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Abstract 

PWAS (Proteome-Wide Association Study) is an innovative genetic association approach that 

complements widely-used methods like GWAS (Genome-Wide Association Study). The PWAS 

platform involves consecutive phases. Initially, machine learning modeling and probabilistic 

considerations quantified the impact of genetic variants on protein-coding genes' biochemical 

functions. Secondly, aggregating the variants per gene for each individual determines a gene-

damaging score. Finally, standard statistical tests are activated in the case-control setting to 

yield statistically significant genes per phenotype. 

The PWAS Hub offers a user-friendly interface for an in-depth exploration of gene-disease 

associations from the UK Biobank (UKB). Results from PWAS cover 99 common diseases and 

conditions, each with over 10,000 diagnosed individuals per phenotype. Users can explore 

genes associated with these diseases, with separate analyses conducted for males and 

females. The PWAS Hub lists statistically significant genes associated with common diseases. 

It also indicates whether the analyzed damaged gene is associated with an increased or 

decreased risk. For each phenotype, the analyses account for sex-based genetic effects, 

inheritance modes (dominant and recessive), and the pleiotropic nature of associated genes. 

The PWAS Hub showcases its usefulness by navigating through such proteomic-genetic 

application for asthma. Graphical tools facilitate comparing genetic effects between the 

results of PWAS and coding GWAS, aiding in understanding the sex-specific genetic impact on 

common diseases. This adaptable platform is attractive for clinicians, researchers, and 

individuals interested in delving into gene-disease associations and sex-specific genetic 

effects. The PWAS Hub is accessible at http://pwas.huji.ac.il. 
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Background 
Public databases, such as the GWAS catalog, have compiled thousands of reports from 

genome-wide association studies (GWAS) (MacArthur et al. 2017). However, despite the 

abundance of GWAS, most studies have not significantly contributed to our understanding of 

disease mechanisms (Visscher et al. 2012; Brandes et al. 2022). The traditional GWAS 

approach faces challenges in mapping variants to their respective credible genes, leading to 

ambiguity and often unjustified variant-to-gene associations (Schaid et al. 2018).  Notably, a 

large proportion of GWAS-associated variants (e.g., GWAS catalog, GWAS central) are located 

in regions with no functional annotations, such as intergenic regions and introns, making it 

difficult to gain meaningful insights into disease etiology (Mountjoy et al. 2021). 

To address these gaps in contemporary genetic studies, we developed PWAS (Proteome-Wide 

Association Study), a method that conducts genetic association studies at the gene level 

(Brandes et al. 2020). PWAS aims to infer causal associations from variations within protein-

coding genes. It utilizes a scoring method based on machine learning and probabilistic 

modeling to assess the functional effects of genetic variants and their impact on protein-

coding genes (Brandes et al. 2019). The development of PWAS involved utilizing genotyping 

data from the UK Biobank (UKB) (Zhao et al. 2020). The input for PWAS includes all tagged 

and imputed SNPs within the coding regions of protein-coding genes. The underlying idea is 

that by aggregating weak effects across different variants, PWAS can detect genetic signals at 

the gene level. With a gene damage probability score per individual, robust and valid 

associations are identified by applying standard statistical methods. Specifically, linear 

regression models test associations for continuous phenotypes (e.g., BMI, height), while 

logistic regression models are used for binary phenotypes (e.g., schizophrenia, asthma).  

Notably, PWAS accommodates nonlinear genetic effects by considering dominant or 

recessive inheritance models for each associated gene (Brandes et al. 2019). PWAS 

complements GWAS and other gene-centric approaches like SKAT (Wu et al. 2011), providing 

more interpretable results by focusing on associations reliant on protein function alterations. 

Traditionally, the sex differences in complex human traits were limited to physical and 

behavioral differences. It was attributed mainly to the influence of sex chromosomes and 

gene interaction with sex hormones. These differences are translated to anthropometric 

measurements (e.g., height, weight, adipose distribution) but to a lesser extent to human 
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physiology and the mechanism of complex traits (Gilks et al. 2014). However, the exploration 

of sex-dependent genetics in human traits has become feasible in recent years due to the 

increased scale of resources with rich genomic and clinical data (Bernabeu et al. 2021). 

