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ABSTRACT

Preventing and treating post-acute sequelaec of SARS-CoV-2 infection (PASC), commonly
known as Long COVID, has become a public health priority. In this study, we examined whether
treatment with Paxlovid in the acute phase of COVID-19 helps prevent the onset of PASC. We
used electronic health records from the National Covid Cohort Collaborative (N3C) to define a
cohort 0f 426,461 patients who had COVID-19 since April 1, 2022, and were eligible for
Paxlovid treatment due to risk for progression to severe COVID-19. We used the target trial
emulation (TTE) framework to estimate the effect of Paxlovid treatment on PASC incidence. Our
primary outcome measure was a PASC computable phenotype. Secondary outcomes were the
onset of novel cognitive, fatigue, and respiratory symptoms in the post-acute period. Paxlovid
treatment did not have a significant effect on overall PASC incidence (relative risk [RR] =0.99,
95% confidence interval [CI] 0.96-1.01). However, its effect varied across the cognitive (RR =
0.85, 95% CI 0.79-0.90), fatigue (RR = 0.93, 95% CI 0.89-0.96), and respiratory (RR = 0.99,
95% C1 0.95-1.02) symptom clusters, suggesting that Paxlovid treatment may help prevent

post-acute cognitive and fatigue symptoms more than others.
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INTRODUCTION

Post-acute sequelae of SARS-CoV-2 infection (PASC), commonly known as Long COVID, has
become a public health priority. PASC affects people from all walks of life, and it is difficult to
predict whether an individual will get PASC at the time of acute infection. Many people with
PASC continue to feel the impacts of the disease years after infection. Mechanisms causing
PASC remain largely unknown, and we have yet to identify a treatment that is consistently
effective across the array of PASC manifestations. Therefore, developing effective PASC
prevention strategies will be crucial to alleviating the long-term public health impact of
COVID-19. There is an urgent need for research on this topic, including identifying novel

interventions and assessing whether and how known interventions could help prevent PASC.

Nirmatrelvir with ritonavir (Paxlovid) was given an emergency use authorization (EUA) in the
United States in December 2021 for the treatment of patients with mild-to-moderate COVID-19
who are at high risk for progression to severe COVID-19. Paxlovid has proven effective at
preventing severe COVID-19, hospitalization, and death, with supporting evidence from clinical
trials and real-world evidence, although a recent study found that Paxlovid was less effective at

preventing hospitalization from SARS-CoV-2 Omicron subvariants.'”’

In 2022, several teams published case reports where Paxlovid was used to treat PASC. Across
three early reports, treatment was effective in five of six treated patients.* ' A larger 2023 report
found mixed effects in 13 patients, suggesting that Paxlovid treatment “may have meaningful
benefits for some people with Long COVID but not others”.!" In sum, this evidence motivated
the RECOVER-VITAL trials to evaluate Paxlovid as a potential treatment for PASC. '

In addition to treating PASC, researchers have begun to explore whether Paxlovid treatment in
the acute phase of COVID-19 infection could help prevent the onset of PASC. One plausible
pathway could be reducing infection severity. Studies have found that more severe acute
infection is associated with a higher risk of PASC."*'* In N3C, we have found that
COVID-19-associated hospitalization is associated with a much greater likelihood of a PASC
diagnosis."” A meta-analysis also found that hospitalized patients were more likely to have
PASC.'®

Few studies have explored Paxlovid as a PASC preventative, and results are mixed. The largest

study to date (281,793 individuals) used data from the US Department of Veterans Affairs
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(VA)."” The VA study found that Paxlovid treatment during the acute phase of COVID-19
reduced the risk of a composite outcome of 13 post-acute sequelae, with a hazard ratio of 0.74."
However, two smaller studies found that Paxlovid treatment was not associated with a reduced
risk of PASC: a survey of 4,684 individuals from the Covid Citizen Science cohort and a survey
of 500 individuals from Montefiore Medical Center.'®"* Although these studies are much smaller
than the VA study, they are more representative of the general population, and survey methods
may capture symptoms that EHR data do not. In sum, the relationship between Paxlovid

treatment and PASC onset remains uncertain.

Through the National Institute of Health's National COVID Cohort Collaborative (N3C) , and as
part of the RECOVER Initiative’s EHR data team, we have the opportunity to study Paxlovid as
a PASC preventative using a large, nationally sampled cohort.”” We use the target trial emulation
(TTE) framework to explicitly measure the effect of Paxlovid treatment in the acute phase of
COVID-19 infection on the cumulative incidence of PASC.?' We measure PASC incidence using
a machine learning-based computable phenotype, which offers advantages over symptom-based
outcomes®. As secondary outcomes, we also measure the novel onset of PASC symptoms in the
cognitive, fatigue, and respiratory clusters proposed by the Global Burden of Disease program.?
We conduct two sub-analyses: the first using a “VA-like cohort” designed to mirror the study
period and demographics used in Xie et al. (2023)"” and the second using data from the National
Patient-Centered Clinical Research Network (PCORnet) database.
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RESULTS

Patient Characteristics

After inclusion and exclusion criteria and within the study period, a total of 426,461 patients had
a valid COVID-19 index date during the study period, of whom 123,209 (28.89%) were treated
with Paxlovid, and 24,474 (5.74%) had PASC according to our primary outcome measure (U09.9
diagnosis or computable phenotype prediction over 0.9 from 29 to 180 days after index). After
applying the eligibility criteria to the patient population and study sites, a total of 28 of 36 study
sites were retained. The CONSORT flow diagram is shown in Figure 1. The characteristics of all

patients during the study period are presented in Table 1, stratified by treatment group.
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Figure 1: CONSORT Diagram: Study Cohort and Flow of Emulated Trial
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Table 1: Descriptive population characteristics within the N3C Cohort

