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Abstract:  
The detection of circulating tumor DNA, which allows non-invasive tumor molecular profiling 
and disease follow-up, promises optimal and individualized management of patients with cancer. 
However, detecting small fractions of tumor DNA released when the tumor burden is reduced 
remains a challenge. We implemented a new highly sensitive strategy to detect base-pair 5 
resolution methylation patterns from plasma DNA and assessed the potential of hypomethylation 
of LINE-1 retrotransposons as a non-invasive multi-cancer detection biomarker. Resulting 
machine learning-based classifiers showed powerful correct classification rates discriminating 
healthy and tumor plasmas from 6 types of cancers in two independent cohorts (AUC = 88% to 
100%, N = 747). This should lead to the development of more efficient non-invasive diagnostic 10 
tests adapted to all cancer patients, based on the universality of these factors. 
 

One-Sentence Summary: LINE-1 retrotransposons hypomethylation is a sensitive and specific 
biomarker to detect multiple forms of cancer non-invasively. 
  15 
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Introduction 
Extensive research has shown that tumor genetic alterations can be detected from plasma DNA 
of patients with cancer 1–3. This paved the way for the use of molecular analyses performed from 
liquid biopsies to genotype tumors non-invasively 4,5 and demonstrated the potential of 
circulating tumor DNA (ctDNA) as a marker of cancer progression 6,7. It is also a powerful 5 
prognostic factor 8 enabling detection of tumor masses not perceptible clinically, after surgery or 
during treatment. These approaches promise optimal management of cancer patients and are 
currently playing an important role in oncology 9,10. However, several technological obstacles 
still limit their widespread application. Samples collected at early stages of tumor progression, or 
during and after treatment, may contain less than one mutant copy per milliliter of plasma 1,11. 10 
This is below the detection limit of most used technologies, even when testing multiple genetic 
alterations simultaneously. Moreover, most methods are biased towards preselected recurrent 
mutations, which do not cover all tumors. We observed in our previous studies 12–15 that 
approximately 25% of patients affected with breast cancer do not display common mutations 
trackable in plasma DNA, even at advanced stages. Therefore, it is necessary to develop more 15 
sensitive and more informative detection tools. 

Multiple studies have demonstrated the central role of epigenetic processes in the onset, 
progression, and treatment of cancer. Epigenetic alterations (i.e., changes in the pattern of 
chromatin modifications such as DNA methylation and histone modifications) are promising 
candidates for cancer detection, diagnosis and prognosis 16,17. These extended markers provide an 20 
additional level of information, overlooked by methods that only question genetic alterations 18. 
Aberrant DNA methylation is a hallmark of neoplastic cells 16, which combine hypermethylation 
of a wide range of tumor suppressor genes along with a global hypomethylation of the genome 
19. DNA methylation is a stable modification, which affects a large number of CpG sites per 
region and per genome and will be key to achieve increased detection sensitivity 20. Moreover, 25 
the concordance of the methylation status between multiple CpGs of the same region can help 
detect low frequency anomalies among a heterogeneous population of molecules 21,22. Finally, 
combining several genomic regions allows to capture a wide range of tumor alleles and cover the 
heterogeneous profiles of cancer patients 23.  
Previous studies have shown that cellular DNA methylation patterns are conserved in cell-free 30 
DNA (cfDNA) and that detection of cancer-specific profiles at the genome-wide scale is feasible 
24–27. Until now, most studies investigating plasma DNA methylation patterns have targeted a 
limited number of regions at high depth, using PCR-based methods 28–30, or explored genome-
wide at low depth with high-throughput sequencing 24–26,31. Both approaches have limited 
sensitivity, as focusing on a few regions does not cover cancer-type and patient variability and 35 
low depth cannot detect small fractions of ctDNA. More recent studies, relying on the capture of 
regions of interest coupled with deep sequencing have investigated the performance of larger 
numbers of regions at high depth 21,32–40. These methods enabled sensitive detection and 
classification of cancer from plasma DNA. However, since they largely focus on cancer 
hypermethylation and unique sequences, it involves targeting specific regions for each cancer 40 
subtype. As a result, developing a cost-effective universal pan-cancer test remains a challenge.  
Remarkably, cancer-related hypomethylation has been reported in almost all classes of repeated 
sequences 41, from dispersed retrotransposons to clustered satellite repeated DNA, and within 
multiple forms of cancers 42. To obtain a global representation of the hypomethylation occurring 
during carcinogenesis and to increase sensitivity, we chose to target retrotransposons of the 45 
Long-Interspersed Element-1 family (L1) and in particular primate-specific copies (L1PA). 
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These elements have tens of thousands of copies per cell and are hypomethylated in multiple 
cancers 42. Two studies have explored L1 global methylation profiles from plasma 43,44 of lung 
and colorectal cancers, using qPCR-based methods, but reported a low detection sensitivity, 
below 70%. Indeed, repeats being inherently difficult to map, detecting their methylation profiles 
at the single base-pair resolution requires sophisticated downstream analysis. To overcome this, 5 
we have developed a method to detect methylation patterns of primate specific L1 elements 
(L1PA) from cfDNA, which we named DIAMOND (for Detection of Long Interspersed Nuclear 
Element Altered Methylation ON plasma DNA). We implemented computational tools to 
accurately align sequencing data without a reference genome and applied prediction models, 
trained by machine learning algorithms, integrating patterns of methylation, overall and at the 10 
single molecule level. The aim of this study was to assess the potential of circulating DNA 
methylation changes at L1s as a universal tumor biomarker, and to develop new highly sensitive 
strategies to detect cancer-specific signatures in blood. 
 