The PWAS Hub leverages the results of PWAS for major diseases and conditions (e.g., asthma, 

hypertension, type 2 diabetes). It encompasses the human coding genome, encompassing 

over 18,000 protein-coding genes, with each gene tested according to dominant, recessive 

and combined inheritance models. PWAS Hub provides cross-references to relevant 

resources for genomics, proteomics, and phenotype-related information. It presents a user-

friendly website with browsing capabilities for genes and medical outcomes. We conduct 

separate analyses for females, males, and both sexes, allowing interactive navigation across 

sexes and by the specific model of inheritance. 

 

PWAS Hub Construction  
Data Source  

The input data for our study was sourced from the UK Biobank (UKB), a large database that 

encompasses detailed medical, genotyping, and lifestyle information for approximately 

500,000 individuals aged 40 to 69 across the United Kingdom. The recruitment of participants 

took place between 2006 and 2010. To ensure consistency in our analysis, we focused on 

individuals of European origin (identified through data field codes 1, 1001, 1002, 1003, and 

information on ethnic background via data field 21000). In order to account for genetic 

relatedness, we considered genetic ancestry (referred to as genetic ethnic group, data field 

22006) and randomly selected one representative from each kinship group while removing 

other genetic relatives. 

The disease classification in our study relies on the International Classification of Diseases, 

Tenth Revision (ICD-10) codes for the diagnosis. Similar to other association studies, PWAS 

uses case-control settings. The tested cohort included individuals that had been diagnosed by 

the main or secondary codes (UKB data fields 41202 and 41204, respectively), and the 

summary diagnosis code 41270. The latter covers the distinct diagnosis codes a participant 

has recorded across all their hospital inpatient visits, in either the primary or secondary 

position. The filtered cohort has approximately 275,000 individuals of European origin. PWAS 

Hub covers diseases that are common and exceed 10,000 individuals in our filtered set who 
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have been diagnosed with a specific disease or condition (i.e., cases). Each cohort carrying a 

disease phenotype was divided into three sets: males, females, and both. In specific cases, 

only one of the sexes was analyzed. For example, the ICD-10 C50 “malignant neoplasm of the 

breast” reported on 10,682 affected females, and only 77 affected males that were not 

analyzed.  

Variant inference by FIRM   

The PWAS methodology assumes that variants in coding regions affect phenotypes by altering 

the biochemical function of the encoded protein of a gene. The FIRM (functional impact rating 

at the molecular level) is a pre-trained machine-learning (ML) model that estimates the extent 

of the damage caused to each protein for the entire proteome (Kelman et al. 2021). FIRM 

uses over 1100 numerical features to predict the effect score of any variant. For further 

details see https://github.com/nadavbra/firm. The performance of FIRM reached an AUC of 

90% (precision = 86%, recall = 85.5%) and accuracy of 82.7% with respect to variants tagged 

as pathogenic/ likely pathogenic in ClinVar (Landrum et al. 2020). Each non-synonymous 

variant (e.g., missense, nonsense, frameshift, in-frame indel, and canonical splice-site 

variants) is assigned a functional effect score ranging from 0 to 1. Such a score captures the 

propensity of a variant to damage the gene's protein product. The predicted effect score of a 

variant is normalized so that zero reflects a complete loss of function (i.e., LoF mutation) and 

1.0 represents a protein with no effect on protein function (i.e., synonymous). Note that the 

calculated effect score is agnostic to the phenotype, as the score reflects the impact on 

function of the aggregated protein’s biochemical damage.  