Treatment Group

Characteristic No Paxlovid Paxlovid
(N=303,192) (N=123,269)
PASC!
No 285,957 (94.3%) 116,030 (94.1%)
Yes 17,235 (5.7%) 7,239 (5.9%)
Sex
Female 189,621 (62.5%) 74,634 (60.5%)
Male 113,529 (37.4%) 48,615 (39.4%)
Missing 42 (0.0%) 20 (0.0%)
Age (in years)
18-24 19,251 (6.3%) 2,913 (2.4%)
25-34 41,954 (13.8%) 9,112 (7.4%)
35-49 62,358 (20.6%) 22,282 (18.1%)
50-64 84,869 (28.0%) 39,268 (31.9%)
65+ 94,760 (31.3%) 49,694 (40.3%)

Race and Ethnicity
Asian Non-Hispanic

Black or African American Non-Hispanic

Hispanic or Latino Any Race
White Non-Hispanic
Other Non-Hispanic

13,621 (4.5%)
37,593 (12.4%)
32,539 (10.7%)

198,098 (65.3%)

5,240 (1.7%)

5,656 (4.6%)
11,903 (9.7%)
9,804 (8.0%)
88,307 (71.6%)
1,389 (1.1%)

Unknown 16,101 (5.3%) 6,210 (5.0%)
Charlson Comorbidity Index
0 165,583 (54.6%) 66,846 (54.2%)
1-2 80,135 (26.4%) 38,615 (31.3%)
3-4 22,124 (7.3%) 9,159 (7.4%)
5-10 12,057 (4.0%) 4,029 (3.3%)
11+ 998 (0.3%) 289 (0.2%)
Missing 22,295 (7.4%) 4,331 (3.5%)
Number of Visits in Prior Year
0 26,603 (8.8%) 6,391 (5.2%)
13 52,041 (17.2%) 14,642 (11.9%)
4-9 71,683 (23.6%) 29,348 (23.8%)
10-20 75,434 (24.9%) 37,531 (30.4%)
> 20 77,431 (25.5%) 35,357 (28.7%)
Number of Hospitalizations in Prior Year
0 2,997 (1.0%) 692 (0.6%)
1 287,830 (94.9%) 119,009 (96.5%)
> | 12,365 (4.1%) 3,568 (2.9%)

Community Wellbeing Index?

0-45 2,194 (0.7%) 671 (0.5%)
46-55 109,701 (36.2%) 37,098 (30.1%)
56-65 137,979 (45.5%) 58,359 (47.3%)
65+ 22,131 (7.3%) 13,230 (10.7%)
Missing 31,187 (10.3%) 13911 (11.3%)
Month of COVID-19 diagnosis
April 2022 18,337 (6.0%) 3,807 (3.1%)
May 2022 42,304 (14.0%) 13,081 (10.6%)
June 2022 43,254 (14.3%) 14,962 (12.1%)
July 2022 46,544 (15.4%) 18,696 (15.2%)
August 2022 38,492 (12.7%) 15,144 (12.3%)
September 2022 24,245 (8.0%) 10,039 (8.1%)
October 2022 19,123 (6.3%) 7,411 (6.0%)
November 2022 17,913 (5.9%) 8,533 (6.9%)
December 2022 23,910 (7.9%) 14,465 (11.7%)
January 2023 17,596 (5.8%) 9,740 (7.9%)
February 2023 11,474 (3.8%) 7.391 (6.0%)

Notes: 'Any PASC (CP or U09.9) between 28-days following a positive SARS-CoV-2 test result to 180 days post-index; *CWBI is a
measure of five interrelated community-level domains: Healthcare access (ratios of healthcare providers to population), Resource
access (libraries and religious institutions, employment, and grocery stores), Food access (access to grocery stores and produce),
Housing & transportation (home values, ratio of home value to income, and public transit use), and Economic security (rates of
employment, labor force participation, health insurance coverage rate, and household income above the poverty level).?
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Effect of Paxlovid Treatment on PASC Incidence

Table 2 shows inverse probability of treatment-weighted Aalen-Johansen estimates of cumulative
incidence for all main analyses, and Figure 2 shows corresponding risk ratios. Additional figures

are shown in Supplement A.

Table 2: Estimated Cumulative Incidence of PASC among Paxlovid-treated patients compared to

non-Paxlovid treated patients across all analyses

Cumulative Incidence (95% CI)

Analysis

Paxlovid

No Paxlovid

Main Results

N3C PASC Primary Outcome
N3C Cognitive Symptom Cluster
N3C Fatigue Symptom Cluster
N3C Respiratory Symptom Cluster

Validation Analysis

VA-like Cohort Primary Outcome

VA-like Cohort Cognitive Symptom Cluster
VA-like Cohort Fatigue Symptom Cluster
VA-like Cohort Respiratory Symptom Cluster
PCORnet PASC Primary Outcome

PCORnet Cognitive Symptom Cluster
PCORnet Fatigue Symptom Cluster
PCORnet Respiratory Symptom Cluster

0.069 (0.067, 0.071)
0.015 (0.014, 0.015)
0.040 (0.039, 0.041)
0.069 (0.067, 0.071)

0.078 (0.072, 0.084)
0.021 (0.018, 0.024)
0.049 (0.044, 0.054)
0.078 (0.072, 0.084)
0.310 (0.308, 0.313)
0.013 (0.012, 0.013)
0.036 (0.035, 0.038)
0.069 (0.068, 0.071)

0.070 (0.069, 0.071)
0.017 (0.017, 0.018)
0.043 (0.042, 0.044)
0.070 (0.068, 0.071)

0.082 (0.079, 0.085)
0.028 (0.027, 0.030)
0.055 (0.053, 0.057)
0.085 (0.083, 0.088)
0.344 (0.342, 0.346)
0.015 (0.014, 0.016)
0.043 (0.042, 0.044)
0.078 (0.076, 0.079)
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Figure 2: Estimated Treatment Effects of Paxlovid on PASC, across all analyses

