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Abstract 
South America suffered large SARS-CoV-2 epidemics between 2020 and 2022 caused by multiple variants 

of interest and concern, some causing substantial morbidity and mortality. However, their transmission 

dynamics are poorly characterised. The epidemic situation in Chile enables us to investigate differences in 

the distribution and spread of variants Alpha, Gamma, Lambda, Mu and Delta. Chile implemented non-

pharmaceutical interventions and an integrated genomic and epidemiological surveillance system that 

included airport and community surveillance to track SARS-CoV-2 variants. Here we combine viral 

genomic data and anonymised human mobility data from mobile phones to characterise the routes of 

importation of different variants into Chile, the relative contributions of airport-based importations to viral 

diversity versus land border crossings and test the impact of the mobility network on the diffusion of viral 

lineages within the country. We find that Alpha, Lambda and Mu were identified in Chile via airport 

surveillance six, four and five weeks ahead of their detection via community surveillance, respectively. 

Further, some variants that originated in South America were imported into Chile via land rather than 

international air travel, most notably Gamma. Different variants exhibited similar trends of viral 

dissemination throughout the country following their importation, and we show that the mobility network 

predicts the time of arrival of imported lineages to different Chilean comunas. Higher stringency of local 

NPIs was also associated with fewer domestic viral importations. Our results show how genomic 

surveillance combined with high resolution mobility data can help predict the multi-scale geographic 

expansion of emerging infectious diseases. 

 

Significance statement 
Global preparedness for pandemic threats requires an understanding of the global variations of 

spatiotemporal transmission dynamics. Regional differences are important because the local context sets 

the conditions for the unfolding of local epidemics, which in turn affect transmission dynamics at a broader 

scale. Knowledge gaps from the SARS-CoV-2 pandemic remain for regions like South America, where 

distinct sets of viral variants emerged and spread from late 2020 onwards, and where changes in human 

behaviour resulted in epidemics which differed from those observed in other regions. Our interdisciplinary 

analysis of the SARS-CoV-2 epidemic in Chile provides insights into the spatiotemporal trends of viral 

diffusion in the region which shed light on the drivers that can influence future epidemic waves and 

pandemics. 

 

Main text 
The epidemic dynamics of SARS-CoV-2 are context-dependent. Intensity of transmission has been shown 

to vary greatly due to a combination of factors related to population mixing, international travel, socio-

economic indicators, and SARS-CoV-2 lineage composition (1–3). The emergence of novel variants of 

interest (VOIs) and variants of concern (VOCs) were typically associated with epidemic waves in the 

country of their first report and later caused epidemics either regionally (Gamma and Beta in Brazil and 

South Africa, respectively) or globally (Alpha, Delta and Omicron in England, India and South Africa, 

respectively; (1, 4–7)). 

 
During the emergence of Gamma, Beta, and Alpha in late 2020, the likelihood of a variant being detected 

in a country could be predicted by the number of passengers arriving from the countries reporting initial 

outbreaks (8). During that time, international and local travel was still restricted compared to pre-pandemic 

levels (9). Studies have shown how increased rates of local mixing impacted SARS-CoV-2 growth rates 

and total numbers of cases (10, 11) and suggest that different types of human mobility contributed to 

epidemic spread (12, 13). 

 
Despite these general insights, the transmission dynamics of multiple variants in Latin America remain 

understudied and it is still unknown why some variants spread in this region and others did not. Multiple 

factors likely contributed to SARS-CoV-2 lineage composition (14), including high transmission rates 
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during the times when some variants emerged: the Gamma variant in the Brazilian Amazon (5), the Lambda 

variant in Peru and Chile (15), and the Mu variant in Colombia (16, 17). Various other lineages not 

designated as VOIs or VOCs in regions like Mexico (18) and the USA (e.g. Iota and Epsilon; (19–21) were 

also detected in the continent but did not reach high frequencies. 