PWAS reports its results on ~18,050 coding genes. The current list of a complete human 

proteome is extracted from UniProtKB (Boutet et al. 2016) with over 20,000 proteins. About 

2000 of them are not included in the analysis of PWAS. Among these unmapped genes are 

genes that are characterized by ambiguous mapping of UniProtKB to RefSeq. Examples are 

endogenous retrovirus groups (e.g., ERVK). The gene list that is not covered by PWAS is 

referred to in the FAQ section http://pwas.huji.ac.il/FAQ#noGeneSymbol. It is also available 

for direct download under http://pwas.huji.ac.il/api/file/uniprot.not_mapped.tsv.gz  

Effect size of disease associations 

Per-variant damage predictions are aggregated at the gene level for all listed variants. A 

protein functional effect score is reported for dominant or recessive inheritance modes. The 
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dominant inheritance model only requires a single allele to be affected, while for recessive 

inheritance, both alleles should be mutated for gene functionality to be affected. These scores 

are between 1 and 0, where a value of 1 represents no predicted loss of functionality and no 

effect on the phenotype for either dominant or recessive modes. PWAS also provides a 

combined model for the protein-phenotype association that is fondly termed the “hybrid” 

model. This model uses both the dominant and recessive effect scores of each participant as 

covariates in a logistic regression over the phenotype. To find gene associations, PWAS tests 

for a correlation between the functional alterations and the phenotype of interest using 

standard case-control statistical methods. To determine the size of the effect of a gene on 

PWAS, we applied a statistical measure of Cohen's d value. Cohen's d value (standardized 

mean difference, SMD) is the normalized difference in the mean gene effect score between 

cases and controls. It was calculated independently for either dominant or recessive effect 

scores. In PWAS, positive values indicate a positive correlation with the gene effect scores, 

where higher effect scores represent less functional damage, thereby indicating the 

“protective” virtue of genes. To account for potential biases (e.g., batch effect in data 

collection, residual population structure, age), we included a collection of 172 covariates with: 

sex (binary), year of birth (numeric), 40 principal components of the genetic data that capture 

the ancestry stratification were provided by the UKB (numeric), the UKB genotyping batch 

(one-hot-encoding, 105 categories), and the UKB assessment centers associated with each 

sample (binary, 25 categories) (Zucker et al. 2023). 

Coding-GWAS analysis 

While the PWAS effect scores use a gene-aggregation approach, we also performed a routine 

GWAS variant independent approach under a similar case-control design, while restricting the 

variants to the coding-region (coined coding GWAS, cGWAS). A total of 639,323 imputed 

variants (out of the 97,013,422 imputed variants) were included for analysis across the 18,053 

protein-coding genes. Note that the set of variants used by PWAS and coding-GWAS is 

identical (Zucker et al. 2023). On average, there are 35.4 nonsense and missense mutations 

per coding gene. 

The cGWAS associations was derived from PLINK 2.0 default logistic regression. The 

calculated z-score specifies the effect size and directionality of the effect per variant. Note 

that for GWAS, a positive z-score indicates a risk variant due to the positive correlation 
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between the disease and the number of alternative alleles. To minimize bias in these 

complementary analyses, we also included the same 172 covariates that were used in PWAS. 

In the PWAS Hub portal, we report for each gene association the subset of significant variants 

from cGWAS that contributed to the association. 

Population analysis for a gene-centric risk  

We tested the genetic signal of a disease in the entire population per gene. We examined the 

distribution of PWAS effect scores by considering all possible cutoffs (indicated by % of the 

cohort). For each gene-disease association study, we report the threshold that gave the best 

partition relative to the gene in the population presenting the disease in focus. For example, 

a threshold marked "bottom 10%" applies to effect-score values where the chosen threshold 

is 10% of the cohort with the lowest scores (i.e., the cohort decile with the greatest functional 

damage to the gene). Specifically, phenotype prevalence is calculated based on the 95% 

confidence interval using Wilson's score for binomial proportion (Kelman et al. 2021). This 

best-cut analysis is performed for females, males, and both sexes. Each gene-disease 

association was tested under recessive or dominant inheritance modes. 

PWAS Hub Accessibility 
The PWAS Hub portal presents an in-depth statistical analysis of findings according to the 

PWAS approach. Details on the underlying methodology are found in (Brandes et al. 2020). 

For additional support and to enhance the utility of the portal, we direct the user to ‘help and 

examples'. To learn more about its applicability, we invite the reader to browse through the 

tutorial (pwas.huji.ac.il/#tutorial-head), and FAQ (pwas.huji.ac.il/FAQ) sections of the portal. 

