 2022, and December 31, 2022). To mirror VA demographics, we

filtered the cohort to males >= 65 years old at COVID-19 index. To reflect the high continuity of

care of the VA system, we filtered our cohort to patients with at least two visits in the year prior

to COVID-19 index.

In the second subanalysis, we included COVID-19 vaccination status as a covariate, and

replicated our primary analysis. We considered vaccination to be a plausible confounder of

Paxlovid treatment and documented PASC, either through acute infection severity or propensity

to seek care. We followed a similar procedure as in our earlier work estimating the effect of

Paxlovid treatment on hospitalization.3 Because vaccination status in N3C is subject to

misclassification, we used a subcohort of patients from sites with reliable vaccination data. We

categorized patients by their vaccination status prior to their COVID-19 index date, defined as

having completed a full course of vaccination at least 14 days prior to index. Partially vaccinated

patients and patients who became fully vaccinated fewer than 14 days prior to index were

excluded from the analysis.

Sensitivity Analyses

We conducted five sensitivity analyses.

First, we used a doubly-robust estimation method in case the treatment model was misspecified.

Targeted maximum likelihood estimation was not feasible with our cohort and computing

environment, so we were unable to estimate cumulative incidence using a doubly-robust method.

Instead, we estimated the hazard ratio (HR) of Paxlovid treatment as a secondary estimand. We

used inverse probability of treatment-weighted Cox proportional hazards models adjusted for the

same baseline covariates as the treatment model. The same bootstrap procedure was used to

estimate confidence intervals.
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Second, we tested various computable phenotype prediction thresholds. In addition to the 0.9

threshold used in the primary analysis, we tested prediction thresholds at 0.75, 0.8, 0.85, and

0.95.

Third, we included Paxlovid treatment as a COVID-19 index event. This added 33,571 additional

patients who were treated with Paxlovid during the study period, but did not have a U07.1

diagnosis or a positive lab test in the five days prior to treatment.

Fourth, we also tested sensitivity to COVID-19 index definition by including only positive lab

tests as index events (i.e., we did not include U07.1 diagnoses without accompanying lab

results).

Fifth, we tested sensitivity to outcome definition in three ways: by requiring outcomes to occur
90 days after COVID-19 index (rather than 29 days), by observing patients for up to 365 days
(rather than 180 days), and by treating PASC predictions or diagnoses from 0 to 28 days after
index as outcome events rather than censoring events.

RESULTS

Patient Characteristics

All results are reported in adherence with the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) guidelines.46 After inclusion and exclusion criteria, a total
of 426,352 patients had a valid COVID-19 index date within the study period of April 1, 2022 to
February 28, 2023, of whom 123,186 (28.89%) were treated with Paxlovid, and 24,469 (5.74%)
had PASC (U09.9 diagnosis or computable phenotype prediction over 0.9 from 29 to 180 days
after index). During the study period, 107 (0.09%) patients treated with Paxlovid and 622
(0.21%) untreated patients died. A total of 5,822 (1.37%) patients had a post-acute symptom in
the cognitive symptom cluster, 15,239 (3.57%) patients had a post-acute symptom in the fatigue
symptom cluster, and 24,833 (5.83%) had a post-acute symptom in the respiratory symptom
cluster. Among patients with a PASC diagnosis or computable phenotype prediction, 8.57% had
a post-acute symptom in the cognitive symptom cluster, 20.92% had a post-acute symptom in the
fatigue symptom cluster, and 35.76% had a post-acute symptom in the respiratory symptom
cluster. A co-occurrence matrix, showing the percentage of patients with each outcome who also
had other outcomes, is shown in Figure 2. After applying the eligibility criteria to the patient
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population and study sites, a total of 28 of 36 study sites were retained. The CONSORT flow
diagram is shown in Figure 3. The characteristics of all patients during the study period are
presented in Table 2, stratified by treatment group. Inverse probability of treatment weighting
achieved balance across all covariates, as shown in Figure 4. The target trial protocol and
emulation approach are presented in Table 3.

Effect of Paxlovid Treatment on PASC Incidence

Overall, we found that Paxlovid treatment during acute COVID-19 did not have a significant
effect on overall PASC onset as defined by our computable phenotype, but it did have a
significant protective effect against cognitive and fatigue symptoms. Table 4 shows inverse
probability of treatment-weighted Aalen-Johansen estimates of cumulative incidence for main
analyses. Table 5 shows estimated treatment effects across all analyses, including subanalyses
and sensitivity analyses. Figure 5 shows corresponding risk ratios for all analyses.