 
Here we analyse 787 SARS-CoV-2 genomes collected via dedicated airport genomic surveillance at 

Santiago de Chile Airport (SCL) and 7957 genomes generated through community genomic surveillance 

(22, 23). This data is combined with human mobility data from mobile phones (covering 24.3% (24) of 

Chile’s mobile phone subscribers) and records of international arrivals into the country (both airport arrivals 

and total land border crossings during 2021) to explore how international arrivals, airport testing, and local 

interventions (implemented at the lowest administrative divisions in the country, comunas) impacted the 

transmission dynamics of SARS-CoV-2 lineages in Chile during 2020-2021. We also assess how Chile’s 

mobility network predicts viral spread following new importations. While similar analyses have been 

performed for other locations and contexts, Chile provides a distinct scenario to study these phenomena. Its 

genomic surveillance programme at the largest international airport in the country (that received the vast 

majority of international travellers which were all tested upon arrival during 2021), combined with its 

network of land international ports of entry across its large border with Argentina (and smaller borders with 

Bolivia and Peru), result in an ideal scenario to evaluate the routes by which individual variants were 

imported into the country. Also, the highly localised application of non-pharmaceutical interventions (NPIs) 

during the pandemic (25–28) were a unique phenomenon which has not been evaluated in its efficacy in 

limiting the geographic spread of SARS-CoV-2. 

 

The SARS-CoV-2 landscape in Chile and South America in 2021 
Different SARS-CoV-2 variants emerged in South America during late 2020 and early 2021 (29). The 

earliest VOC described in South America was the Gamma variant, which emerged in Manaus, Brazil (5) 

and quickly spread to the southern half of the continent, into Argentina, Chile, Uruguay, Bolivia and 

Paraguay (Fig. 1A). Simultaneously the Lambda variant emerged and rapidly increased in frequency in 

Peru and Chile, while the Mu variant appeared later, around April 2021, in Colombia, Ecuador and 

Venezuela (Fig. 1A). The epidemiological trends across different countries during this time suggest that 

these emerging variants drove national epidemic peaks, as increases in the number of cases followed 

increases in the prevalence of each variant between February and May 2021 across the region. Further 

epidemic peaks followed in June and July, which might have been driven by viral lineage replacement 

caused by regional movements of various South American variants or by the importation of the Delta 

variant, which swept across the world from spring 2021 onwards (Fig. 1A). Variants that became dominant 

in some other regions of the world, like Alpha and Beta, did not dominate in South America (Fig. S1). 
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Figure 1. SARS-CoV-2 in Chile and South America during 2021. A) Relative frequency of four significant 
VOIs/VOCs in South American countries, shown as the number of sequences from each variant relative to 

the total genomic surveillance output from each country over the specified time period. B) Total volume of 

passengers from South American countries arriving in Chile via the Santiago de Chile International Airport 

(SCL) and through land border crossings from neighbouring countries during 2021. Percentages under the 

upper panel show the proportion of all arrivals that come from South American countries vs the rest of the 
world. C) Epidemiological COVID-19 trends during 2021 showing the total number of cases reported in 

the country, and the number of comunas and people in the country placed under lockdown over time; the 

latter consider comunas under the highest lockdown tier, full lockdown, which restricted mobility every day 
of the week within the comuna. D) Proportions of VOIs and VOCs detected in Chile during 2021 under 

their two surveillance schemes, community surveillance (top) and airport surveillance of international 
travellers arriving at SCL (bottom). 
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These variant dynamics across other countries and their connectivity to Chile likely played a role on the 

country’s SARS-CoV-2 epidemic trends (Fig. 1B-D). Data on monthly land border crossings and 

international airport arrivals shows that both Peru and Argentina were important contributors to the total 

incoming travellers to Chile during 2021, albeit with different trends; while Peru accounted for the majority 

of air travellers arriving every month via SCL (up to 22.7% of all air passengers per month, Fig. 1B), more 

total travellers arrived from Argentina through land travel (14 land border crossings with Chile were 

operationally active during 2021, which recorded between 67% and 100% of all incoming travellers from 

Argentina into the country each month; Fig. 1B). We note that travellers from Argentina increased 

considerably from May 2021 onwards possibly reducing the impact of air travel restrictions in the flow of 

people from that country during that time (specifically May, June and July 2021; Fig. 1B). 