The PWAS Hub is available at http://pwas.huji.ac.il. 

PWAS Hub Application  
The PWAS Hub portal covers 86 disease phenotypes based on ICD-10 diagnosis codes (Table 

1). This list can be viewed on the portal’s “Summary Page” http://pwas.huji.ac.il/service. 

Details on the ICD-10 terminology are provided via a direct link at the top panel of the 

“Summary Page”. Each phenotype was tested independently following a procedure of 

grouping the population into females, males, or both. The summary view highlights the 

genetic effects of major phenotypes that resulted in PWAS-associated genes for females and 

males. 
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Table 1.  Samples of the Summary page from the PWAS Hub. Phenotypes are partitioned by sex 

ICD-10 Disease/ Phenotype  Sex 
# of 

cases 
# of 

controls 
# of PWAS 
sig. genes 

Prevalence 
(%) 

E03 Other Hypothyroidism M 2566 123075 9 2.04 

  F 11121 138062 63 7.45 

  Both 13687 261137 77 4.98 

I10 Essential (primary) hypertension M 40358 85283 2 32.12 

  F 33732 115451 22 22.61 

  Both 74090 200734 70 26.96 

R31 Unspecified haematuria M 8075 117566 8 6.43 

  F 5694 143489 26 3.82 

  Both 13769 261055 37 5.01 

I25 Chronic ischaemic heart disease M 17853 107788 19 14.21 

  F 6963 142220 0 4.67 

  Both 24816 250008 15 9.03 

E780 Pure hypercholesterolaemia M 19586 106055 16 15.59 

  F 12490 136693 6 8.37 

  Both 32076 242748 27 11.67 

 

Table 1 lists a sample of phenotypes partitioned into males, females, and both sexes. The 

number of associated genes is indicated. The total number of participants included in the 

PWAS Hub are divided to 149,183 females and 125,641 males The number of “both” 

(274,824) covers individuals of European origin where family related individuals were filtered 

out. Note that for some phenotypes, the prevalence of males and females is substantially 

different. Example is the hypothyroidism that shows a 3.6-fold higher occurrence in females 

versus males (Table 1). The full and current version of this table can be found at 

http://pwas.huji.ac.il/service. 

 

The PWAS Hub Layout 
The welcome page of the PWAS Hub http://pwas.huji.ac.il summarizes the actions that can 

be performed. The user is thus presented with multiple actions in the form of a “What can I 
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do here?” panel. The panel provides a brief overview of the portal utility. The user can select 

a gene of interest (GOI) as a starting point while seeking associations with any of the diseases 

listed in the Summary table (as in Table 1). Alternatively, the user may choose a disease of 

interest (DOI) to estimate its gene-based associations and gain insights toward causality, 

disease mechanisms, and sex-dependent or independent genetic effects. 

Figure 1 provides an operational workflow for the PWAS Hub. The portal highlights the 

centrality of sex-dependent genetics by beginning with the desired cohort of females, males, 

or both. At any stage, the user can compare the sex-based results by switching between the 

selected cohorts with the green highlighted (male/female) button. This button appears on 

any page that offers sex-based analyses. We introduce three main questions that the user 

may choose to address using the PWAS Hub: (a) focusing on a gene, what conditions is it 

associated with? (b) focusing on a phenotype, what are the genes that promote or lower its 

risk? and (c) given a phenotype, what would be the genetic differences across sexes, and 

consequently their sex-oriented risk factors? 

 

 

Figure 1. PWAS Hub layout. The primary option for activating the PWAS HUB portal is by selecting 
cohorts by sex. Then, three questions can be asked as described. The navigation to the “Search Page” 
and “Analysis Page” is shown. The main discoveries and supporting statistics are listed in the detailed 
orange frames associated with each of the major pages of PWAS Hub.  
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PWAS Hub Implementation 
For a full discussion on database schema and implementation, refer to the database page on 

PWAS Hub http://pwas.huji.ac.il/Database.  Supplemental Figure S1 shows the schema with 

constrained tables for the major portal displays. To appreciate the quantitative scale, the 

number of rows for each main table is shown. Specifically, the main PWAS disease-statistical 

table includes 5.1M rows, the variant-disease table comprises of 54.2M rows and the gene 

list include 18.1k, and gene variants table covers 225k informative rows.   