For overall PASC onset, measured by our PASC computable phenotype, adjusted cumulative
incidence estimates were 6.92% (95% CI 6.74-7.09) for treated patients and 7.03% (95% CI
6.93-7.14) for untreated patients. The adjusted relative risk of PASC was 0.98 (95% CI
0.95-1.01). The adjusted relative risk of any GBD symptom was 0.99 (95% CI 0.97-1.01). For
the GBD symptom clusters, adjusted relative risk was 0.90 (95% CI 0.84-0.96) for the cognitive
symptom cluster, 0.95 (95% CI 0.91-0.98) for the fatigue symptom cluster, and 1.00 (95% CI
0.97-1.03) for the respiratory symptom cluster. Last, Figure 6 shows cumulative incidence
functions.

Subanalyses

In the subanalysis using a VA-like cohort, we altered the cohort from the primary analysis to
mirror the demographics of VA patients, which skew male and older compared to the general
population. We also altered the study period to the one used in Xie et al, 2023, thereby including
patients from the Omicron wave in early 2022, when Paxlovid was less widely available.18 These
changes remove potential sources of difference between our primary analysis and Xie et al, 2023,
making the studies more directly comparable. The VA-like cohort included 64,233 male patients
65 years or older with a COVID-19 index between January 3, 2022, and December 31, 2022.18

Of this cohort, 16,876 (26.27%) were treated with Paxlovid. Adjusted relative risk for PASC
overall was 0.92 (95% CI 0.84-1.01). For the cognitive, fatigue, and respiratory GBD symptom
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clusters, adjusted relative risk was 0.78 (95% CI 0.66-0.90), 0.89 (95% CI 0.79-0.99), and 0.92
(95% CI 0.84-1.00), respectively. Cumulative incidence functions are shown in Figure 7.

In the vaccination-aware subanalysis, we replicated our primary analysis while adjusting for
COVID-19 vaccination status. We considered vaccination to be a plausible confounder of
Paxlovid treatment and documented PASC, either through acute infection severity or propensity
to seek care. However, vaccination status in N3C (like most EHRs) is subject to missingness. In
this subanalysis, we used a subcohort of patients from sites with reliable vaccination data, which
we identified, as in prior work, by comparing each site’s data to public vaccination rates for its
catchment area.3,39 We categorized patients by their vaccination status prior to their COVID-19
index date, defined as having completed a full course of vaccination at least 14 days prior to
index. Partially vaccinated patients and patients who became fully vaccinated fewer than 14 days
prior to index were excluded from the analysis. The vaccination-aware cohort included 164,940
patients from 8 sites that met vaccination data quality criteria. Of this cohort, 127,683 (77.4%)
were fully vaccinated prior to index, 59,257 (35.93%) were treated with Paxlovid, and 8,824
(5.35%) had PASC according to our primary outcome measure. Among fully vaccinated patients,
50,496 (39.5%) were treated, as compared to 8,788 (23.6%) among those not fully vaccinated.
Adjusted relative risk for PASC overall was 0.96 (95% CI 0.92-1.01). For the cognitive, fatigue,
and respiratory GBD symptom clusters in the vaccination-aware subanalysis, adjusted relative
risk was 0.87 (95% CI 0.78-0.95), 0.95 (95% CI 0.89-1.00), and 0.97 (95% CI 0.93-1.02),
respectively.Cumulative incidence functions are shown in Figure 8.

Our findings were not sensitive to the use of different computable phenotype prediction
thresholds, or to the use of different PASC timing windows.

However, other sensitivity analyses produced different results. Treating only positive lab tests as
index events, Paxlovid appeared to have an anti-protective effect on PASC (see Figure 9). There
is no plausible mechanism for this to be the case, and it is likely due to bias in the subset of
COVID-19 patients who had documented lab tests in an era when home testing was common.

In our analysis including treatment with Paxlovid as a COVID-19 index event (i.e., including
patients who received Paxlovid but did not have a COVID-19 diagnosis or positive lab result),
we also found a significant, protective treatment effect (RR 0.97, 95% CI 0.94-0.99, see Figure
10). In the absence of a COVID-19 diagnostic code (U07.1) or positive laboratory confirmed
SARS-CoV-2 test to mark a COVID-19 index date, the additional subset of the patient
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population treated with Paxlovid here may still represent true COVID-19 cases, treated for
suspected (but not laboratory-confirmed COVID-19), or with a recent personal history of
COVID-19 (Z86.16).47 Within the resulting patient cohort, the treatment effect of Paxlovid on
PASC was statistically significant, but the effect size remained practically insignificant.

Using a doubly robust estimator and the hazard ratio (HR) of Paxlovid treatment as the estimand,
we found a small but significant treatment effect (HR 0.95, 95% CI 0.92-0.98). This suggests
that some residual confounding may remain after IPTW, however, the treatment effect remains
practically insignificant.