 15 
Results 
Targeting primate-specific LINE-1 elements reveals plasma DNA-methylation patterns 
genome-wide 
We developed a PCR-based targeted bisulfite method coupled to deep sequencing to detect 
methylation patterns of L1PA elements. We used sodium bisulfite chemical conversion to 20 
achieve base-pair resolution analysis and designed a multiplexed PCR based on 8 amplicons 
covering L1PAs (Fig. 1A, Table S1, Fig. S1A). We detected thousands of L1PA elements 
scattered throughout the genome as shown by the genomic hits obtained from a healthy plasma, 
an ovarian tumor, and a uveal melanoma tumor sequenced at high depth (Fig. 1B, Table S2). We 
observed similar profiles for the three samples, as well as for healthy and cancer plasmas with 25 
standard coverage (Fig. S1B-E). This demonstrated the robustness of the approach. Overall, the 
estimated number of L1PA targets is about 30-40,000 elements per genome including half of the 
human specific copies (L1HS) and many copies of the other L1PA subfamilies (Fig. 1C, Table 
S2). This represents an estimate of 87-120,000 CpG sites. Following deep sequencing, reads are 
traditionally mapped back to the genome. However, the majority of sequencing reads from 30 
repetitive sequences are assigned randomly during mapping steps and are subsequently lost for 
classical differentially methylated region (DMR) calling 45. We, thus, developed a new 
computational pipeline to accurately align repetitive sequencing data without using a reference 
genome (Fig. S1F). To perform this, we clustered all good quality reads based on their 
similarity, extracted representative sequences from the largest clusters and used them for 35 
multiple sequence alignment. We then aligned all the reads back onto this custom database. 
Using such reference-free method, we preserved the majority of our data and could extract the 
informative CpG sites agnostically. We selected sites with a CG/TG content ≥ 20% including at 
least 5% of CG to ensure that the position of interest carries some DNA methylation marks. This 
selection was done on healthy samples to avoid biases related to cancer hypomethylation. We 40 
retrieved 35 CpG positions covered by our panel including two additional CpGs with respect to 
the L1HS consensus annotations, located within amplicon 2 (Fig. S2A-B). As expected, the 5’ 
end of the L1 copies targeted is heavily methylated 42,46, particularly within the 2nd amplicon. We 
also observed quite high levels in both the 5th amplicon (69% in average, Fig. 1D), which covers 
part of the ORFI, and the last two CpGs of amplicon 8, which is located immediately upstream 45 
of the 3’UTR. Amplicon 3, which has the lowest methylation levels within the 5’ end, displayed 
sequencing data with atypical distributions and showed less robust performances (not shown). 
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Hence, we further eliminated it from the rest of the study, resulting in a total of 30 CpG positions 
analyzed. Overall, this reference-free method retrieved methylated sites contained by the 
youngest LINE-1 elements present in the human genome allowing us to study their DNA-
methylation levels and motifs from minute amount of DNA such as plasma cfDNA. 
 5 
L1PA hypomethylation is detectable from plasma DNA in multiple forms of cancer 
We first tested the DIAMOND approach on methylation controls, cancer cell lines and tissue 
samples. The overall methylation levels demonstrated an extensive L1PA hypomethylation 
specifically in cancer samples, including colorectal (CRC), ovarian (OVC), breast (BRC) and 
uveal melanoma (UVM) cancer cell lines as well as OVC, BRC and UVM tumors compared to 10 
healthy white blood cells and healthy tissues collected adjacent to ovarian tumors (Fig. 2A). 
Next, we tested a cohort of 473 plasma samples including 123 healthy controls and samples from 
patients with 6 different types of cancer, covering metastatic (M+) and localized (M0) stages 
(Table S3). This includes colorectal and ovarian cancers in which a substantial rate of L1 
hypomethylation has previously been reported 47,48. We detected a statistically significant L1PA 15 
hypomethylation in cfDNA of metastatic colorectal cancer (CRC M+), breast cancer (BRC M+) 
and uveal melanoma (UVM M+) samples as well as in locally advanced ovarian cancers (OVC 
M0, stages III) and localized gastric cancers (GAC M0) (Fig. 2B, Table S3). The global 
methylation was not significantly different in metastatic non-small cell lung cancers (LC M+) 
nor in localized stages of breast cancer (BRC M0). Hence, focusing strictly on global 20 
methylation levels provides only part of the information. We further computed the levels of 
methylation at each CpG target (n=30) for these plasma samples and observed specific patterns 
of methylation along the L1 structure, which are robustly conserved among the 123 healthy 
donors (Fig. 2C). When considering all cancer samples together, we observed a steady 
hypomethylation through all CpG targets except for the two sites within amplicon 8 (Fig. 2D). 25 
This is also true for metastatic colorectal cancers (CRC M+), breast cancers (BRC M+) and 
uveal melanoma (UVM M+). Clear hypomethylation is also observable for localized gastric 
(GAC M0) and ovarian (OVC M0) cancers, in particular at amplicon #1, #4 and #6, while the 
differences are less striking for localized breast cancers (BRC M0) and metastatic non-small cell 
lung cancers (LC M+). The distinction between most cancers and healthy samples were 30 
dependent on multiple CpG positions belonging to different amplicons along L1s, as shown by 
PCA analysis (Fig. S2C). The least discriminating positions were located within amplicon 8, 
which is consistent with the metaplots shown in Fig. 2D. Next, we analyzed the motifs of 
methylation at the molecule level, which provide a more detailed signal. These haplotypes 
correspond to true patterns of methylation of adjacent CpGs, detected for each amplified DNA 35 
molecule. This was achieved by the incorporation of unique molecular identifiers (UMIs) into 
the library (Fig. S1A). Based on the combination of the 30 CpG targets divided into their 7 
amplicons, we extracted a total of 372 unique features (Fig. S2D). We observed highly robust 
representation profiles of haplotypes among the 123 healthy samples (Fig. 2E). For most 
amplicons, the fully methylated molecules were the most represented, as expected for healthy 40 
controls. However, we observed a high proportion of totally unmethylated haplotypes in 
amplicon #6 and #7. This can be explained by the fact that older L1 copies are often truncated in 
5’ and less regulated by DNA methylation, leading to the capture of molecules with lower DNA 
methylation in 3’. Nevertheless, several intermediate patterns were also among the most 
important features and were found to be differentially represented in healthy and cancer samples 45 
(Table S5). Fully methylated haplotypes were significantly under-represented in most cancer 
subgroups and in most amplicons (Fig. 2F). On the contrary, fully unmethylated haplotypes were 
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over-represented in most cancer subgroups and in most amplicons. This is also well illustrated by 
the PCA analysis shown in Fig. S2E, underlining the contribution of highly methylated 
haplotypes towards the healthy group versus the lowly methylated haplotypes separating cancer 
samples (middle panel). This separation involves haplotypes from all amplicons (right panel). 
These results demonstrate that L1 hypomethylation can robustly be observed from cancer plasma 5 
DNA at the level of single CpG sites but also at the level of haplotypes.  
 
L1PA hypomethylation-based classifiers recognize samples from multiple forms of cancer 
We then trained classification models using random forests, with the 30 features corresponding 
to the levels of methylation at each CpG target or the 372 features corresponding to the 10 
proportions of haplotypes, and assessed their performances to automatically separate healthy 
from tumor plasmas. By testing all cancer samples without subtype specification, the methylation 
of L1PA elements showed an extremely good ability to discriminate between healthy and tumor 
plasmas, with an overall area under the curve (AUC) of 94% for both types of features (Fig. 3A 
and 3C). Next, we trained distinct models to estimate the performances for each cancer type 15 
and/or dissemination stage (M0 vs M+). These models were extremely performant in metastatic 
colorectal and breast cancers but also stage III ovarian cancers and localized gastric cancers, with 
nearly perfect classifications and AUCs between 98-100% (Fig. 3B-C). Additionally, we 
observed excellent performances for metastatic lung cancers and uveal melanoma and more 
importantly for localized stages of breast cancer (AUCBRC_M0 = 92% with both types of features). 20 
These models provide very good sensitivities at 99% specificity (Fig. 3D), in particular for CRC 
M+, BRC M+, OVC M0, GAC M0 and BRC M0. The latter is one of the most difficult cancer to 
detect non invasively, as reported in previous liquid biopsy multi-cancer tests 11,39,40. Overall, we 
observed similar results using single-CpGs methylation levels or using haplotype features. This 
can be explained by the high correlation observed between these 2 types of features (Fig. S3A). 25 
Subsequently, we evaluated the importance of the features used by our classifiers (Fig. 3E-F). 
CpG positions displayed different patterns in the various cancer subgroups that can be 
informative for distinct cancer types or stages (Fig. 3E). Nonetheless, we identified features 
which are common to many types of cancer such as most CpGs of amplicon 1 and the first CpG 
of amplicon 6. Other features seemed to be characteristic of specific subgroups, such as CG7-14 30 
which are the most important features for sorting localized stages of breast cancer (BRC M0) or 
CG15-18, in particular CG17, which are part of the top features for metastatic breast cancers 
(BRC M+). The haplotypes covering these positions showed similar patterns (Fig. 3F). 
Haplotypes provide a more detailed view of the methylation patterns with a strong importance of 
the most methylated or non-methylated molecules. We still observed that some methylation 35 
intermediates are important for cancer detection (ex: in amplicon #1 in CRC M+ and GAC M0, 
#2 in BRC M0, #4 in BRC M+ and other subgroups, #5 in LC M+ and UVM M+, #7 in OVC, #8 
in BRC M0 and LC M+). Overall, this suggests that L1PA methylation alterations vary in 
different types and stages of cancer. To estimate the ability of DIAMOND to detect cancer at 
early stages of the disease, we build classifiers for 3 stage classes gathering all cancer types: 40 
early stages (I/II, N=31), locally advanced stages (III, N=30) and metastatic stages (IV, N=281). 
Classifications were highly performant for all 3 stage categories (AUCEarly = 95%, AUCAdv. = 
97%, AUCMeta = 95%; Fig. 3G-H, S3B) with a mean sensitivity of 70% for early stages,  
(SenEarly = 70%, SenAdv. = 90%, SenMeta = 69%; Fig. 3I). Strikingly, L1PA methylation largely 
outperforms methods based on the detection of mutations. In comparison, the identification of 45 
the same tumor samples via the detection of frequent recurrent mutations, which is commonly 
used in the clinic, does not exceed 59% for ovarian cancer (unpublished data), 38% for colon 
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cancer 49 and 52% for metastatic breast cancer 13,14 (Fig. 3J). We particularly achieved 
remarkable performance on the cohort of 27 localized gastric cancers with a detection rate of 
95% of true positive as compared to 12% for mutation screening 50. This is mostly due to the fact 
that methylation changes occur in virtually all cancer patients, unlike recurrent mutations. 
 5 