 
Navigating the asthma showcase in the PWAS hub  

To illustrate the usability of the PWAS Hub as a navigation and discovery tool, we start by 

browsing the database using the "Phenotypes A to Z" search page. Figure 2 shows the layout 

of the resulting search for the letter A in the alphabetical index. The results of the “Phenotype 

A to Z” search allow an overview view of all PWAS gene associations, where for each 

phenotype, the number of significant genes is reported by colored symbols (acronym F for 

FDR statistics). Symbols report results by considering inheritance models (acronyms D, R, and 

H indicate dominant, recessive, and hybrid inherent modes, respectively). Summary statistics 

of the number of results according to the F, D, R, and H definitions are presented for each 

phenotype. Here, we showcase the flow for asthma (ICD-10: J45). 

The cohort selection (females, males, or both) is “sticky” in the sense that it is carried over to 

all pages. At any time, the user may switch to a different cohort by pressing the respective 

sex button on the top right. 
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Figure 2. Browsing the “Phenotypes A to Z” search page at http://pwas.huji.ac.il/AZ. The user can filter 
out phenotypes by selecting a threshold for the number of significant results. Once filtered, (1) reports 
the subset size. The user selects whether the browsing and downstream analyses are restricted to 
females, males, or both. In this example, a cohort with both sexes was selected (2). Each phenotype 
is indicated by its ICD-10 code (clickable links to the Phenotype Pages). Results that meet the 
preselected criteria are marked by the symbols abbreviated F, R, D, and H (3).   
 
Figure 3 gives the resulting top-10 genes identified for asthma. The gene-significant list 

includes 27 genes. We provide candidates with a relaxed threshold (q-value <0.1). PWAS 

reports on 42 asthma-associated genes meeting this threshold. Genes are colored to easily 

assess the genes that foster the greatest chance of increasing or lowering the risk. The range 

of colors marks Cohen's d value. The red color indicates an increased risk, and the blue color 

represents positive Cohen’s d values for decreased risk. The effect sizes of the genes are 

coded by the color intensity according to the statistical significance (q-value). Associated 

genes can be sorted by Cohen’s d value with protective (i.e., reduced risk, colored blue with 

11 of 27 genes) and the 16 genes indicating increased risk for asthma (red). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 22, 2024. ; https://doi.org/10.1101/2024.01.20.23300645doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.20.23300645
http://creativecommons.org/licenses/by-nd/4.0/


12 
 

 

 
 
Figure 3. The phenotype page for J45 (asthma). The effect sizes of the genes are color-coded from red 
(negative Cohen’s d values = increased risk) to blue (positive Cohen’s d values = decreased risk) (1). 
The intensity of the colors marks the statistical significance (q-value). Breadcrumb navigation links are 
available on all pages (2). Summary statistics of the number of results according to the F, D, R, and H 
definitions, with an active link to the selected cohort. The link that marks J45 points the user to the 
“Phenotype Global” page (3). Navigation to either the gene page (G) or the gene-association page (A) 
(4). The significance of the listed genes is marked by a predetermined q-value symbolic scale (5). 
 
Using the paging tool, the user may also choose to visualize either a significant set only (27 

associated genes for asthma) or pages through lists of predetermined gene lists of 25, 50, 

100, or 200 associated genes. Importantly, statistical analysis for each phenotype is available 

for all 18.1K genes. Each row in the table is linked to a navigation to the gene page (marked 

as G) or the gene-association page (marked as A, Figure 3). 