Analysis Treatment Effect (35% CI) Protective : p-value
N3G PASC Primary Qutcome® 0.985 (0.956-1.014) —.3— 0.307
N3C Cognitive Symptom Cluster” 0.848 (0.795-0.902) —— : =0.001
N3C Fatigue Symptom Cluster” 0.927 (0.891-0.962) —a— j <0.001
N3C Respiratory Symptom Cluster” 0.986 (0.954-1.018) A—L 0.398
VA-like Cohart Primary Outcome” 0.946 (0.864-1.027) 4._;7 0.179
VA-like Cohort Cognitive Symptom Cluster® 0.738 (0.626-0.851) _— 3 <0.001
VA-like Gohart Fatigue Symptom Cluster® 0.89 (0.784-0.996) 4.71 0.032
WA-like Cohort Respiratory Symptomn Cluster” 0.818 (0.84-0.995) 4.73 0.029
PCORnet PASC Primary Outcome® 0.871(0.86-0.882) - 3 =0.001
PCORnet Cognitive Symptom Cluster” 0.838 (0.765-0.894) — 3 <0.001
PCORnet Fatigue Symptom Cluster® 0.834 (0.80-0.87) — j <0.001
PCORnet Respiratory Symptom Cluster” 0.885 (0.856-0.914) —a— 3 <0.001
! ETreatment Eﬁeci ’ ::
Note:  Analysis reports Relative Risk; *: Analysis reports adjusted Hazard Ratio
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Primary Qutcome (PASC Computable Phenotype or U09.9 Diagnosis)

Adjusted cumulative incidence estimates were 6.92% (95% CI 6.74-7.09) for treated patients and
7.02% (95% CI 6.91-7.13) for untreated patients (See Figure 3). The adjusted relative risk of
PASC was 0.99 (95% CI 0.96-1.01).

Figure 3: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated patients
by predicted outcome from CP model with threshold of 0.9 or U09.9; between 29-180 days

Computable Phenotype Prediction or U09.9
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Secondary OQutcomes (GBD Symptom Clusters)

Adjusted relative risk was 0.85 (95% CI 0.79-0.90) for the cognitive symptom cluster, 0.93 (95%
CI 0.89-0.96) for the fatigue symptom cluster, and 0.99 (95% CI 0.95-1.02) for the respiratory

symptom cluster.

Subanalyses

In the “VA-like cohort” subanalysis, the cohort included 61,604 male patients 65 years or older
with a COVID-19 index between January 3, 2022, and December 31, 2022 (the same study
period used in Xie et al, 2023)."” Of this cohort, 15,846 (25.72%) were treated with Paxlovid.
Adjusted relative risk for the primary outcome was 0.95 (95% CI 0.86-1.03). For the cognitive,
fatigue, and respiratory GBD symptom clusters, adjusted relative risk was 0.74 (95% CI
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0.63-0.85), 0.89 (95% CI 0.78-0.99), and 0.92 (95% CI 0.84-0.99), respectively. Figures are

shown in Supplement B.

In the PCORnet subanalysis, the cohort included 490,487 patients, 35.67% of whom were treated
with Paxlovid. The adjusted hazard ratio of Paxlovid treatment on the primary outcome (based
on the novel onset of any of 25 symptoms) was 0.87 (95% CI 0.86-0.88). The adjusted hazard
ratio of Paxlovid treatment on the GBD symptom clusters was 0.84 (95% CI 0.79-0.89) for
cognitive, 0.83 (95% CI 0.80-0.87) for fatigue, and 0.89 (95% CI 0.86-0.91) for respiratory

symptoms. See Supplement C for details.
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DISCUSSION

In this target trial emulation using the N3C database, we found no significant difference in the
cumulative incidence of PASC between individuals treated and untreated with Paxlovid during
the acute phase of COVID-19.

We found that Paxlovid had a protective effect against the onset of novel cognitive and fatigue
symptoms in the post-acute period, which suggests that Paxlovid may have more impact on the
underlying causes of those symptoms. In the literature, multiple PASC etiologies have been
proposed. The chief hypotheses are that, relative to healthy convalescents, those with PASC may
be experiencing (1) an aberrant autoimmune response triggered by the virus, (2) organ, tissue, or
vascular dysfunction related to inflammatory cascades following infection, and/or (3) persistent
viremia due to increased viral load or viral reservoirs. We do not yet know which symptoms are
caused by which mechanisms. Paxlovid treatment decreases viral load, and thus could plausibly
have more impact on symptoms arising from the third factor.® Our findings allow us to generate
the hypothesis that cognitive symptoms (against which Paxlovid is most protective) may be

caused by mechanisms that Paxlovid would affect (e.g., viral load).

Subanalyses

The PCORnet subanalysis differed from our primary analysis in two ways: a different data
repository and a broader primary definition of PASC. Whereas we found no significant treatment
effect in the primary analysis, the PCORnet subanalysis found that Paxlovid treatment reduced
PASC incidence by 13%. Given the broader definition, the unadjusted prevalence of PASC in the
PCORnet cohort was also much higher (23.2% vs 5.7%). Unadjusted relative risk also differed
across the cohorts. For the cognitive and fatigue GBD symptom clusters, relative risks were
similar, while the PCORnet subanalysis found a stronger effect for the respiratory cluster. In
sum, the PCORnet subanalysis affirms that the effect of Paxlovid on reducing risk of PASC may
not be as high as previously reported, but also demonstrates how cohort differences and varied

PASC definitions can affect conclusions.