Multi-cancer classification performances are reproducible on an independent cohort 
To validate the DIAMOND approach, we tested a second independent cohort consisting of 214 
patients affected with the same types of cancers as in the first cohort, excluding uveal melanoma, 
along with 60 healthy donors (Fig. 4A). First, we confirmed that the methylation patterns along 
the L1 structure were highly reproducible between healthy donors from cohorts 1 and 2, at the 10 
level of single-CpG targets (Fig. 4B) but also for haplotype proportions (Fig. 4C). While 
methylation at single-CpG within cancer subgroups showed slightly more variability (Fig. S4A), 
global methylation levels were quite reproductible between the two cohorts, showing similar 
distributions and no statistical differences (Fig. 4D), except for non-metastatic ovarian cancers. 
There was an important heterogeneity among the OVC M0 samples of cohort 2, which clustered 15 
into two distinct groups, while cohort 1 was more homogeneous (Fig. S4B). Notably, no 
correlation was found with available clinico-histopathological parameters (age, staging, CA125 
level, mutational status, treatment or response to therapy). Differential haplotype proportions 
between healthy and cancer subgroups where also mostly conserved (Fig. S4C, Table S8). 
Overall, the method showed good reliability with the 7-amplicon panel used and good robustness 20 
in detecting L1 methylation levels and changes. Since age-related changes in DNA methylation 
have been described 51,52 and that the healthy donors included in the study are younger overall 
than the cancer patients (Fig. S5A), we have investigated whether there was an effect on the 
methylation patterns we studied. We found a significant but very small effect which appeared 
much smaller that the effect of disease status (Fig. S5B-C). This small effect was tending 25 
towards an increase in methylation with age (Fig. S5D). Furthermore, we observed similar 
patterns and differences between healthy and cancer samples when adjusting for the age (Fig. 
S5E-G), demonstrating that age is not a confounding factor. To validate our classifiers, we 
trained models on the entire first cohort and evaluated them on the second set of independent 
samples. The results showed excellent classification performances with an overall AUC of 88% 30 
when testing all cancers together with no annotations of their histological type (Fig. 4E,G), and 
AUC between 88%-100% for the ‘cancer-types’ models (Fig. 4F,G). We observed again great 
sensitivities at 99% specificity (Fig. 4H) with notably 54% for localized breast cancer. It was, 
however, lower for metastatic lung cancer with a mean sensitivity of 49%. We observed that 
haplotype models were more robust compared to single-CpG methylation rates (Fig. S4D-G). 35 
This could be explained by the fact that haplotypes consist of true methylation patterns at the 
molecule level, enabling to discard noise, caused by experimental variability for example. Next, 
we applied the same validation method, training on C1 and testing on C2, for the 3-stage 
classifiers and observed great classification performances with a mean AUC of 99% (Fig. 4I-J) 
and a mean sensitivity of 78% for early stages (Fig. 4K). This demonstrates the robustness of 40 
cancer detection by probing L1PA hypomethylation from plasma DNA with the DIAMOND 
assay and its ability to detect early stages. 
 

DIAMOND data contain signal to infer the tumor burden, which improves cancer detection 
We detected significantly more hypomethylation for more advanced stages of the disease, in 45 
particular in metastatic stages compared to localized stages (Fig. 5A). However, there was no 
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significant differences between metastatic tumor tissues and primary tissues (Fig. 5B), which 
confirmed that L1PA methylation alteration is an early event in carcinogenesis 54,55 and also 
affects early-stage cancers. The differences observed in the blood reflect the ctDNA fraction, 
which is known to correlate with the tumor burden 1,9. This demonstrates the quantitative 
potential of DIAMOND, which could help quantify the tumor burden and monitor the disease. A 5 
recognized marker to non-invasively estimate the tumor burden and the fraction of ctDNA is the 
aneuploidy or copy number alterations (CNA) 56, a hallmark of cancer genomes 57. Given that 
DIAMOND hits are dispersed throughout the genome (Fig. 1B), we investigated the possibility 
to use our data to perform CNA analysis. The mFast-SeqS approach had previously used a PCR-
based L1PA targeting as a prescreening tool to estimate the fraction of ctDNA 58. This was done 10 
on native DNA whereas our data resulted from bisulfite-treated DNA. We first tested this 
approach on 15 breast cancer cell lines that were also assessed by CytoScan HD microarrays for 
aneuploidy. DIAMOND provided an average of 78 000 uniquely mappable reads per cell line, 
corresponding to around 10 000 L1PA copies precisely located in the genome. These L1PA hits 
homogeneously overlapped with regions covered by CytoScan probes along the genome (Fig. 15 
5C). We computed z-scores, quantifying copy number alterations, at the level of chromosome 
arms as previously described (58,59, see methods) and obtained similar results to those found with 
CytoScan arrays (Fig. S6A). We observed low alteration scores for the normal-like breast cell 
line HTERT-HME1 and good correlations between the 2 methods for the majority of the cell 
lines (Fig. S6B). Next, we computed genome-wide z-scores in healthy and cancer plasma 20 
samples and observed high alteration scores specifically in cancer samples (Fig. 5D). Cancer 
subgroups z-scores mirrored global hypomethylation profiles (Fig. 5E, 2B and 4D), both 
reflecting tumor burden and ctDNA fractions available. However, global methylation rates and z-
scores were only moderately anti-correlated (Fig. 5F), demonstrating that these are partially 
independent markers that can provide distinct signals (Fig. S6C). To obtain a final classification 25 
labelling each sample as healthy or cancer, we used a 2-step categorization incorporating CNA 
analysis, which improved cancer detection. We used the probability of the cancer prediction 
provided by the methylation-based validation model, applying a threshold identified on the 
discovery cohort, followed by a reclassification of samples which presented a z-score > 121, as 
cancer. This cut-off value was deduced from a cross-validation applied on C1 (see methods and 30 
Fig. S6C). This classifier achieved high sensitivities with specificities between 97-100% for 5 
distinct cancer types (BRC, CRC, GAC, LC, OVC, Fig. 5G) and could be applied as is in the 
clinic. This was particularly promising for localized breast cancer with a sensitivity of 100% and 
a specificity of 100%. 
 35 
Discussion 
In this study, we established a robust proof of concept that targeting hypomethylation of 
retrotransposons from cell-free DNA is a sensitive and specific biomarker to detect multiple 
forms of cancer non-invasively. Repetitive regions provide genome-wide information as they 
hold half of the CpG sites present in the human genome 60. Hypomethylation of L1 elements, 40 
which is a common feature of multiple forms of cancer, help cover the heterogeneous profiles of 
cancer patients in a single test. Previous studies have left these regions aside as they are 
inherently difficult to map, and DMR analysis is commonly performed on mapped data. We have 
developed a new pipeline to detect methylation profiles at repeats with a single base-pair 
resolution, without resorting to mapping on a reference genome. This allowed us to retain most 45 
of our data, which is instrumental in achieving high sensitivity. The DIAMOND assay 
demonstrated high performance in detecting cancer samples and we established its feasibility in 
six different cancer types, including three at localized stages. It outperforms mutation screening, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.20.23288905doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.20.23288905
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 
 