DISCUSSION

In this target trial emulation using the N3C database and a nationally sampled cohort of patients
eligible for Paxlovid treatment (i.e., with one or more risk factors for severe COVID-19), we
found that Paxlovid treatment during the acute phase of COVID-19 did not have a significant
effect on overall PASC incidence as defined by our computable phenotype. Paxlovid also did not
have a significant effect on overall PASC incidence as defined by the novel onset of any PASC
symptom in the post-acute period (our “Any GBD Symptom” outcome). We conclude that
Paxlovid had no significant effect on the onset of PASC, and this finding was robust to the
definition of PASC.

However, Paxlovid’s effect may be heterogeneous across PASC symptoms. We found that
Paxlovid had a protective effect against the onset of novel cognitive and fatigue symptoms in the
post-acute period, but no effect on respiratory symptoms. The relationships among these effects
and the lack of an overall effect is explained by incidence rates. PASC overall, and respiratory
symptoms, were far more common than cognitive and fatigue symptoms in this cohort. Although
Paxlovid had a significant effect on cognitive and fatigue symptoms, few patients with PASC had
these symptoms, and the effects were not large enough to contribute to a significant overall
effect.

Differing effects by symptom cluster also suggest that Paxlovid may have more impact on the
underlying causes of certain symptoms. In the literature, multiple PASC etiologies have been
proposed. The chief hypotheses are that, relative to healthy convalescents, those with PASC may
be experiencing (1) an aberrant autoimmune response triggered by the virus, (2) organ, tissue, or
vascular dysfunction related to inflammatory cascades following infection, and/or (3) persistent

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2024. ; https://doi.org/10.1101/2024.01.20.24301525doi: medRxiv preprint 

https://paperpile.com/c/0Qm2JD/Pgu8q
https://doi.org/10.1101/2024.01.20.24301525
http://creativecommons.org/licenses/by-nc-nd/4.0/


viremia due to increased viral load or viral reservoirs. We do not yet know which symptoms are
caused by which mechanisms. Paxlovid treatment decreases viral load, and thus could plausibly
have more impact on symptoms arising from the third factor.48 Our findings allow us to generate
the hypothesis that cognitive symptoms (against which Paxlovid is most protective) may be
caused by mechanisms that Paxlovid would affect (e.g., viral load).

The VA-like subanalysis, limited to a cohort of males at least 65 years old, found a much smaller
treatment effect than Xie et al. (2023).18 Despite our efforts to align outcome measures, cohort
characteristics, and methodology, significant differences remain between our subanalysis and the
VA study. Chief among them are remaining differences in our cohort and a true VA cohort.
Veterans are more likely than demographically similar non-veterans to have been exposed to
traumatic brain injury, post-traumatic stress disorder, biohazards, and other risk factors.49–53

Through consistent access to the VA, the EHR for veterans may also be more complete.54

Veterans may also differ from demographically similar non-veterans in their access to care.
These factors may account for the large difference in PASC incidence and unadjusted and
adjusted relative risk between our subanalysis and Xie et al. (2023).18

Although our study did not find that Paxlovid has a practically or statistically significant effect in
preventing PASC overall, it shows promise at reducing the risk of certain post-acute symptoms.
Although cognitive and fatigue symptoms were less common in this cohort, countless people
suffer from these forms of PASC. The RECOVER-VITAL and CanTreatCOVID trials will
provide strong evidence on whether Paxlovid is safe and effective in treating and preventing
PASC, and will provide further insight to the differing effects by symptom observed in this
study.55 We hope future trials of Paxlovid treatment during acute COVID-19 will include
post-acute endpoints. The target trial emulation framework employed here allows us to draw
initial conclusions while we lack results from a randomized controlled trial. Notably, our results
contrast with recent media coverage of Paxlovid’s effect on PASC, with NBC News reporting in
October 2023 that “A consensus has emerged among experts who study and treat long Covid:
Paxlovid seems to reduce the risk of lingering symptoms among those eligible to take it.”56 Our
findings bring this interpretation into question. Ultimately, although Paxlovid may help with
certain symptoms, effective treatment and prevention of PASC remains elusive.