The “VA-like” subanalysis, limited to a cohort of males at least 65 years old, found a much
smaller treatment effect than Xie et al. (2023).!” Despite our efforts to align outcome measures,
cohort characteristics, and methodology, significant differences remain between our subanalysis

and the VA study. Chief among them are remaining differences in our cohort and a true VA
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cohort. Veterans are more likely than demographically similar non-veterans to have been
exposed to traumatic brain injury, post-traumatic stress disorder, biohazards, and other risk
factors.?*° Through consistent access to the VA, the EHR for veterans may also be more
complete.’! Veterans may also differ from demographically similar non-veterans in their access
to care. These factors may account for the large difference in PASC incidence and unadjusted

and adjusted relative risk between our subanalysis and Xie et al. (2023)."7

Implications of Findings

Although our study did not find that Paxlovid has a practically or statistically significant effect in
preventing PASC, it should not obscure the body of evidence that it is effective in preventing
hospitalization and death due to acute COVID-19.****** Ultimately, effective treatment and
prevention of PASC remains elusive. The RECOVER-VITAL trial will provide strong evidence
on whether Paxlovid is safe and effective in treating PASC.** However, in addition to studying its
potential role as a PASC treatment, there is also a need for trials to explore Paxlovid’s potential
as a preventative measure for PASC. The target trial emulation framework employed here allows
us to draw initial conclusions while we lack results from a randomized controlled trial. Notably,
our results contrast with recent media coverage of Paxlovid’s effect on PASC, with NBC News
reporting in October 2023 that “A consensus has emerged among experts who study and treat
long Covid: Paxlovid seems to reduce the risk of lingering symptoms among those eligible to

take it.”**> Our findings bring this interpretation into question.

Strengths and Limitations

This study has several strengths that underscore the value of large-scale EHR repositories. We
used a large, nationally sampled cohort from 28 sites across the United States, increasing
generalizability and decreasing the potential for misclassification present in administrative or
claims data.’® The volume of data in the N3C database allowed for the aggressive
inclusion/exclusion criteria necessary for TTE while preserving statistical power.*’** Our use of
the TTE framework allowed us to account for confounding and estimate the causal effect of

Paxlovid treatment using observational data.****

Our use of a PASC computable phenotype is also a strength. Although several institutions have
proposed definitions of PASC, they disagree on the symptoms and timing that constitute the

condition.**® Varying definitions of PASC can lead to widely varying incidence estimates.
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Furthermore, measuring PASC as the novel onset of a specific set of symptoms can lead to false
positives (symptoms with etiologies other than COVID-19) and false negatives (related
symptoms not included in the definition). A machine learning-based computable phenotype may
learn to avoid these errors. Furthermore, it does not require the selection of a principled set of

symptoms, instead learning from all symptoms associated with PASC diagnoses.

Our study period makes our findings more relevant. Prior studies of this topic have included
cases from the initial Omicron wave, when Paxlovid was less available and disease dynamics
were markedly different. Finally, our subanalyses shed further light on potential demographic
and cohort effects.

This study also has limitations. Because EHR data do not include information on adherence, we
can only measure whether a patient was prescribed Paxlovid. However, this is adequate for
estimating the intention-to-treat effect. Also, our inclusion criteria of Paxlovid treatment within
five days of COVID-19 index differs from the indication of treatment within five days of
symptom onset. However, we note that within our cohort, 96% of treated patients were treated
within one day of COVID-19 index.

Several variables in this study are subject to measurement error. Many COVID-19 infections
during this period were not documented due to the prevalence of home testing. Paxlovid

prescriptions from providers outside N3C data partner systems may not be documented. The
PASC computable phenotype may also misclassify patients.*” For this reason, the confidence

intervals around computable phenotype-based incidence estimates are likely too narrow.

Finally, this study is subject to limitations common to EHR-based studies and causal inference
studies. EHRs are susceptible to missing data, and our estimates may be biased if missingness
was related to unobserved confounding.** This study is also subject to the assumptions of all

causal inference studies, in particular, that there is no unmeasured confounding.
Conclusion

There is overwhelming evidence that Paxlovid is effective in preventing hospitalization and
death due to acute COVID-19, and as such is a critical treatment option to improve COVID-19
outcomes. We used a target trial emulation framework to determine whether Paxlovid might also

be effective in preventing PASC. Among patients with COVID-19 in our study period who were
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eligible for Paxlovid treatment, the cumulative incidence of PASC within a 180-day follow-up
period was not significantly lower in patients treated with Paxlovid. Based on these findings, we
do not see evidence of Paxlovid’s effectiveness as a preventative against PASC in general.
However, we also find evidence that the treatment effect varies by symptom type and patient
population. Future research will explore potential heterogeneous treatment effects across PASC

subphenotypes and demographic groups.
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METHODS

This study is part of the NIH Researching COVID to Enhance Recover (RECOVER) Initiative,
which seeks to understand, treat, and prevent PASC. For more information on RECOVER, visit

https://recovercovid.org. All analyses described here were performed within the secure N3C

Data Enclave.

We emulated a target trial to estimate the effect of Paxlovid treatment during acute COVID-19
on the cumulative incidence of PASC. We followed a two-step process for emulating target trials
with observational data: first, we articulated the causal question of interest in the form of a
hypothetical trial protocol (Table 3).”' Second, we emulated each component of this protocol
using the N3C Enclave, which integrates EHR data for 21 million patients from 83 data partners
across the United States. N3C’s methods for data acquisition, ingestion, and harmonization have
been reported elsewhere.”**>* All results are reported in adherence with the Strengthening the

Reporting of Observational Studies in Epidemiology (STROBE) guidelines.*
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Table 3: Protocol of a Target Trial Emulation to Estimate the Effect of Paxlovid Treatment
during Acute COVID-19 on Cumulative PASC Incidence

Protocol Component

Description under Target Trial
Conditions

Method of Target Trial Emulation

Eligibility criteria

Treatment strategies

Assignment procedures

Follow-up period

Outcome

Causal contrasts

Analysis plan

Persons aged 18 and older who have an
acute COVID-19 infection and one or
more risk factors for severe COVID-19 as
per CDC guidelines.”

Complete course of Paxlovid initiated
within 5 days of symptom onset.

Participants will be randomly assigned to
treatment or control at baseline and will be
aware of their treatment assignment.

Each patient will be followed for 180 days
after treatment.