as it covers virtually all patients, and competes with recent cfDNA methylation tests, such as the 
Galleri and CancerSeek tests. DIAMOND targets about 100,000 CpG sites, ten times less 
compared to the 1,100,000 CpGs targeted by Galleri 39,40. Nonetheless, we reached similar or 
higher levels of sensitivity in 4 of the 5 cancers tested with the 3 methods. Notably, we achieved 
a 95% sensitivity on localized stages of gastric cancers compared to 47% reached with Galleri 5 
and 72% with CancerSeek. We also achieved a 54% sensitivity on localized stages of breast 
cancers, compared to 28% achieved by Galleri and 33% by CancerSeek. Lower detection rate in 
metastatic lung cancer may be related to the fact that these samples seem to have a low tumor 
burden as indicated by their genome-wide z-scores (Fig. 5E). However, integrating other regions 
with cancer-specific methylation changes could help improve detecting this type of cancer. 10 
The DIAMOND assay provides methylation profiles from minute amount of cfDNA, down to a 
few nanograms, with high precision and high coverage using an affordable sequencing depth. 
We therefore anticipate that our method has the potential to be applied for the development of 
routine clinical tests. To push the DIAMOND assay towards a clinically applicable test, we also 
demonstrated that DIAMOND data can be used to perform copy number alterations analysis 15 
which improves cancer detection. We integrated this analysis in a classifier providing ‘healthy’ 
or ‘cancer’ labels for each sample and reached a detection of 91% of true positives for all cancers 
together and in particular a 100% sensitivity with 100% specificity for localized breast cancer.  
Further testing with a larger number of samples covering earlier stages, more subtypes and 
different types of cancer will enable to consolidate and expand these findings. Moreover, this 20 
will strengthen the classification models, which will perform better with more samples for 
training and testing. It will also be important to study the impact of other conditions, such as 
auto-immune diseases, which may lead to the detection of L1 hypomethylation in blood. The 
recent study on the detection of circulating L1 ORF1p in cancer by Taylor and colleagues55 
demonstrated a high specificity and no sign of L1 reactivation in blood of patients with auto-25 
immune disease, indicating that it might be a cancer-specific phenomenon. DIAMOND analysis 
could further be used to infer the tumor burden and monitor the disease to better detect minimal 
residual disease and the relapse early. However, the impact of treatments on methylation status 
should be investigated first. 
Overall, we developed a turnkey analysis method that identifies tumor plasmas across multiple 30 
types of cancer with the same marker. This approach offers an optimized balance between the 
number of targeted regions and sequencing depth, which could extensively improve the 
sensitivity of ctDNA detection in a cost-effective manner and improve management of patients 
with cancer. 
 35 
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Fig 1. Targeting primate-specific LINE-1 elements reveals plasma DNA-methylation 
patterns genome-wide 
A. CpG density along the structure of a human specific LINE-1 (L1HS) element, which contains 
95 CpG. The DIAMOND assay targets 30 CpG. Each target amplicon is highlighted by a black 
bar below the structure. The number of CpG sites detected per amplicon is displayed in blue. B. 5 
L1PA copy number hit by uniquely and/or randomly mapped reads, obtained from a healthy 
plasma versus ovarian (OVC, top track) or uveal melanoma (UVM, middle track) tumor tissue 
samples ‘deep sequenced’ (54M, 44M or 46M reads respectively) over the distribution of L1PA 
elements annotated in the genome (RepeatMasker on hg38, grey bottom track). C. Histogram 
summarizing the most represented sub-families of L1 targeted by the DIAMOND assay in the 3 10 
deep sequenced samples, in descending order (sum of copies across the 3 samples). The colors 
highlight the relative contribution of L1PA copies hit by reads uniquely mapped, randomly 
mapped or both. D. Methylation pattern observed across the 8 regions targeted along the L1 
element in the healthy plasma sample ‘deep-sequenced’. Metaplot showing the average 
methylation levels at each CpG position. Amplicon limits are delineated with grey dotted lines. 15 
The dark line marks the end of the 5’UTR. Average levels per amplicon are indicated. 
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Fig 2. L1PA hypomethylation is detectable from plasma DNA in multiple forms of cancer 
A. Global DNA methylation of fully methylated (SssI-treated DNA, n=13) and unmethylated 
(Whole-genome amplified DNA, n=12) controls, cancer cell lines or tissues. Ovarian healthy 
tissues were collected next to ovarian tumors. The global methylation levels for each sample 
correspond to the percentage of CG dinucleotides at each CpG site averaged by the number of 5 
CpG sites. B. Global DNA methylation in cancer plasma including metastatic stages (M+) and 
non-metastatic stages (M0) as well as healthy donor plasmas. Statistical differences between 
each cancer subgroup and healthy samples were computed using Mann–Whitney U test (pCRC_M+ 
= 1.27e-29, pBRC_M+ = 3.79e-19, pUVM_M+ = 8.29e-06, pLC_M+ = 0.655, pOVC_M0 = 1.94e-05, 
pGAC_M0 = 4.28e-08, pBRC_M0 = 9.10e-01, Table S4). Black dotted lines represent the median. C. 10 
Methylation level at each targeted CpG sites (x-axis), for each healthy sample (y-axis) depicted 
as a heatmap. CpG numbers are indicated. The metaplot represents the average methylation 
levels of the population. Amplicon numbers are indicated. D. Differential methylation levels 
between healthy samples and patients for each type of cancer represented as metaplots. E. 
Proportion of methylation motifs, called haplotypes, for each amplicon (mean centered per 15 
amplicon). Only the most important features are represented (see Fig3F and methods). Blue 
arrows highlight the most abundant haplotype in each amplicon. F. Mean centered abundance of 
the most important haplotypes with the highest co-methylation patterns (mostly fully methylated 
or fully unmethylated molecules) in cancer subgroups compared to healthy donors. Statistical 
significances were computed using Mann–Whitney U test on raw haplotype proportions (Table 20 
S5). 
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Fig 3. L1PA hypomethylation-based classifiers recognize samples from multiple forms of 
cancers 
A-B. Receiver Operating Characteristic (ROC) curves obtained for plasma samples classification 
using single-CpG methylation levels (n=30) or haplotype proportions (n=372) with the ‘all 
cancers’ model (A) or the ‘cancer-types’ models (B). All classifications include 5000 stratified 5 
random repetitions of learning on 60% of the samples and testing on the 40% left, with 
undersampling for classes equilibrium (results with and without undersampling are presented in 
FigS3C-D). NCRC_M+ = 75, NBRC_M+ = 97, NLC_M+ = 50, NUVM_M+ = 55, NOVC_M+ = 4 (included 
only in ‘all cancers’ testing), NOVC_M0 = 18, NGAC_M0 = 27, NBRC_M0 = 23 tested versus 123 
healthy donors. ROC curves shown are obtained by averaging the sensitivity and specificity of 10 
each repetition of learning. C-D. Performances for classifiers using single CpG methylation 
levels (grey) or haplotype proportions (black) presented as AUCs (C) or sensitivities at 99% 
specificity (D). Average AUCs are computed from the 5000 AUCs generated by each repetition 
of learning. Bars indicate 95% CI. E-F. Importance (mean decrease in impurity) of the features 
used by the classifiers depicted as clustered heatmaps. The features correspond to the CpG 15 
targets (E) or the haplotypes (F). Only the most important haplotypes (feature importance level 
>1%) are shown. G. ROC curves obtained for plasma samples classification with the 3-stage 
model, using haplotype features. H-I. Performances for the 3-stage classifiers using single CpG 
methylation levels (grey) or haplotype proportions (black) presented as AUCs (H) or sensitivities 
at 99% specificity (I). Early stages (I/II, N=31), locally advanced stages (III, N=30) and 20 
metastatic stages (IV, N=281) J. Cancer detection rates with the methylation-based DIAMOND 
assay (haplotypes and CG methylation) vs common recurrent mutations for samples assessed in 
previous studies (13,14). 
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Fig 4. Multi-cancer classification performances are reproducible on an independent cohort 
A. Number of patients and healthy donors (HD) in the discovery cohort (C1) and in the 
validation cohort (C2) for each cancer type and dissemination stage (non-metastatic: M0 vs 
metastatic: M+, NA: stage not available). Generated using Servier Medical Art. B. Methylation 
level at each targeted CpG sites (x-axis), for each healthy sample (y-axis) from C1 vs C2, 5 
depicted as a heatmap. No clustering is done on the data, which comes ordered by targeted CpG 
site on the x-axis (amplicon numbers are indicated). The metaplots represent the average levels 
for donors of C1 versus C2 at each CpG site. C. Mean centered abundance of the most important 
haplotypes, with the highest co-methylation patterns, in healthy donors from C1 vs C2 
(Statistical differences computed using Mann–Whitney U test are available in Table S6). D. 10 
Comparison of the global levels of methylation in C1 vs C2. Methylation levels are calculated as 
explained previously in Fig. 2. The p-values are computed using Mann–Whitney U test (pCRC_M+ 
= 0.680, pOVC_M+ = 0.816, pBRC_M+ = 0.783, pLC_M+ = 0.596, pHealthy = 0.316, pOVC_M0 = 4.74e-05, 
pBRC_M0 = 0.132, Table S7). Black doted lines represent the median. E-F. ROC curves obtained 
for plasma samples classification in the validation cohort with the ‘all cancers’ model (E) or the 15 
‘cancer-types’ models (F) using haplotypes features. All classifications include 5000 stratified 
random repetitions of learning on the whole discovery cohort and testing on the whole validation 
cohort without undersampling. ROC curves shown are obtained by averaging the sensitivity and 
specificity of each repetition of learning. G-H. Performances for validation classifiers using 
haplotype features presented as AUCs (G) or sensitivity at 99% specificity (H). Average AUCs 20 
are computed from the 5000 AUCs generated by each repetition of learning. Bars indicate 95% 
CI. I-K. Performances for 3-stage classifiers: early stages (I/II, NC1=31, NC2=38), locally 
advanced stages (III, NC1=30, NC2=54) and metastatic stages (IV, NC1=281, NC2=113) presented 
as mean ROC curves (I), AUCs (J), or sensitivity at 99% specificity (K). 
  25 
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Fig 5. DIAMOND data contain signal to infer the tumor burden, which improves cancer 
detection 
A-B. Comparison of the average levels of methylation observed in localized vs metastatic plasma 
samples (A, pEarly/Adv. = 0.327, pAdv./Meta. = 3.14e-11, pEarly/Meta. = 2.82e-14; pBRC_M0/M+ = 1.3e-18, 
pOVC_M0/M+ = 0.006, pGAC_M0/M+ = 0.005, Table S10) or in primary vs metastatic tissues (B, pOVC 5 
= 0.257, pUVM = 0.820, Table S11). C. L1PA unique hits obtained for 15 breast cancer cell lines 
compared to the distribution of Cytoscan probes distributed throughout the human genome. D. 
Genome-wide z-score for all cancer (N = 564) vs healthy plasma samples (N = 120, 63 of the 
total 183 HDs are used as references to compute the z-score and are not displayed here, p = 
1.21e-20). E. Genome-wide z-score by cancer subgroups vs healthy samples. The p-values are 10 
computed using Mann–Whitney U test (pCRC_M+ = 2.05e-18, pBRC_M+ = 1.01e-18, pUVM_M+_= 
0.169, pLC_M+ = 0.769, pOVC_M+_= 1.84e-11,  pGAC_M+ = 0.003, pBRC_M0 = 5.12e-17, pOVC_M0 = 
1.09e-12, pGAC_M0 = 8.40e-06, Table S12) F. Correlation analysis for genome-wide z-score 
versus global methylation (roverall = -0.62, p = 1.25e-69). G. Performances of the 2-step model 
incorporating CNA with DNA methylation analysis (Classification is done as follow: ProbaCancer 15 
£ Threshold C1 AND GZ-score £ 121: prediction = Healthy; ProbaCancer > Threshold C1 OR GZ-
score > 121: prediction = Cancer, see methods).  
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Methods 
Materials 
Cell lines 
Cell lines screened in Fig. 2A are the following: CRC (HCT116); OVC (SKOV, Caov3, ES-2); 
BRC (MDA-MB453, SKBR3, MDA-MB361, HCC202, ZR75.1, HCC70, BT474, MDA-5 
MB231, Cal51, MDA-MB157, BT20, MCF7, HCC1954, HCC1569, HCC38); UVM (MP38, 
MP41, MP46, MP65, MM28, Mel285, Mel270, 92.1, Mel202, omm2.5, Mel290, mm66, omm1). 