 
To allow a flexible inspection of the gene association with asthma, the gene association table 

(Figure 3) is sortable by clicking on the headers. When resorting the table, the user can focus 

on significant genes that carry the inheritance signal of choice. The other sortable information 

concerns the effect size (Cohen’s d values), where the negative and positive values are 

associated with an increased or decreased risk, respectively. The top gene that was identified 

by PWAS for asthma is Gasdermin B (GSDMB). This gene is highly expressed in lung bronchial 

epithelium in asthmatic patients. Alteration the protein level of Gasdermin B indicates a 
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reduced risk (colored blue, Figure 3). Interestingly, in animal model, an increased level 

GSDMB governs airway remodeling by increasing fibrosis in the absence of inflammation (Das 

et al. 2016).  

 

 
Figure 4. Gene-centric page. The search for a gene provides its protein and Refseq IDs and a thumbnail-
colored view of the associated phenotypes. The red color depicts the effect size and directionality of 
an increased risk (1). Cross-references to major resources include an active map of the genomic 
location of the gene (2). The numbered lollipops represent the coding variants that are included in the 
PWAS analysis, numbered along the protein length (3). The table summarizes the statistics of this gene 
with all other phenotypes and diseases. The color depicts the effect size and directionality (4). 
 
To further investigate the relevance of the PWAS Hub to gain insights on asthma etiology, we 

navigate to the gene view of HLA-DQA2. It was ranked second in the significant gene list and 

the most significant gene for an increased risk (Figure 3, HLA-DQA2, red color). Figure 4 shows 

the information presented on the gene page. Note that one can navigate directly to gene-

centric information by using the search options for the gene name (free text), gene symbol 

(as in GeneCards), UniProt or RefSeq ID, or by its genomic location.  

The gene page (Figure 4) provides a summary view of the statistical evidence for HLA-DQA2 

and its association with any other listed diseases. We report on a strong association that is 

restricted to asthma and hypothyroidism, two immune-related common diseases. 

Importantly, gene associations are indicative of increased risk in both diseases, consistent 
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with having a shared genetic basis. To further test the biological relevance of the subjected 

gene to asthma, the user can benefit from cross-reference resources. For example, the user 

can seek information on the gene association in the Open Target (OT) genetic portal. List of 

genomic variations from exomes and genome sequencing within a healthy population (e.g., 

gnomAD (Koch 2020)). Other public resources provide rich information on the gene, its 

protein product, and rich biological knowledge at molecular, cellular, and organismal levels 

(e.g., GeneCards, UniProKB). 

While we demonstrate that the user can start with a gene of interest (GOI) or a disease of 

interest (DOI), the PWAS Hub application converges on the gene-phenotype analysis. For 

asthma, when seeking the associated gene list by sex, only nine genes were listed as 

significant in males. We illustrate the results for the phenotype gene for the PSMB9 gene 

(proteasome 20S subunit beta 9) that was ranked fourth in the male-dependent gene list. 

Figure 5 shows that the gene is highly significant for asthma in the hybrid mode (q-value FDR 

is 4.3e-07). 

An analytical view of the PSMB9 gene in the context of asthma is shown by the population 

partition view by gene (Figure 5). This view considers the partitioning of asthma-diagnosed 

individuals by the PWAS effect size of the gene. Specifically, we show (Figure 5) that by 

considering the dominant mode of PSMB9, in 49% of the population group (i.e., males) that 

have the lower score for the effect size, the prevalence of asthma is slightly higher. This is 

converted to an asthma prevalence of 8.25% (matched with 5086 male individuals with 

asthma), while the rest of the affected males have a lower prevalence of 7.46%. A similar 

trend was confirmed by considering the gene in recessive mode. This type of analysis refers 

to three main properties of the gene-disease associations: (i) what is the impact of modeling 

the gene by the different heritability modes; (ii) what percentage of the affected population 

can benefit from a simple population partition; and (iii) what is the gap in prevalence when 

the population is partitioned below and above such a cutoff partition line (i.e., for asthmatic 

males, it is 1.106). 
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Figure 5. Gene-phenotype analysis page. The breadcrumb tool indicates the analysis is male-specific 
for asthma (1). Extended statistical information is shared in a table with a calculated q-value for the 
hybrid heritability mode (2). The results of coding-GWAS and the list of significant variants along the 
sequence. Each variant is labeled by its sequential number along with the coding exons. Significant 
variant (#6) for asthma is marked with a blue square (3). The population partition view of dominant 
and recessive gene-population analysis is shown with 2x2 contingency tables used to determine the 
Fisher exact statistics (4). 
 