This study has several strengths that underscore the value of large-scale EHR repositories. We
used a large, nationally sampled cohort from 28 sites across the United States, increasing
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generalizability and decreasing the potential for misclassification present in administrative or
claims data.57 The volume of data in the N3C database allowed for the aggressive
inclusion/exclusion criteria necessary for TTE while preserving statistical power.58,59 Our use of
the TTE framework allowed us to account for confounding and estimate the causal effect of
Paxlovid treatment using observational data.60–63

Our use of a PASC computable phenotype is also a strength. Although several institutions have
proposed definitions of PASC, they disagree on the symptoms and timing that constitute the
condition.64–67 Varying definitions of PASC can lead to widely varying incidence estimates.
Furthermore, measuring PASC as the novel onset of a specific set of symptoms can lead to false
positives (symptoms with etiologies other than COVID-19) and false negatives (related
symptoms not included in the definition). A machine learning-based computable phenotype may
learn to avoid these errors. Furthermore, it does not require the selection of a principled set of
symptoms, instead learning from all symptoms associated with PASC diagnoses. However,
computable phenotypes also have weaknesses: they are less interpretable and more complex than
symptom-based definitions. Our model was trained to detect patients with U09.9 diagnoses, and
these patients may not be representative of all patients with PASC. PASC is also a heterogeneous
outcome, so the use of symptom cluster outcomes is an important complement to the computable
phenotype.

The study period makes our findings more relevant than prior studies of this topic, which have
included cases from the initial Omicron wave, when Paxlovid was less available and disease
dynamics were markedly different. Finally, our subanalyses shed further light on potential
demographic and cohort effects.

This study also has limitations. Because EHR data do not include information on adherence, we
can only measure whether a patient was prescribed Paxlovid. However, this is adequate for
estimating the intention-to-treat effect. Also, our inclusion criteria of Paxlovid treatment within
five days of COVID-19 index differs from the indication of treatment within five days of
symptom onset. However, we note that within our cohort, 96% of treated patients were treated
within one day of COVID-19 index.

This study’s eligibility criteria include eligibility for on-label Paxlovid treatment (i.e., at risk for
developing severe COVID-19 due to the presence of one or more risk factors). Therefore, results
can only be generalized to a high-risk population. Ideally, a clinical trial on Paxlovid as a PASC
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preventative would also assess treatment among lower-risk populations. We chose not to emulate
such a trial because it would complicate the study design and make exchangeability harder to
establish due to confounding by indication. We note that the CanTreatCOVID trial also focuses
only on high-risk patients. The effect of Paxlovid treatment on PASC onset among lower-risk
patients is an important area for future research.

Several variables in this study are subject to measurement error. Many COVID-19 infections
during this period were not documented due to the prevalence of home testing, and patients with
a documented COVID-19 infection may not be representative of all infected patients. Paxlovid
prescriptions from providers outside N3C data partner systems may not be documented. The
PASC computable phenotype may also misclassify patients.30 For this reason, the confidence
intervals around computable phenotype-based incidence estimates are likely too narrow.

Vaccination status is poorly documented in most EHRs, which precluded its use as a covariate.
However, our vaccination-aware sensitivity analysis, conducted in a subset of sites with
high-quality vaccination data, found similar results. The fact that our findings were not sensitive
to the inclusion of vaccination status as a covariate suggests that vaccination did not cause
substantial unmeasured confounding in the primary analysis. However, the subset of sites with
high-quality vaccination data is not representative of the overall cohort.

Finally, this study is subject to limitations common to EHR-based studies. EHRs are susceptible
to missing data, and our estimates may be biased if missingness was related to unobserved
confounding.68–70 This study is also subject to the assumptions of all causal inference studies, in
particular, that there is no unmeasured confounding. One potential unmeasured confounder is
acute COVID-19 severity prior to diagnosis. Sicker patients may be more likely to seek Paxlovid
and develop PASC. The EHR contains no reliable measure of this construct, but we control for
pre-diagnosis comorbidities, which have been shown to correlate so strongly with COVID-19
severity that they can be considered proxies, thus mitigating the potential unmeasured
confounding from this source.71–73 Propensity to seek healthcare and access to care may be
additional unmeasured confounders, but we control for utilization in the prior year as a proxy for
these constructs.

There is overwhelming evidence that Paxlovid helps prevent hospitalization and death due to
acute COVID-19, which makes it an important tool to reduce the pandemic’s public health
burden. We used a target trial emulation framework to determine whether Paxlovid might also be
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effective at preventing PASC. Among patients with COVID-19 in our study period who were
eligible for Paxlovid treatment, the cumulative incidence of PASC within a 180-day follow-up
period was not significantly lower in patients treated with Paxlovid. However, the cumulative
incidence of post-acute cognitive and fatigue symptoms was significantly lower. Based on these
findings, we see Paxlovid as unlikely to become a definitive solution for PASC prevention.
Cognitive and fatigue symptoms were relatively rare in this cohort, and its effect on these
symptoms was not enough to move the needle on overall PASC incidence. Nevertheless, any
protective effect is worth further exploration. Future research will dig deeper into potential
heterogeneous treatment effects across PASC subphenotypes.
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FIGURES