Tissue and plasma samples 
Archived tissue samples (ovarian adjacent tumor tissues, ovarian primary and metastatic tumors, 
breast tumors and uveal melanoma tissues) were retrieved from the Pathology department of 10 
Institut Curie. Healthy white blood cells and healthy plasma were collected from blood of 
healthy donors through the French blood establishment (agreement #16/EFS/031) under French 
and European ethical practices. Blood samples from patients treated at the Institut Curie (Paris, 
France) were collected, after written informed consent, as part of the following studies: 
resectable metastatic colorectal cancers from the Prodige14 trial (approved by a French Personal 15 
Protection Committee – “CPP -Comité de Protection des Personnes Sud Méditerranée IV” and 
registered in ClinicalTrials.gov under NCT01442935); non-small cell lung cancer and metastatic 
HR+ HER2- breast cancer from the ALCINA study (approved by a French Personal Protection 
Committee and registered in ClinicalTrials.gov under NCT02866149; treatment-naïve ovarian 
cancer or triple-negative breast cancer patients eligible for surgery or neoadjuvant chemotherapy 20 
from the SCANDARE study (approved by the French National Agency for the Safety of 
Medicines and Health Products “ANSM - Agence National de Sécurité du Médicament”, a 
French Personal Protection Committee and registered in ClinicalTrials.gov under 
NCT03017573); multiple-types of metastatic cancers from the SHIVA02 study (approved by the 
French National Agency for the Safety of Medicines and Health Products “ANSM - Agence 25 
National de Sécurité du Médicament”, a French Personal Protection Committee and registered in 
ClinicalTrials.gov under NCT03084757), non-metastatic operable gastric cancers and advanced 
uveal melanoma from CTC-CEC-ADN study (approved by a French Personal Protection 
Committee and registered in ClinicalTrials.gov under NCT02220556). Additional archived 
samples were also retrieved from the biobank of the Institut Curie, patients having provided 30 
informed consent for research use. All samples were obtained in accordance with the ethical 
guidelines, with the principles of Good Clinical Practice and the Declaration of Helsinki. This 
study was approved by the Internal Review Board and Clinical Research Committee of the 
Institut Curie. Blood samples were collected at the time of inclusion, before the start of the 
treatment, in EDTA tubes. Plasma was isolated within 4 h, to ensure a good quality of cfDNA, 35 
by centrifugation at 820 g for 10 min, followed by a second centrifugation of the supernatant at 
16,000 g for 10 min and stored at −80°C until use. 
 