Clinical diagnosis of PASC within
follow-up period

Intention-to-treat effect

Measure relative risk of PASC diagnosis
across treatment arms.

Persons aged 18 and older who have one or
more risk factors for severe COVID-19 as
per CDC guidelines® and who have had a
COVID-19 index (either a documented
COVID-19 diagnosis or positive
SARS-CoV-2 lab test) during the study
period.

Complete course of Paxlovid prescribed
within 5 days of COVID-19 index.

Patients will be assigned weights based on
treatment propensity scores to ensure
exchangeability of treatment and control
groups and emulate random assignment.

Patients will be censored at 180 days after
COVID-19 index or the time of their last
recorded visit, whichever is earlier.

Clinical diagnosis of PASC or computed
probability of PASC > 0.9 between 29 and
180 days after COVID-19 index. Patients
with a PASC diagnosis or prediction within
28 days of COVID-19 index will be
censored.

Intention-to-treat effect

Estimate cumulative incidence of PASC in
each treatment arm using Aalen-Johansen
estimators weighted for treatment
propensity; estimate relative risk based on
point estimates and variances of cumulative
incidence estimates.
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Eligibility Criteria

The study period spanned April 1, 2022, to August 31, 2023, with an index cutoff date of
February 28, 2023 (180 days before the end of the study period). We excluded the period
between December 21, 2021 (date of Paxlovid EUA) and March 31, 2022 due to the variability
in case counts and prescription patterns during the first wave of the Omicron variant.® We used
data from RECOVER release v141 (August 14, 2023) in the N3C Enclave.

Our inclusion criteria emulated the target trial’s eligibility criteria: 1) having a documented
COVID-19 index date within the study period (with index date defined as the earliest date of
either a COVID-19 diagnosis [ICD-10 code U07.1] or a positive SARS-CoV-2 test result), 2)
being > 18 years of age at the COVID-19 index date (due to potential differences in clinical
characteristics and prescription practices between pediatric and adult patients®’**), and 3) having
> 1 risk factor for severe COVID-19 per CDC guidelines (age > 50 years or diagnosis of a
comorbidity associated with higher risk of severe COVID-19). For patients with > 1 COVID-19
index date in the study period, we selected a single index date per the following criteria: 1) if
Paxlovid was prescribed within 5 days of one index date, use that index date, 2) if Paxlovid was
prescribed within 5 days of > 1 index date, use the first, and 3) if Paxlovid was not prescribed

within 5 days of any index date, use the first index date.

We also applied a set of exclusion criteria, to exclude: 1) patients who were hospitalized on the
COVID-19 index date, 2) patients with PASC (see Treatment and Outcome) prior to or on the
COVID-19 index date, 3) patients who were prescribed a drug with a severe interaction with
Paxlovid in the 30 days prior to the COVID-19 index.* Furthermore, to ensure that data were
captured from sites with high fidelity and adequate coverage, we only included data from 28 sites
with at least 5% of eligible patients, and a minimum of 500 patients, treated with Paxlovid during

the study period.

Treatment and Qutcome

Eligible patients were categorized by their treatment exposure. The treatment group was defined
as having been prescribed Paxlovid within 5 days of their COVID-19 index date. The control
group was defined as the complement, with one exception. Patients who were prescribed
Paxlovid within 5 days of COVID-19 index, but were hospitalized prior to treatment, were

included in the control group and censored at the date of Paxlovid prescription (see Statistical
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Analysis for more on censoring). We took this approach because inpatient Paxlovid treatment
(presumably after COVID-19 is already severe) is a different treatment modality, and we
intended to study on-label outpatient treatment. We selected a treatment window of 5 days from
COVID-19 index to adhere as closely as possible to treatment guidelines (within 5 days of
symptom onset) with the available data. We identified 10 Observational Medical Outcomes
Partnership [OMOP] concepts that correspond to Paxlovid in N3C and used these concepts to

measure treatment.®

We considered two measures of the PASC outcome. Our primary outcome leveraged a
computable phenotype: a machine learning model trained to predict PASC diagnoses (ICD-10
code U09.9). An earlier version of this computable phenotype was used in prior work. For this
study, we used an updated version better suited for the later phase of the pandemic.?*®' We
followed patients for 180 days following their COVID-19 index date. PASC date was defined as
the date of the maximum computable phenotype prediction above a threshold of 0.9, or, if
present, the date of U09.9 diagnosis, whichever was earlier. Computable phenotype model scores
were not generated for patients. Patients over 100 years old at COVID-19 index did not receive

model scores and were excluded from the primary outcome analysis.

Our secondary outcome examined PASC symptom clusters--cognitive, fatigue, and
respiratory--proposed by the Global Burden of Disease (GBD) program (“GBD symptom
clusters” henceforth).”® For the GBD symptom cluster outcomes, PASC date was defined as the
onset date of any novel symptom in the cluster at least 28 days after COVID-19 index (we
defined novel symptoms as symptoms that did not occur in the three years prior to COVID-19

index).

Statistical Analysis

Our estimand was the cumulative incidence of PASC from 29 to 180 days after COVID-19
index. We applied a potential outcomes framework to compare the rate of PASC among patients
who received treatment to those who did not. We use inverse probability of treatment (IPT)
weighting to emulate random assignment through exchangeability between treatment arms. Our
treatment model included the following pre-treatment covariates: sex, age (binned), race and
ethnicity, Charlson Comorbidity Index (CCI; binned), Community Well-Being Index (CWBI;
binned), number of visits in the year prior to index (binned), number of hospitalizations in the

year prior to index (binned), month of COVID-19 onset, and site of care provision. Our rationale
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for using these covariates is as follows. Many studies have shown disparity in COVID-19
treatment and outcome by race, ethnicity, and social determinants of health.®*% Sex, age, and
comorbidities are known to affect care seeking and the outcome of COVID-19. Past healthcare
utilization could affect the likelihood of treatment seeking and PASC documentation. Finally, the
index month was included because Paxlovid treatment rates, viral variants, and infection rates
changed during the study period. CCI was coded as missing when no condition records were
present in N3C prior to index. CWBI was coded as missing when patient ZIP code was not
reported. We used this treatment model to generate stabilized IPT weights trimmed at the 99.5th
percentile. We assessed covariate balance using absolute standardized differences. To estimate
the cumulative incidence of PASC, we used [PT-weighted Aalen-Johansen estimators. We used

bootstrapping with 200 iterations to estimate the 95% confidence interval at an alpha of 0.05.