Figure 1: Causal diagram used to inform covariate selection
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Figure 2: Outcome co-occurrence matrix. Each cell represents the percentage of patients with
the row outcome who also had the column outcome.
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Figure 3: CONSORT Diagram: Study Cohort and Flow of Emulated Trial
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Figure 4: Covariate balance before and after stabilized and trimmed inverse probability of treatment weighting (IPTW)
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Figure 5: Estimated Treatment Effects (Rate Ratios) of Paxlovid on PASC, across all analyses
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Figure 6: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated patients
by outcome measure; between 29-180 days. Any GBD Symptom = any symptom from the
cognitive, fatigue, and respiratory PASC symptom clusters proposed in the Global Burden of
Disease study.
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Figure 7: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated patients
by outcome measure; between 29-180 days; VA-like subanalysis
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Figure 8: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated patients
by predicted outcome from CP model with threshold of 0.9 or U09.9, additionally adjusted for
vaccination status and among data partners meeting vaccination data quality criteria
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Figure 9: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated patients
by predicted outcome from CP model with threshold of 0.9 or U09.9, positive lab required for
COVID-19 index (i.e., U07.1 diagnoses without accompanying lab tests not included as index
events)
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Figure 10: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated patients
by predicted outcome from CP model with threshold of 0.9 or U09.9, Paxlovid treatments
without accompanying lab tests or U07.1 diagnoses included as index events
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TABLES

Table 1: ICD-10 codes used to define Global Burden of Disease symptom clusters31

ICD-10 Code ICD-10 Code Description Symptom Cluster

R404 Transient alteration of awareness Cognitive

R410 Disorientation unspecified Cognitive

R411 Anterograde amnesia Cognitive

R412 Retrograde amnesia Cognitive

R413 Other amnesia Cognitive

R4182 Altered mental status unspecified Cognitive

R41840 Attention and concentration deficit Cognitive

R41841 Cognitive communication deficit Cognitive

R4189 Other symptoms and signs involving cognitive
functions and awareness

Cognitive

R419 Unspecified symptoms and signs involving cognitive
functions and awareness

Cognitive

R531 Weakness Fatigue

R5381 Other malaise Fatigue

R5382 Chronic fatigue unspecified Fatigue

R5383 Other fatigue Fatigue

J9610 Chronic respiratory failure unspecified whether with
hypoxia or hypercapnia

Respiratory

J9611 Chronic respiratory failure with hypoxia Respiratory

J9612 Chronic respiratory failure with hypercapnia Respiratory

J9620 Acute and chronic respiratory failure unspecified
whether with hypoxia or hypercapnia

Respiratory

J9621 Acute and chronic respiratory failure with hypoxia Respiratory
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J9622 Acute and chronic respiratory failure with hypercapnia Respiratory

J9690 Respiratory failure unspecified unspecified whether
with hypoxia or hypercapnia

Respiratory

J9691 Respiratory failure unspecified with hypoxia Respiratory

J9692 Respiratory failure unspecified with hypercapnia Respiratory

J988 Other specified respiratory disorders Respiratory

J989 Respiratory disorder unspecified Respiratory

J99 Respiratory disorders in diseases classified elsewhere Respiratory

R05 Cough Respiratory

R0600 Dyspnea unspecified Respiratory

R0602 Shortness of breath Respiratory

R0603 Acute respiratory distress Respiratory

R0609 Other forms of dyspnea Respiratory

R071 Chest pain on breathing Respiratory
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Table 2: Descriptive population characteristics within the N3C Cohort

Characteristic
Treatment Group
No Paxlovid Paxlovid
(N=303,166) (N=123,186)

PASC
Computable phenotype prediction or diagnosis1 17,238 (5.7%) 7,231 (5.9%)
Cognitive symptom cluster 4,221 (1.4%) 1,601 (1.3%)
Fatigue symptom cluster 10,944 (3.6%) 4,295 (3.5%)
Respiratory symptom cluster 17,595 (5.8%) 7,238 (5.9%)

Sex
Female 189,621 (62.5%) 74,590 (60.6%)
Male 113,503 (37.4%) 48,576 (39.4%)
Missing 42 (0.0%) 20 (0.0%)

Age (in years)
18-24 19,254 (6.4%) 2,908 (2.4%)
25-34 41,955 (13.8%) 9,109 (7.4%)
35-49 62,358 (20.6%) 22,270 (18.1%)
50-64 84,856 (28.0%) 39,255 (31.9%)
65+ 94,743 (31.3%) 49,644 (40.3%)