Methods  
Preparation of DNA from cell lines and tissues and cfDNA 40 
Isolation of DNA from cell lines and healthy white blood cells (buffy coats) was performed 
using the QIAamp DNA Mini Kit or QIAamp DNA Blood Mini Kit (Qiagen) according to the 
manufacturer’s instructions. DNA from cryopreserved and formalin-fixed paraffin embedded 
(FFPE) tumor tissues was extracted using a classical phenol chloroform protocol and the 
NucleoSpin® FFPE DNA kit (Macherey Nagel), respectively. 45 
cfDNA was extracted from 2 ml of plasma using the automated QIAsymphony Circulating DNA 
kit (Qiagen), the Maxwell RSC ccfDNA LV plasma kit (Promega) or manual QIAamp 
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circulating nucleic acid kit (Qiagen), according to the manufacturer's instructions, and eluted in 
60 µl, 75 µl or 36 µl, respectively.  
Isolated DNA was quantified by Qubit® 2.0 Fluorometer using dsDNA HS Assay Kit (Thermo 
Fisher Scientific) according to the manufacturer’s instructions and stored at -20°C until use.  

Bisulfite conversion 5 
We used sodium bisulfite-based chemical conversion to achieve base-pair resolution analysis, 
which is crucial to address methylation levels at single CpG dinucleotides and the co-methylation 
of multiple CpG sites to determine methylation haplotypes (methylation state of successive CpG 
sites). Bisulfite treatment of the isolated genomic DNA (up to 200 ng) from the cancer tissues, 
cancer cell lines and buffy coats was performed using an EZ DNA Methylation-Gold Kit™ (Zymo 10 
Research, CA, USA), following the manufacturer's instructions. Bisulfite treatment of cfDNA 
(isolated from 2 ml of plasma) was performed using the Zymo EZ DNA Methylation-Lightning 
Kit™ (Zymo Research, CA, USA), according to the manufacturer's instructions. Bisulfite-treated 
DNA was stored at -80°C and further used to build a sequencing library. 

Primer design  15 
Eight primer pairs were designed using the LINE-1 Human Specific (L1HS) consensus sequence 
from Repbase (Fig. 1A). Although 5’UTR (promoter region) is CpG-rich and common target for 
methylation quantitation, L1PA copies are frequently 5’-truncated. Therefore, primers were also 
designed for ORFI and ORFII to target more L1PA elements and improve the sensitivity of our 
assay. All primers were designed for plus strand of bisulfite converted DNA, using the 20 
MethPrimer or PyroMark Softwares. Targeted regions contained 2-7 CpG targets and ranged 
from 101bp to 150bp, to better capture cfDNA fragments, which have a mean size of 167bp 61, 
(Table S1). Primers were methylation-independent, encompassing 0 to 2 CpGs (none toward the 
5′ end), and were degenerated to target both the methylated and unmethylated states. They 
contained Fluidigm universal CS (common sequence) tags at their 5′ ends. We incorporated a 16 25 
N (random nucleotides) as unique molecular identifiers (UMI) between the target-specific 
sequence and the CS2 in the reverse primers for signal deconvolution to detect true low 
frequency alterations and for reducing errors. As LINE-1 hold thousands of copies per genome, a 
high number of distinct UMIs is essential for unique barcoding of each target molecule. The 16 
N stretch between the target-specific sequence and the CS1 in forward primers was used to 30 
increase diversity of sequencing libraries and improve sequencing quality. All primers were 
obtained from Eurogentec (RP-cartridge purification method). 

Preparation of targeted bisulfite sequencing libraries  
Sequencing libraries were prepared using three PCR steps (Fig. S1A): 1) target-specific linear 
amplification for UMI assignment, 2) target-specific exponential amplification and 3) barcoding 35 
PCR for sample identification. Each library was prepared in two individual reactions (due to the 
overlap of amplicon 2 with other primers), including: I) Multiplex PCR amplification of 7 probes 
(Amplicon 1, 3, 4, 5, 6, 7, 8), and II) Single PCR amplification of amplicon 2.  
UMI assignment for multiplex reaction was performed using Platinum™ Multiplex PCR kit 
Master Mix (Thermofisher, Life Technologies SAS) in a 25 µL reaction containing 1x 40 
Platinum™ Multiplex PCR Master Mix, 0.01-0.06 µM mix of reverse primers and up to 5 ng 
bisulfite-converted DNA at the following thermocycling conditions: 95°C for 5 min followed by 
1 cycle at 95°C for 30 s, 58°C for 90 s, 72°C for 40 s. UMI assignment for single reaction was 
performed using Hot Star Taq Plus DNA Polymerase (Qiagen) in a 25 µL reaction containing 1x 
Taq PCR Buffer, 0.65 U Hot Star Taq (5U/µL), 0.2 µM dNTPs, 1.5 mM MgCl2, 0.1 µM 45 
amplicon 2 reverse primer, up to 4 ng of bisulfite-converted DNA at the following thermocycling 
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conditions: 95°C for 10 min followed by 1 cycle at 94°C for 60 s, 58°C for 30 s, 72°C for 40 s. 
To ensure complete removal of the reverse primers and dNTPs, each 25 µL reaction was treated 
with 50U of Exonuclease I and 10U of FastAP Thermosensitive Alkaline Phosphatase (Thermo 
Fisher Scientific) at 37°C for 1 h and heat-inactivated at 80°C for 15 min. 
Target-specific exponential amplification for multiple reaction was performed using Platinum™ 5 
Multiplex PCR kit Master Mix in a 50 µL reaction containing 1x Platinum™ Multiplex PCR 
Master Mix, 0.01-0.06 µM mix of forward primers, 0.2 µM CS2 reverse primer and 20 µL of 
purified PCR product at the following thermocycling conditions: 95°C for 5 min followed by 28 
cycles at 95°C for 30 s, 58°C for 90 s, 72°C for 30 s followed by a 10 min incubation at 72°C. 
Target-specific exponential amplification for single reaction was performed using Hot Star Taq 10 
Plus DNA Polymerase in a 25 µL reaction containing 1x Taq PCR Buffer, 0.65 U Hot Star Taq 
(5U/µL), 0.2 µM dNTPs, 1.5 mM MgCl2, 0.2 µM amplicon 2 forward primer, 0.2 µM CS2 
reverse primer and 8 ul of purified PCR product at the following thermocycling conditions: 95°C 
for 10 min, 25 cycles at 94°C for 60 s, 58°C for 30 s, 72°C for 30 s and 10 min at 72°C. 
PCR products of multiplex and single reaction were pooled together after quantification by 15 
qPCR and purified using Agencourt AMPure XP (Beckman Coulter) at 1.2x ratio according to 
the manufacturer’s protocol. Purified DNA was eluted in 30 ul of water. Barcoding PCR was 
performed using universal fluidigm primers. 25 µL of purified pooled PCR product, 1x Phusion 
HF Buffer, 1 U Phusion Hot Start II DNA Polymerase (Thermo Fisher Scientific), 0.2 µM 
fluidigm primer, and 0.2 mM dNTPs were mixed in the final volume of 50 µL and amplified 20 
with the following conditions: 98 °C for 2 min, followed by 20-25 cycles of 98 °C for 10 s, 62 
°C for 30 s, and 72 °C for 30 s followed by a 5 min incubation at 72°C. The amplified product 
was purified by two consecutive AMPure XP steps using 1) a low concentration of AMPure XP 
beads (0.6x – 0.7x ratio) where the beads containing the larger fragments are discarded and 
supernatant collected (reverse purification) and 2) higher beads concentration (1.1x – 1.2x ratio) 25 
where the beads containing fragments of interest were collected and purified according to the 
manufacturer’s protocol. Size-selected libraries were eluted in 15 µL of low-EDTA TE buffer. 
The libraries were quantified with Qubit HS DNA kit (Thermo Fisher Scientific), qualified with 
nano-electrophoresis (TapeStation, Agilent), and pooled equimolarly for sequencing. Sequencing 
was performed on Illumina HiSeq rapid run mode or NovaSeq (PE 30bp, 170bp). 30 