Yet, in addition to the gene-based view, GWAS Hub displays the underlying variants within 

the coding gene. In the case of PSMB9, while the coding region of the gene has 14 variants 

(Figure 5), only a single SNP (rs17587) is statistically significant for the association with 

asthma. The SNP is very rare in gnomAD (apparently a healthy population), with a minor allele 

frequency (MAF) of 1.4e-05. This SNP was proposed to increase the risk of rheumatoid 

arthritis (RA) for the ethnicity of Han Chinese from Yunnan (Yu et al. 2013) and vitiligo in the 

Saudi community (Mufti et al. 2021). These observations argue for shared mechanisms in 

asthma and other autoimmune diseases. 

Finally, we present a global view that allows a direct comparison of the genetic effects on 

gene-phenotype associations by sex. To illustrate this, we compared the genes identified by 

females and males for asthma. Figure 6 shows that the analysis by PWAS resulted in 9 

significant genes for males and 9 genes for females. The indication is that there are no female-
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specific identified genes, but two genes are only identified in males. These male-exclusive 

genes are IL6R and MAP9.  

 

 
 
Figure 6.  A collapsed view in the “Phenotype global page” with a comparison of the genetic effects 
by sex. The Venn diagram shows the results for males, females, and both with the number of genes 
identified by PWAS Hub (1). A visual of a three-way Fisher's exact test is presented by the upset plot 
The grey shaded area is for the unions among the three subsets, thus there is no joint occurrence to 
estimate. The p-values are estimate to the p-value of having the exact subset of genes with respect to 
a random occurrence (2). Manhattan-like plot that maps the identified genes on the genome. The y-
axis gives significance values for the enrichment for males (blue) and females (red). The x-axis depicts 
the chromosomal coordinates. A zoom in option is implemented from a genomic overview. More 
information is available by popup options with hover over a gene name (3). A sortable summary table 
for each gene is shown for all gene according to their sex stratified asthma (J45) (4).  
 
Importantly, IL6 signaling through its receptor (IL6R) was associated with sex stratification as 

a risk factor for several autoimmune diseases (Hong et al. 2021). However, testing specifically 

asthmatic and healthy young males failed to meet statistics with regard to IL6R (Rantala et al. 

2011). More surprising is the finding that MAP9 is higher in males. There are three informative 

variants (out of 57 along the coding region) in males, and none in females. No information 

was reported regarding MAP9 polymorphism or expression with respect to asthma.  
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Interestingly, most of the signals in females and males are located in the MHC locus on Chr. 

6, which covers immunological risk factors for autoimmunity and many immune-related 

diseases. PWAS Hub provides an entry point for interactively searching sex-specific results 

across the genome (Figure 6). The genes are displayed by their genetic effects for males and 

females along the chromosomes using an interactive two-way Manhattan plot. We illustrate 

a snapshot of the genome browser for a small section of the MHC within Chr. 6. There are 4 

genes that are significant in males in this genomic segment, only two in females, with only 

HLA-DQA2 (discussed in Figure 4) are significant in each sex. The graphical results are 

presented along with a detailed tabular list the sex-dependent informative genes. 

 

Discussion 

PWAS (proteome-wide association study) detects gene-phenotype associations through the 

effect of variants on protein function, thus enhancing interpretability for complex diseases 

(Brandes et al. 2020). In the current version of the PWAS Hub, we discuss diseases according 

to clinical diagnosis codes based on ICD-10 indices. The results presented in PWAS Hub 

address the major pitfalls and limitations of GWAS, as discussed in the case of primary 

hypertension (Zucker et al. 2023) or predisposition to 10 cancer types in a large population 

(Brandes et al. 2021). In the implementation discussed in the PWAS Hub, we observed a 

relatively low number of significant genes for the studied diseases (e.g., 27 genes for asthma 

and 29 unique genes for females, males, and both) (Fig. 6). For example, for Angina pectoris 