We censored patients at the following events: 1) death, 2) last documented visit in the study
period, 3) PASC outcome within 28 days of COVID-19 index, and 4) 180 days after index (end
of study period). We also censored patients in the control group if they received Paxlovid. This
could occur if they received Paxlovid within 5 days of index, but after hospitalization (see
Treatment and Outcome). It could also occur if they received Paxlovid later in the study period,
but not within 5 days of a COVID-19 index (see Eligibility Criteria).

In addition, we conducted two supplementary analyses (Supplements D and E) and five

sensitivity analyses (Supplement F).

Subanalyses

To validate our results against both the current state of literature, and against other observational
patient-level datasets, we conduct two subanalyses. The first attempted to mirror the cohort used
in Xie et al (2023). We refer to this as the “VA-like cohort”. In this analysis , we used the same
study start and end dates as Xie et al. (January 3, 2022, and December 31, 2022). To mirror VA
demographics, we filtered the cohort to males >= 65 years old at COVID-19 index. To reflect the
high continuity of care of the VA system, we filtered our cohort to patients with at least two

visits in the year prior to COVID-19 index.

Additionally, we collaborated with colleagues from the PCORnet Clinical Research Network’s
RECOVER EHR cohort to run a similar analysis across records from 29 sites. This analysis used

PCORnet’s rules-based PASC definition, which is based on the novel onset of any of 25
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symptoms, as the primary outcome.**” Detailed methods and results for this analysis are shown

in Supplement C.
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SUPPLEMENT A - ADDITIONAL TABLES AND FIGURES

Table SA1- Estimated treatment effects across all analyses

Cumulative Incidence (95% CI)

Analysis Supplement
Paxlovid No Paxlovid

Main Results
N3C PASC Primary Outcome 0.069 (0.067,0.071) | 0.070 (0.069, 0.071) A
N3C Cognitive Symptom Cluster 0.015(0.014, 0.015) | 0.017 (0.017, 0.018) A
N3C Fatigue Symptom Cluster 0.040 (0.039, 0.041) | 0.043 (0.042, 0.044) A
N3C Respiratory Symptom Cluster 0.069 (0.067,0.071) | 0.070 (0.068, 0.071) A
Validation Analysis
VA-like Cohort Primary Outcome 0.078 (0.072, 0.084) | 0.082 (0.079, 0.085) B
VA-like Cohort Cognitive Symptom Cluster 0.021 (0.018, 0.024) | 0.028 (0.027, 0.030) B
VA-like Cohort Fatigue Symptom Cluster 0.049 (0.044, 0.054) | 0.055 (0.053, 0.057) B
VA-like Cohort Respiratory Symptom Cluster 0.078 (0.072, 0.084) | 0.085 (0.083, 0.088) B
PCORnet PASC Primary Outcome 0.310(0.308, 0.313) | 0.344 (0.342, 0.346) C
PCORnet Cognitive Symptom Cluster 0.013 (0.012, 0.013) | 0.015 (0.014, 0.016) C
PCORnet Fatigue Symptom Cluster 0.036 (0.035, 0.038) | 0.043 (0.042, 0.044) C
PCORnet Respiratory Symptom Cluster 0.069 (0.068, 0.071) | 0.078 (0.076, 0.079) C
PCORnet U09.9 Diagnosis 0.085 (0.078, 0.092) | 0.092 (0.089, 0.095) C
Supplementary Analysis
N3C U09.9 Code Diagnosis 0.008 (0.007, 0.008) | 0.007 (0.006, 0.007)
N3C PASC Primary Outcome, Vaccination-Aware 0.061 (0.058, 0.063) | 0.064 (0.062, 0.065) E
Sensitivity Analysis
N3C PASC Computable Phenotype Threshold - 0.75 | 0.137 (0.135, 0.140) | 0.137 (0.136, 0.139) F
N3C PASC Computable Phenotype Threshold - 0.80 | 0.114 (0.112,0.117) | 0.115(0.113, 0.116) F
N3C PASC Computable Phenotype Threshold - 0.85 | 0.092 (0.090, 0.094) | 0.093 (0.092, 0.094) F
N3C PASC Computable Phenotype Threshold - 0.95 | 0.047 (0.046, 0.049) | 0.048 (0.047, 0.049) F
N3C Paxlovid Treatment as Index Event 0.069 (0.067, 0.070) | 0.071 (0.070, 0.072) F
N3C Positive Lab-only Index Events 0.074 (0.071, 0.077) | 0.067 (0.066, 0.068) F
N3C PASC Primary Outcome (29-365 days) 0.127(0.124, 0.130) | 0.126 (0.125, 0.128) F
N3C PASC Primary Outcome(90-180 days) 0.039 (0.038, 0.041) | 0.040 (0.039, 0.040) F
N3C PASC Primary Outcome (90-365 days) 0.099 (0.096, 0.102) | 0.098 (0.096, 0.099) F
N3C Doubly Robust Adjustment Hazard Ratio: 0.951 (0.920, 0.984) F
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Figure SA1- Forest Plot of Treatment Effects across all analyses