Preprocessing of the reads 
For each sample, FASTQ files containing raw sequences, composed by the following parts: CS1, 
forward UMI, forward primer, insert, reverse primer, reverse UMI, and CS2 (Fig. S1A) were 
first filtered for reads quality (average >Q20 per read) and then demultiplexed (i.e., cut using 
atropos v1.1.31) using forward and reverse primer sequences. FASTA files were created per 35 
primer-set, containing inserts and reverse UMIs for deduplication, as they are unique for each 
input DNA molecule. Inserts and reverse UMI were then filtered on expected sizes (with a 
tolerance of ± 5 bases for the inserts). Filtered inserts and UMIs sequences were concatenated 
and deduplicated using vsearch v2.15.2. Reverse UMIs were then trimmed and resulting inserts 
from all samples were aggregated into a single FASTA file per primer-set. 40 

Clustering, extraction of representative sequences and global alignment 
Using vsearch (with the following parameters: --cluster_fast <inputFasta> --notrunclabels --
fasta_width 0 --iddef 4 --id 0 --qmask none --clusterout_sort --consout <referenceFasta>), a 
clustering based on sequence identity was applied to each FASTA file, or a subset of 20 million 
reads randomly chosen if a given file comprised more. The 10 largest clusters' representative 45 
sequences were isolated in separate files. Using mafft v7.508 (with the following parameters:  --
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globalpair --maxiterate 1000), the 10 representative sequences were aligned pairwise resulting in 
a reference database for each primer-set. Lastly, using mothur v1.48.0 (with the following 
parameters: #align.seqs(candidate=<inputFasta>, template=<referenceFasta>, align=needleman, 
match=1, mismatch=-1, gapopen=-1, gapextend=0)) on each primer-set FASTA file, all 
sequences from all samples were aligned to the corresponding reference. 5 

CG calling, methylation levels and haplotypes extraction 
To call CpG dinucleotides of interest, a sliding window of 2 bp was used on all aligned 
sequences to determine the distribution of dinucleotides along each amplicon target. A first 
threshold of ≥ 20% of CG/TG dinucleotides was used to select potential CpG site. A second 
threshold was applied to eliminate dinucleotide with ≥95% TG and select position with at least 10 
5% methylation rate. From the aligned sequences, the patterns of methylation were extracted and 
compiled into either average levels of methylation at each previously identified CpG sites, or 
proportions of methylation haplotypes for each sample. 

Machine learning-based classification models 
The resulting data (represented as average levels of methylation per CpG site or proportions of 15 
methylation haplotypes or both) were used to do supervised learning of statistical models using 
the random forest classifier algorithm 62 from Python package scikit-learn 63, with the following 
hyperparameters: n_estimators=300, criterion='gini', max_depth=None, min_samples_split=2, 
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', 
max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, 20 
warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None. 

The rational for choosing random forest over other learning methods was driven by three main 
factors: 1) it is less prone to overfitting 62; 2) it shows excellent performance even when the 
quantitative relationship between features and observations is biased in favor of the former, such 
as when using methylation haplotypes data representation 64; 3) random forests also inherently 25 
return measures of variable importance 62, such as mean decrease in impurity, which greatly 
facilitate the interpretability of model decisions. The features used to train the models were the 
average levels of methylation per CG site (n=30), the proportions of methylation haplotypes (i.e., 
the combinatorial of all the possible methylation status of CG sites within a given amplicon, 
n=372) or both. No additional transformation nor feature selection was performed on the data. 30 
Model classifications were run 5000 times in order to estimate variance and confidence intervals. 
For the discovery step, in each run, as many samples from each class were randomly drawn to 
construct a balanced subset of the data 65. The samples from these draws were stratified by class 
and split into 60% for training, 40% for evaluation. For the validation step, we trained the model 
on the entire cohort 1 and evaluated it on cohort 2. The true and false positive rates for all 35 
possible classification threshold were evaluated at each run, with interpolation to generate an 
average ROC curve with 95% confidence interval for the 5000 runs. In the case of ‘multiclass’ 
classification, the ROC curves of each class were generated by taking the class under 
consideration as the positive class and the union of all others as the negative class. There is, 
therefore, no particular weight associated with the healthy plasmas class.  40 

Copy number alterations analysis 
Cytoscan HD microarrays: 250 ng of gDNA from 15 breast cell lines (1 normal-like: HTERT-
HME1 and 14 cancer cell lines: MDA-MB231, MDA-MB453, HCC1569, BT20, HCC1954, 
HCC38, MDA-MB361, ZR 75.1, MDA-MB157, MCF7, SKBR3, HCC202, HCC70, BT474) 
were characterized using Affimetrix/Thermo Cytoscan HD microarrays at the Genomics facility 45 
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of Institut Curie to profile aneuploidy. To compare with the z-score by chromosome arm, we 
calculated the mean of Weighted Log2 combining probes by chromosome arms. 
DIAMOND CNA: 1) Z-score calculation: prepossessed reads were uniquely mapped on hg38 
genome using Bismark (version 0.23.1). As in Belic et al. 2015, only the reads with an alignment 
score > 15 were kept. Resulting reads from all amplicons (excluding #2 and #3) were merged 5 
and normalized number of reads per chromosome arm (excluding sexual chromosomes X and Y) 
per sample were calculated with R. Next, the amplifications/deletions score was computed using 
the following formula: 

"#$%&'( *, ,  -
.(/0$1&'2 *, , # 3(/45.(/0$1&'2 *, 67,897:;<

=05.(/0$1&'2 *, 67,897:;<

 

with i = a given chromosome arm, n = a given sample and controls = a set of reference samples 10 
(10 PBMC reference samples for the cell lines, 63 healthy donors from C1 as a reference for 
cancer and healthy plasma samples). Genome-wide z-scores were computed by summing the 
squared z-scores of all chromosome arms. 2) Z-score threshold identification: to identify altered 
versus normal z-scores, we performed 5-fold cross validation of simple cutoff classification 
model on the discovery cohort (NHealthy = 60, NCancer = 350) using the genome-wide z-score and 15 
calculated the threshold that maximize the sensitivity at 100% specificity. 

2-step classification for sample labelling 
First, we selected the threshold for the probability of the cancer prediction (ProbaCancer) on the 
discovery cohort maximizing the sensitivity for a 99% specificity, per ‘cancer-type’ model. We 
applied this threshold on the ProbaCancer computed with the validation models and reclassified 20 
samples which presented a z-score > 121, as cancer (ProbaCancer £ Threshold C1 AND GZ-score 
£ 121: prediction = Healthy; ProbaCancer > Threshold C1 OR GZ-score > 121: prediction = 
Cancer) see Tables S13-19. 
 