(ICD-10: I20) only 3 genes were identified as significant for males and none for females. For 

only 16 diseases, the significant gene list includes >10 genes (Summary page, Table 1). The 

discovery of PWAS relies on a routine gene-centric statistical analysis. Specifically, in the last 

phase of PWAS, a statistical test is performed by comparing the mean and standard derivation 

of the partition to cases and controls per each of the heritable gene models. Therefore, 

irrespective of whether the PWAS score reflects the true underlying biology or not, it is 

guaranteed to minimize type I errors (false positive hits). Furthermore, as opposed to the 

variant additivity consideration used by GWAS, the aggregating scheme in PWAS considers 

heritability modes with the notion of recessive or dominant modes. We confirmed that in the 

case of cancer’s predisposition, the contribution of recessive inheritance is far larger than 

anticipated (Brandes et al. 2021). 
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By illustrating the results of PWAS Hub for asthma, we noted that many associated gene were 

immune-related, and specifically associated with autoimmunity (e.g., mostly occurring within 

the MHC locus). However, such trend was not replicated across phenotypes and was 

exclusively identified in disease with strong immune basis (e.g., psoriasis, type 1 diabetes, 

hypothyroidism) (Brandes et al. 2020). While discussing the results for disease mechanism is 

beyond the scope of this database paper, the list of discovered genes suggests a high level of 

specificity.  

The current PWAS Hub focuses on 99 common complex diseases with an artificial definition 

of at least 10,000 cases from the UKB population (restricted to European origin, with no family 

relatedness). It is likely that medical records for people who have developed any of these 

common diseases are not updated. Therefore, some records are noisy and probably 

attenuates the success of true discovery. We will expand the utility of the PWAS Hub platform 

in the future. We plan to cover complex diseases according to PheWAS mapping (Denny et al. 

2010). Under this classification, we have collected about 700 phenotypes (defined by 

PheCode) with a minimum threshold of 200 cases per PheCode. We will also expand the PWAS 

Hub to include quantitative and categorized traits (e.g., measurement from blood tests, 

diastolic pressure). Note that the foundation of PWAS was developed to deal with continuous 

and binary traits (Brandes et al. 2020). Finally, we expect to increase the discovery power by 

including rare and ultra-rare variants in the PWAS scoring methods. UKB provides a complete 

set of exome sequencing results that can be used in gene-based association methods 

(Karczewski et al. 2022).  

 

Conclusions 

The PWAS score operates on an aggregated gene level, consolidating results that provide a 

quality gene list. This approach enhances interpretability, allowing for better assessment of 

causality and functional implications. We anticipate that the inclusion of personalized exome 

sequencing, even if the rare and ultra-rare SNVs occur infrequently, those with relatively high 

effect sizes will enhance discoveries without affecting gene-based statistical analyses. We 

propose that examining and navigating through various pages and inter connected 

perspectives offered by the PWAS Hub, can have substantial implications for personalized 

treatment strategies and improved disease management. We conclude that focusing on sex 

stratification is a valuable approach to highlight sex related disease etiology.  
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Summary for Availability and Requirements 
 

• Project Name: PWAS Hub 

• Project homepage: http://pwas.huji.ac.il 

• Operating system: Ubuntu Linux 

• Programming language: Python, javascript 

• Restrictions for non-academics: No license needed  
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GOI, Gene of interest  

GWAS, Genome-wide association studies  

PheWAS, phenome-wide association study 

PWAS, Proteome-wide association studies  
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SNP, Single nucleotide polymorphism 

SNV, Single nucleotide variant 

UKB, UK biobank 

WGS, Whole-genome sequencing 
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Supplementary Figure S1. PWAS constrained tables.  
 
 
 
 

Table S1. At the side of each table description appears the main visual that draws information from 
that table. pwasAPI_geneid connects all the tables that require gene information such as genomic 
coordinates, and the gene’s name in multiple vocabularies. pwasAPI_genediseasestatpwas is the 
main gene-disease correspondence that gives the statistics of the association pattern. The other tables 
store variant-level information. 
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