Race and Ethnicity
Asian Non-Hispanic 13,621 (4.5%) 5,653 (4.6%)
Black or African American Non-Hispanic 37,593 (12.4%) 11,892 (9.7%)
Hispanic or Latino Any Race 32,543 (10.7%) 9,796 (8.0%)
White Non-Hispanic 198,073 (65.3%) 88,250 (71.6%)
Other Non-Hispanic 5,237 (1.7%) 1,389 (1.1%)
Unknown 16,099 (5.3%) 6,206 (5.0%)

Charlson Comorbidity Index
0 165,575 (54.6%) 66,812 (54.2%)
1-2 80,124 (26.4%) 38,600 (31.3%)
3-4 22,125 (7.3%) 9,148 (7.4%)
5-10 12,055 (4.0%) 4,017 (3.3%)
11+ 994 (0.3%) 289 (0.2%)
Missing 22,293 (7.4%) 4,320 (3.5%)

Number of Visits in Prior Year
0 26,602 (8.8%) 6,380 (5.2%)
1-3 52,029 (17.2%) 14,627 (11.9%)
4-9 71,675 (23.6%) 29,336 (23.8%)
10-20 75,420 (24.9%) 37,520 (30.5%)
> 20 77,440 (25.5%) 35,323 (28.7%)

Number of Hospitalizations in Prior Year
0 287,800 (94.9%) 118,942 (96.6%)
1 12,369 (4.1%) 3,556 (2.9%)
> 1 2,997 (1.0%) 688 (0.6%)

Community Wellbeing Index2
0-45 2,195 (0.7%) 670 (0.5%)
46-55 109,675 (36.2%) 37,068 (30.1%)
56-65 137,969 (45.5%) 58,324 (47.3%)
65+ 22,136 (7.3%) 13,223 (10.7%)
Missing 31,191 (10.3%) 13,901 (11.3%)

Censoring Events
Death 622 (0.2%) 107 (0.1%)
PASC diagnosis or prediction, day 0 to 28 5,145 (1.7%) 2,151 (1.8%)
Lost to follow-up (no further visits in EHR) 86,566 (28.65%) 31,378 (25.5%)
Paxlovid prescription >5 days after index 1,226 (0.4%) N.A.

Month of COVID-19 diagnosis
April 2022 18,340 (6.0%) 3,801 (3.1%)
May 2022 42,297 (14.0%) 13,075 (10.6%)
June 2022 43,248 (14.3%) 14,950 (12.1%)
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July 2022 46,539 (15.4%) 18,691 (15.2%)
August 2022 38,485 (12.7%) 15,133 (12.3%)
September 2022 24,245 (8.0%) 10,028 (8.1%)
October 2022 19,118 (6.3%) 7,407 (6.0%)
November 2022 17,917 (5.9%) 8,526 (6.9%)
December 2022 23,910 (7.9%) 14,455 (11.7%)
January 2023 17,592 (5.8%) 9,734 (7.9%)
February 2023 11,475 (3.8%) 7,386 (6.0%)

Notes: 1Any PASC (CP or U09.9) between 28-days following a positive SARS-CoV-2 test result to 180 days post-index; 2CWBI is a
measure of five interrelated community-level domains: Healthcare access (ratios of healthcare providers to population), Resource
access (libraries and religious institutions, employment, and grocery stores), Food access (access to grocery stores and produce),
Housing & transportation (home values, ratio of home value to income, and public transit use), and Economic security (rates of
employment, labor force participation, health insurance coverage rate, and household income above the poverty level).74
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Table 3: Protocol of a Target Trial Emulation to Estimate the Effect of Paxlovid Treatment
during Acute COVID-19 on Cumulative PASC Incidence

Protocol Component Description under Target Trial
Conditions

Method of Target Trial Emulation

Eligibility criteria Persons aged 18 and older, with no history
of PASC, who are not currently
hospitalized and who have an acute
COVID-19 infection and are eligible for
Paxlovid treatment due to presence of one
or more risk factors for severe COVID-19
as per CDC guidelines.36

Persons aged 18 and older, with no history of
PASC, who are not currently hospitalized,
who have one or more risk factors for severe
COVID-19 as per CDC guidelines36
documented in their EHR, and who have a
COVID-19 index (either a documented
COVID-19 diagnosis or positive
SARS-CoV-2 lab test) during the study
period.

Treatment strategies Paxlovid prescribed within a five-day
grace period of the date patient presented
with acute COVID-19.

Paxlovid prescribed within 5 days of
COVID-19 index, indicated by a Paxlovid or
nirmatrelvir drug exposure record in their
EHR within 5 days of the COVID-19
diagnosis or positive SARS-CoV-2 lab test
that constitutes their COVID-19 index date
for the study.

Assignment procedures Participants will be randomly assigned to
treatment or control at the date they
present with acute COVID-19 and will be
aware of their treatment assignment.