 25 
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Figs. S1 to S6 
Tables S1 to S19 as separated Excel file 
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Fig S1 
A. Scheme of the targeted bisulfite sequencing strategy used to build the DIAMOND assay 
libraries. The protocol starts by the incorporation of unique molecular identifiers (UMI) via 1 
cycle of linear PCR to identify each initial molecule present in the sample. We also incorporated 
a 2nd set of molecular identifiers (UID) during the 2nd PCR in order to generate libraries with 5 
enough nucleotide diversity which is crucial for a successful downstream sequencing (See 
method section for more details). B-E. Hits obtained across the genome using the DIAMOND 
assay with standard coverage (indicated in million reads – M) in healthy plasma (HP) over the 
L1PA annotations (B), in HP versus colorectal cancer (CRC) plasmas (C), in HP versus breast 
cancer (BRC) plasmas (D), and in HP versus ovarian cancer (OVC) plasmas (E), (see also Table 10 
S2). F. Summary flow chart illustrating the pipeline developed for reference-free alignment of 
sequencing data (see also Methods). 
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Fig S2 
A. Proportion of CG and TG dinucleotides within the 8 regions targeted, after reference-free 
alignment. Number of CpG sites detected vs expected are indicated for each amplicon. The 
dashed red line represents the first threshold applied to select dinucleotide positions with >20% 
(GC+TG). A second threshold of >5% CG is applied. B. Alignment of 10 representative 5 
sequences of the largest clusters obtained for amplicon 2 relative to the L1HS consensus 
sequence, highlighting 2 additional CpG positions identified (dark green). C. Principal 
component analysis, based on the average methylation level at each CpG position (n=30), 
showing the distribution of healthy and cancer samples annotated for their cancer subgroups in 
the two first dimensions (left panel), and the contribution of CpG positions used as components 10 
(right panel). D. Number of possible haplotype features extracted from the 30 CpGs within the 7-
amplicon panel. E. Principal component analysis, based on haplotypes proportions (n=372), 
showing the distribution of healthy controls and cancer samples annotated for their cancer 
subgroups in the two first dimensions (left panel), and the contribution of haplotypes used as 
components (middle and right panels). Middle panel highlights 4 groups of methylation levels 15 
relative to the haplotype components. The right panel highlights the contribution of the various 
amplicons.  
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Fig S3. 
A. High correlation between haplotype representation and CpG positions shown by the 
proportion of haplotypes with at least one correlation to CpG sites along spearman rho 
correlation thresholds. Amplicons 1, 4-8 show high correlation all along. Amplicon 2 shows 
lower correlations due to its very high number of haplotypes (n = 264). n: number of haplotypes 5 
per amplicon. B. ROC curves obtained for plasma samples classification with the 3-stage model, 
using single-CpG methylation rates. C-F. Performances for classifiers using single CpG 
methylation features (C-D) or haplotype features (E-F) with undersampling (plain bars) or not 
(hatched bars) presented as AUCs (C or E) or sensitivities at 99% specificity (D or F). 
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Fig S4. 
A. Comparison of the methylation level at individual CpG sites along the L1 for each cancer 
subgroup in cohort 1 (C1) versus cohort 2 (C2). Amplicon numbers are indicated. B. Clustering 
analysis on OVC M0 stages of cohort 1 (C1) and cohort 2 (C2) showing a split of C2 into cluster 
1 and 2 and separation of the whole cohort 1 in a single cluster (cluster 3) including 2 samples of 5 
C2. C. Comparison of the haplotype proportions for each cancer subgroup and the healthy 
controls in cohort 1 (C1) versus cohort 2 (C2). Light grey = healthy donors C1, dark grey = 
healthy donors C2. Statistical analyses are reported in Table S8. D-E. ROC curves obtained for 
plasma samples classification in the validation cohort with the ‘all cancers’ model (D) or the 
‘cancer-types’ models (E) using single CpG methylation features. All classifications include 10 
5000 stratified random repetitions of learning on the whole discovery cohort and testing on the 
whole validation cohort without undersampling. F-G. Performances for validation classifiers 
using CpG methylation (grey) or haplotypes (black) features presented as AUCs (F) or 
sensitivity at 99% specificity (G). Average AUCs are computed from the 5000 AUCs generated 
by each repetition of learning. Bars indicate 95% CI. 15 
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Fig S5. 
A. Age distribution of all cancer vs healthy samples (C1 + C2). B. Linear models demonstrating 
that the age did not predict the methylation patterns alone (Model 1) and had a significant but 
small effect (see also (C)) in combination with the ‘biological class’ representing the cancer 
subgroups (Model 2). C. Impact extent of the parameters tested represented by the absolute 5 
values of their Estimate (red: significant, grey: not significant). D. Global methylation levels for 
all samples versus their age. Correlation curves illustrate small impact of age on the methylation 
patterns in our study, with an increase in methylation with age. E. Global methylation levels of 
original data next to age-adjusted data, organized by subgroups, demonstrating that cancer 
subgroups versus healthy differences remained similar when adjusting for the age. Statistical 10 
differences between each cancer subgroup and healthy samples were computed using Mann–
Whitney U test (see Table S9 for detailed p-values and CI). F-G. PCA analysis on original data 
(left panel) or age-adjusted using AC-PCA to adjust for confounding factors conjointly (right 
panel) for single CpG methylation levels (F) or haplotypes (G). Adjusting for the age seemed to 
have limited impact on the data indicating that age is not a confounding factor here. 15 
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Fig S6. 
A. Heatmap comparing copy number alterations (CNA) profiled by DIAMOND Z-score versus 
Cytoscan HD microarrays for 1 normal-like breast cell line (HTERT-HME1) and 14 breast 
cancer cell lines (in order: MDA-MB231, MDA-MB453, HCC1569, BT20, HCC1954, HCC38, 
MDA-MB361, ZR 75.1, MDA-MB157, MCF7, SKBR3, HCC202, HCC70, BT474) organized 5 
by increasing aneuploidy measured by the chromosome arms z-scores. Correlation scores are 
indicated below the heatmap. B. Correlation between CNA measured by CytoScan HD 
microarrays and DIAMOND, roverall = 0.68, p = 8.73e-80. C. CNA as a function of the 
probability of a sample to be classified as cancer (Proba Cancer) in the validation models. 
Graphs for cancer subgroups and all cancers together are shown. 10 
 
 
Tables S1 to S19. (Separated excel format file)  
Table S1. Targeted bisulfite sequencing primers 
Table S2. Target copies and CpG sites relative to the number of sequencing reads 15 
Table S3. Samples list. Sample IDs were not known to anyone outside the research group. 
Table S4. Statistical results of global methylation differences between healthy samples and 
cancer subgroups using Mann–Whitney U test 
Table S5. Statistical results of proportion differences between healthy samples and cancer 
subgroups for the 372 haplotypes using Mann–Whitney U test 20 
Table S6. Statistical results of proportion differences between healthy samples from C1 and C2 
for 14 haplotypes selected using Mann–Whitney U test 
Table S7. Statistical results of global methyaltion differences between healthy samples and 
cancer subgroups from C1 and C2 using Mann–Whitney U test 
Table S8. Statistical results of proportion differences between healthy samples and cancer 25 
subgroups from C1 and C2 for 14 haplotypes selected using Mann–Whitney U test 
Table S9. Statistical results of global methylation differences between original data and age-
adjusted data using Mann–Whitney U test 
Table S10. Statistical results of global methylation differences between cancer stages using 
Mann–Whitney U test 30 
Table S11. Statistical results of global methylation differences between primary and metastatic 
tissues using Mann–Whitney U test 
Table S12. Statistical results of Genome-wide z-score differences between healthy samples and 
cancer subgroups using Mann–Whitney U test 
Tables S13-S19. Cancer prediction and sample labelling with the 2-step classification integrating 35 
CNA analysis - healthy vs each type of model 
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