Analysis Treatment Effect (95% CI) p-value
N3C PASC Primary Outcome” 0.985 (0.956-1.014) 0.307
N3C Cognitive Symptom Cluster” 0.848 (0.795-0.902) <0.001
N3C Fatigue Symptom Cluster” 0.927 (0.891-0.962) <0.001
N3C Respiratory Symptom Cluster” 0.986 (0.954-1.018) 0.398
VA —like Cohort Primary Outcome® 0.946 (0.864-1.027) 0.179
VA —like Cohort Cognitive Symptom Cluster® 0.738 (0.626-0.851) <0.001
VA —like Cohort Fatigue Symptom Cluster” 0.89 (0.784-0.996) 0.032
VA —like Cohort Respiratory Symptom Cluster® 0.918 (0.84-0.995) 0.029
PCORnet PASC Primary Outcome” 0.871 (0.86-0.882) <0.001
PCORnet Cognitive Symptom Cluster” 0.838 (0.785-0.894) <0.001
PCORnet Fatigue Symptom Cluster® 0.834 (0.80-0.87) <0.001
PCORnet Respiratory Symptom Cluster”® 0.885 (0.856-0.914) <0.001
PCORnet Incident U09.9/B94.8 Code” 0.979 (0.909-1.054) 0.573
N3C Incident U09.9 Code” 1.12 (1.02-1.22) e 0.027
N3C Vaccination — Aware results® 0.952 (0.907-0.997) : 0.031
N3C PASC Computable Phenotype Threshold — 0.75° 1.001 (0.979-1.022) 0.943
N3C PASC Computable Phenotype Threshold — 0.8 0.997 (0.972-1.022) 0.829
N3C PASC Computable Phenotype Threshold — 0.85° 0.993 (0.969-1.018) 0.592
N3C PASC Computable Phenotype Threshold — 0.95° 0.984 (0.951-1.017) 0.351
N3C Paxlovid Treatment as index event” 0.948 (0.92-0.976) <0.001
N3C Positive lab —only index events® 1.101 (1.051-1.15) <0.001
N3C PASC Primary Outcome (29— 365 days)” 1.005 (0.98-1.031) 0.698
N3C PASC Primary Outcome(90 — 180 days)” 0.999 (0.957-1.04) 0.95
N3C PASC Primary Outcome (90 — 365 days)® 1.017 (0.984-1.049) 0.317
N3C Doubly Robust Adjustment“ 0.951 (0.92-0.984) 0.003
06 o0e 1.0 12 4
Treatment Effect
Note: ™ Analysis reports Relative Risk o Analysis reports adjusted Hazard Ratio
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Figure SA2- Covariate Balance (N3C Cohort)
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Figure SA3: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated

patients by GBD Symptom Clusters
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SUPPLEMENT B - ADDITIONAL FIGURES, VA-LIKE SUBANALYSIS

Figure SB1: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated
patients by predicted outcome from CP model with threshold of 0.9 or U09.9, VA-like
Subanalysis

Computable Phenotype Prediction or U09.9, VA-like Cohort
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Figure SB2: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated
patients by GBD Symptom Clusters, VA-like Subanalysis

Onset of Novel Cognitive Symptom, VA-like Cohort Onset of Novel Fatigue Symptom, VA-like Cohort
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SUPPLEMENT C - PCORNET SUBANALYSIS

Methods

The PCORnet’s Long COVID definition for adult is rules-based by leveraging ICD codes
covering 25 clinical symptoms, including anemia, thromboembolism, pulmonary embolism,
dementia, pulmonary fibrosis/edema/inflammation, smell and taste, diabetes mellitus,
malnutrition, fluid disorders, general PASC diagnoses U099/B948, encephalopathy, abnormal
heartbeat, chest pain, abdominal pain, constipation, joint pain, cognitive problems, headache,
sleep wake disorders, dyspnea (or shortness of breath), acute pharyngitis, hair loss, edema, fever,
malaise and fatigue.®®%” The incident post-acute sequelae of SARS-CoV-2 (PASC) symptoms
from the list above was observed during the post-acute phase (30 to 180 days after the index
date), while absent during the baseline period (7 days to 3 years preceding the index date).
Individuals classified as having incident PASC when he/she exhibited at least one incident

PASC-related symptom during the post-acute phase.

The same set of covariates as N3C were built for the adjustment analyses, including age,
self-reported sex, race/ethnicity, CCI score, baseline hospitalization utilization, social-economic
status and infection time. The social-economic status was quantified by the national-level area
deprivation index (ADI) linked by either 9-digit zip code or geocode. The IPTW re-weighted
survival analyses, including Cox proportional hazard model for the relative risk, and the
Aalen-Johansen model for the cumulative incidence. Both methods considered the death to be a
competing risk for the target incident outcomes. The IPTW weights were learned based on

method from Zang et al.®®
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Results

Table SC1: Estimated treatment effects across all analyses, PCORnet Subanalysis

Adjusted Aalen-Johansen Cumulative

p-value
o CORnet Result Incidence Estimate (95% CI) Adjusted Hazard (Welch’s t test,
ne esults
Ratio (95% CI) two-sample,
Paxlovid No Paxlovid two-sided)
[ncident PASC 0.310 (0.308, 0.313) | 0.344 (0.342, 0.346) | 0.871 (0.860, 0.882) <0.001
Incident U099/B948 0.009 (0.008, 0.009) | 0.009 (0.009, 0.009) [ 0.979 (0.909, 1.054) 0.573
Incident GBD Cluster -
Cognitive 0.013 (0.012,0.013) | 0.015 (0.014,0.016) | ' ¢ (0785, 0.894) <0.001
[Incident GBD Cluster -
. 0.036 (0.035, 0.038) | 0.043 (0.042, 0.044)
Fatigue 0.834 (0.800, 0.870) <0.001
Incident GBD Cluster -
) 0.069 (0.068, 0.071) | 0.078 (0.076, 0.079)
Respiratory 0.885 (0.856, 0.914) <0.001
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SUPPLEMENT D - OUTCOME DEFINED BY CLINICAL DIAGNOSIS

In addition to results from our primary analysis, we defined our outcome of PASC as only
patients with a recorded U09.9 diagnoses, indicating a clinician-reported outcome of PASC. For
this analysis, we excluded patients from data partners that did not frequently use the U09.9 code.
We defined this criterion as at least 1% of patients with a COVID-19 index (across all N3C data,
not just in our study period) having a U09.9 diagnosis.