Patients will be assigned weights based on
treatment propensity scores to ensure
exchangeability of treatment and control
groups and emulate random assignment
conditional on measured variables.

Follow-up period Each patient will be followed for 180 days
after treatment. Patients in the control
group who obtain Paxlovid from an outside
source will be censored. Patients who are
lost to follow-up will be censored.

Patients will be censored at 180 days after
COVID-19 index or the time of their last
recorded visit, whichever is earlier. Patients
in the control group will additionally be
censored if they receive Paxlovid more than
5 days after COVID-19 index. We assume
these cases constitute misdiagnoses or

Outcome Clinical diagnosis of PASC within
follow-up period

Clinical diagnosis of PASC, computable
phenotype probability of PASC > 0.9, or
onset of a novel PASC symptom between 29
and 180 days after COVID-19 index.
Patients with a PASC diagnosis or
computable phenotype prediction within 28
days of COVID-19 index will be censored.

44

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2024. ; https://doi.org/10.1101/2024.01.20.24301525doi: medRxiv preprint 

https://paperpile.com/c/0Qm2JD/bBEDW
https://paperpile.com/c/0Qm2JD/bBEDW
https://doi.org/10.1101/2024.01.20.24301525
http://creativecommons.org/licenses/by-nc-nd/4.0/


Causal contrasts Intention-to-treat effect Intention-to-treat effect

Analysis plan Measure relative risk of PASC diagnosis
across treatment arms.

Estimate cumulative incidence of PASC in
each treatment arm using Aalen-Johansen
estimators weighted for treatment
propensity; estimate relative risk based on
point estimates and variances of cumulative
incidence estimates.
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Table 4: Estimated Cumulative Incidence of PASC among Paxlovid-treated patients compared to
non-Paxlovid treated patients across all analyses

Analysis
Cumulative Incidence (95% CI)

Paxlovid No Paxlovid

Main Results

Computable phenotype PASC prediction or U09.9
diagnosis 0.069 (0.067, 0.071) 0.070 (0.069, 0.071)

Cognitive Symptom Cluster 0.015 (0.014, 0.016) 0.017 (0.016, 0.017)

Fatigue Symptom Cluster 0.041 (0.039, 0.042) 0.043 (0.042, 0.044)

Respiratory Symptom Cluster 0.069 (0.067, 0.071) 0.069 (0.068, 0.070)

Any Symptom Cluster 0.112 (0.110-0.113) 0.113 (0.111-0.115)

VA-like Cohort Subanalysis

VA-like Cohort, Computable phenotype PASC
prediction or U09.9 diagnosis 0.072 (0.066, 0.078) 0.078 (0.076, 0.081)

VA-like Cohort, Cognitive Symptom Cluster 0.021 (0.018, 0.024) 0.027 (0.026, 0.029)

VA-like Cohort, Fatigue Symptom Cluster 0.047 (0.042, 0.052) 0.053 (0.051, 0.055)

VA-like Cohort, Respiratory Symptom Cluster 0.078 (0.072, 0.084) 0.085 (0.083, 0.088)

Vaccination-Aware Subanalysis

Vaccination-Aware, CP prediction or U09.9
diagnosis 0.061 (0.059, 0.064) 0.064 (0.062, 0.065)

Vaccination-Aware, Cognitive Symptom Cluster 0.014 (0.013-0.015) 0.016 (0.015-0.017)

Vaccination-Aware, Fatigue Symptom Cluster 0.037 (0.036-0.038) 0.039 (0.037-0.041)

Vaccination-Aware, Respiratory Symptom Cluster 0.059 (0.057-0.060) 0.060 (0.058-0.062)
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Table 5: Cumulative incidence and Absolute Risk Difference estimates across all analyses

47

Analysis
Cumulative Incidence (95% CI) Absolute Risk

Difference p-value
Paxlovid No Paxlovid

Main Results

Computable phenotype PASC prediction or U09.9
diagnosis

0.069 (0.067, 0.071) 0.070 (0.069, 0.071) 0.001 (-0.001, 0.003) 0.251

Cognitive Symptom Cluster 0.015 (0.014, 0.016) 0.017 (0.016, 0.017) 0.002 ( 0.001, 0.003) 0.001

Fatigue Symptom Cluster 0.041 (0.039, 0.042) 0.043 (0.042, 0.044) 0.002 ( 0.001, 0.004) 0.004

Respiratory Symptom Cluster 0.069 (0.067, 0.071) 0.069 (0.068, 0.070) 0.000 (-0.002, 0.002) 0.786

Any Symptom Cluster 0.112 (0.110-0.113) 0.113 (0.111-0.115) 0.002 (-0.001, 0.004) 0.237