Of the total 426,461 patients, 409,980 (96.14%) remained after applying the site-level U09.9
usage criterion. Without adjustment for covariates, 781 (0.66%) patients treated with Paxlovid
had a U09.9 diagnosis in the follow-up period, compared to 1,662 (0.57%) patients in the
untreated group. Weighted Aalen-Johansen estimates of cumulative incidence were 0.76% (95%
CI1 0.70-0.82) for patients treated with Paxlovid and 0.68% (95% CI 0.64-0.71) for patients not
treated with Paxlovid. Adjusted relative risk was 1.12 (95% CI 1.02-1.22). (See Figure SD1)

Figure SD1- Cumulative Incidence of PASC in Non-Paxlovid and Paxlovid treated patients,
defined by onset of U09.9 diagnosis code
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SUPPLEMENT E - VACCINATION-AWARE ANALYSIS

For this supplementary analysis, we included COVID-19 vaccination status as a covariate, and
replicated our primary analysis. We considered vaccination to be a plausible confounder of
Paxlovid treatment and documented PASC, either through acute infection severity or propensity
to seek care. We followed a similar procedure as in our earlier work estimating the effect of
Paxlovid treatment on hospitalization.’ Because vaccination status in N3C is subject to
misclassification, we used a subcohort of patients from sites with reliable vaccination data. We
categorized patients by their vaccination status prior to their COVID-19 index date, defined as
having completed a full course of vaccination at least 14 days prior to index. Partially vaccinated
patients and patients who became fully vaccinated fewer than 14 days prior to index were

excluded from the analysis.

In the subanalysis including COVID-19 vaccination status as a covariate, the cohort included
164,966 patients from 8 sites that met vaccination data quality criteria. Of this cohort, 59,257
(35.92%) were treated with Paxlovid, and 8,825 (5.35%) had PASC according to our primary
outcome measure. Adjusted relative risk was 0.95 (95% CI 0.91-1.00).

Figure SD1 - Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated
patients by predicted outcome from CP model with threshold of 0.9 or U09.9, additionally
adjusted for vaccination status and among data partners meeting vaccination data quality criteria
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SUPPLEMENT F - SENSITIVITY ANALYSES

Methods

First, we used a doubly-robust estimation method in case the treatment model was misspecified.
Targeted maximum likelihood estimation was not feasible with our cohort and computing
environment, so we were unable to estimate cumulative incidence using a doubly-robust method.
Instead, we estimated the hazard ratio (HR) of Paxlovid treatment as a secondary estimand. We
used inverse probability of treatment-weighted Cox proportional hazards models adjusted for the
same baseline covariates as the treatment model. The same bootstrap procedure was used to

estimate confidence intervals.

Second, we tested various computable phenotype prediction thresholds. In addition to the 0.9
threshold used in the primary analysis, we tested prediction thresholds at 0.75, 0.8, 0.85, and
0.95.

Third, we included Paxlovid treatment as a COVID-19 index event. This added 33,571 additional
patients who were treated with Paxlovid during the study period, but did not have a U07.1

diagnosis or a positive lab test in the five days prior to treatment.

Fourth, we also tested sensitivity to COVID-19 index definition by including only positive lab
tests as index events (i.e., we did not include U07.1 diagnoses without accompanying lab

results).

Fifth, we tested sensitivity to outcome definition in two ways: by requiring outcomes to occur 90
days after COVID-19 index (rather than 29 days) and by observing patients for up to 365 days
(rather than 180 days).

Results

Our findings were not sensitive to the use of different computable phenotype prediction

thresholds, or to the use of different PASC timing windows.

However, other sensitivity analyses produced different results. Treating only positive lab tests as

index events, Paxlovid appeared to have an anti-protective effect on PASC. There is no plausible
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mechanism for this to be the case, and it is likely due to bias in the subset of COVID-19 patients

who had documented lab tests in an era when home testing was common.

In our analysis including treatment with Paxlovid as a COVID-19 index event (i.e., including
patients who received Paxlovid but did not have a COVID-19 diagnosis or positive lab result),
we also found a significant, protective treatment effect (RR 0.95, 95% CI 0.92-0.98). In the
absence of a COVID-19 diagnostic code (U07.1) or positive laboratory confirmed SARS-CoV-2
test to mark a COVID-19 index date, the additional subset of the patient population treated with
Paxlovid here may still represent true COVID-19 cases, treated for suspected (but not
laboratory-confirmed COVID-19), or with a recent personal history of COVID-19 (Z86.16).”
Within the resulting patient cohort, the treatment effect of Paxlovid on PASC was statistically

significant, but the effect size remained practically insignificant.

Using a doubly robust estimator and the hazard ratio (HR) of Paxlovid treatment as the estimand,
we found a small but significant treatment effect (HR 0.95, 95% CI 0.92-0.98). This suggests
that some residual confounding may remain after IPTW, however, the treatment effect remains

practically insignificant.
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Figure SF1: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated
patients by predicted outcome from CP model with thresholds ranging from 0.75 to 0.95 or
U09.9, by CP model threshold
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Figure SF2: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated
patients by predicted outcome from CP model with threshold of 0.9 or U09.9, Paxlovid
treatments without accompanying lab tests or U07.1 diagnoses included as index events
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Figure SF3: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated
patients by predicted outcome from CP model with threshold of 0.9 or U09.9, positive lab
required for COVID-19 index (i.e., U07.1 diagnoses without accompanying lab tests not
included as index events)
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Figure SF4: Cumulative incidence of PASC in Paxlovid treated vs. Non-Paxlovid-Treated
patients by predicted outcome from CP model with threshold of 0.9 or U09.9, by time window
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