Subanalyses

VA-like Cohort, CP prediction or U09.9 diagnosis 0.072 (0.066, 0.078) 0.078 (0.076, 0.081) 0.006 ( 0.000, 0.013) 0.067

VA-like Cohort, Cognitive Symptom Cluster 0.021 (0.018, 0.024) 0.027 (0.026, 0.029) 0.006 ( 0.003, 0.009) 0.001

VA-like Cohort, Fatigue Symptom Cluster 0.047 (0.042, 0.052) 0.053 (0.051, 0.055) 0.006 ( 0.000, 0.012) 0.033

VA-like Cohort, Respiratory Symptom Cluster 0.078 (0.072, 0.084) 0.085 (0.083, 0.088) 0.007 ( 0.000, 0.014) 0.040

Vaccination-Aware, CP prediction or U09.9
diagnosis

0.061 (0.059, 0.064) 0.064 (0.062, 0.065) 0.002 (-0.001,0.005) 0.114

Vaccination-Aware, Cognitive Symptom Cluster 0.014 (0.013-0.015) 0.016 (0.015-0.017) 0.002 ( 0.001,0.004) 0.005

Vaccination-Aware, Fatigue Symptom Cluster 0.037 (0.036-0.038) 0.039 (0.037-0.041) 0.002 ( 0.000,0.004) 0.068

Vaccination-Aware, Respiratory Symptom Cluster 0.059 (0.057-0.060) 0.060 (0.058-0.062) 0.002 (-0.001,0.004) 0.270

Sensitivity Analyses

U09.9 Code Diagnosis 0.008 (0.007, 0.008) 0.007 (0.007, 0.007) -0.001 (-0.002, 0.000) 0.032

PASC Computable Phenotype Threshold - 0.75 0.137 (0.135, 0.140) 0.137 (0.136, 0.139) 0.000 (-0.003, 0.003) 0.920

PASC Computable Phenotype Threshold - 0.80 0.114 (0.112, 0.117) 0.115 (0.113, 0.116) 0.000 (-0.003, 0.003) 0.830

PASC Computable Phenotype Threshold - 0.85 0.092 (0.090, 0.094) 0.093 (0.092, 0.094) 0.001 (-0.002, 0.003) 0.584

PASC Computable Phenotype Threshold - 0.95 0.047 (0.046, 0.049) 0.048 (0.047, 0.049) 0.001 (-0.001, 0.003) 0.319

Paxlovid Treatment as Index Event 0.069 (0.067, 0.070) 0.071 (0.070, 0.072) 0.002 ( 0.000, 0.004) 0.018

Positive Lab-only Index Events 0.073 (0.070, 0.076) 0.067 (0.066, 0.069) -0.005 (-0.009,-0.002) 0.002

CP prediction or U09.9 diagnosis (29-365 days) 0.127 (0.124, 0.129) 0.126 (0.125, 0.128) -0.001 (-0.004, 0.003) 0.750

CP prediction or U09.9 diagnosis (90-180 days) 0.039 (0.038, 0.041) 0.040 (0.039, 0.041) 0.000 (-0.001, 0.002) 0.618

CP prediction or U09.9 diagnosis (90-365 days) 0.099 (0.096, 0.101) 0.098 (0.096, 0.099) -0.001 (-0.004, 0.002) 0.373

CP prediction or U09.9 diagnosis (0-180 days) 0.086 (0.084, 0.088) 0.088 (0.087, 0.089) 0.002 ( 0.000, 0.005) 0.060

Doubly Robust Adjustment Hazard Ratio: 0.951 (0.920, 0.984)
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managed under the authority of the NIH; more information can be found at
ncats.nih.gov/n3c/resources. Enclave data is protected, and can be accessed for
COVID-19-related research with an institutional review board-approved protocol and data use
request. The Data Use Request ID for this study is RP-5677B5. Enclave and data access
instructions can be found at https://covid.cd2h.org/for-researchers.

CODE AVAILABILITY STATEMENT

All code used to produce the analyses in this manuscript is available within the N3C Data
Enclave to users with valid login credentials. Enclave access instructions can be found at
https://covid.cd2h.org/for-researchers. Enclave access requires a signed data use agreement
between NIH and a research institution (or directly with a researcher in the case of an individual
citizen scientist who is not affiliated with an institution) and a signed data use request by the
individual researcher. Researchers must also complete human subjects and security training. The
registration checklist is available at https://covid.cd2h.org/account-instructions/checklist.jsp.
Guidance locating the pertinent code workbooks within the Enclave is available upon request. In
recognition that Enclave access may not be feasible for everyone, code is also available upon
request.
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