 
During the study period between November 2020 and October 2021, Chile experienced three epidemic 

waves, peaking  in February, April and July, respectively. Each wave was followed by periods during which 

individual comunas enacted lockdowns of different stringency (i.e. the degree to which people could move 

freely; Supporting Text) and were implemented as a response to the changing epidemic trends. This 

resulted in a fluctuation of the number of comunas and total people under restrictions over time (Fig. 1C). 

 

International importations of viral lineages depend on country-level prevalence and human 

mobility 
Chile implemented separate genomic surveillance programmes for incoming international travellers at SCL 

and within the community. The proportions of different variants in both datasets show that for Alpha, 

Lambda, Mu and Delta, airport detections preceded the detection of these variants in the community by six, 

four, five and two weeks respectively. Gamma however was rarely observed using data from airport 

surveillance yet consistently exceeded 25% of sequences from cases sampled in the community from 25 

April 2021 until the end of August, when Delta started to replace all other lineages (Fig. 1D).  

 
From these observations, we hypothesise that variants like Gamma were imported to Chile through different 

pathways other than international air travel. We performed phylogenetic analysis of virus genomic data 

from all five variants to map the number and timing of importations in Chile between late 2020 and 

throughout 2021 and found frequent and sustained importations across the study period. Alpha and Lambda 

importations peaked simultaneously around April while Gamma saw sustained importations between May 

and August 2021. Mu had a peak in importations around July, followed by large numbers of Delta 

importations between August and October (Fig. 2A). Phylodynamic analysis of each variant reveals an 

estimated ~648 independent introductions (excluding introductions of all other non-VOI/VOC viral 

lineages). For Delta we detect the highest number of importations (median 336 importations; 95% HPD: 

327-344), considerably higher than for Lambda (median 111 importations; 95% HPD: 95-124), Mu (median 

86 importations; 95% HPD: 79-92), Gamma (median 74 importations; 95% HPD: 64-83) and Alpha 

(median 41 importations; 95% HPD: 35-43; Fig. 2B). These estimates are likely affected by sampling 

intensity heterogeneities across countries and by the limited proportion of sampled cases in Chile, which 

also exhibit local sampling variation across space and time. We note a general trend whereby an increasing 

proportion of cases were sequenced coincided with declining numbers of cases (Fig. S2). We accounted for 

these potential biases by using a mobility-informed subsampling approach that considers human 

movements from international destinations into Chile (see Methods and (18)). 

 
An estimated 43% of introductions led to detectable onward transmission in Chile, hereafter called 

“transmission lineages” (TLs). As with previous studies, the size distribution of these TLs is heavily 

skewed, with a small portion of importations leading to large TLs while the vast majority resulted in limited 
detectable onward transmission (Fig. S3); this size distribution might be affected by the study period cutoff 

date, as the persistence of TLs over time is right-censored (Fig. S4). 
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Because phylogenetic inferences are influenced by sampling biases and model specification we use 

independent datasets to correlate estimates made from genomic data. Previous studies have shown that the 

number of international travellers coming into a territory can be used to help infer the  expected number of 

SARS-CoV-2 case introductions (30, 31). We calculated an estimated importation intensity index (EII) 

based on the estimated cases for each variant in a potential source country and the total movements from 

that country into Chile. We used a Granger-causality (GC) test to ask whether EIIs can ‘forecast’ the 

inferred importations of each variant over time (see Methods). We found that the weekly number of viral 

importations inferred from genomic data followed the EII for each variant (Table 1). Interestingly, Gamma 

introductions are best predicted by an EII that only includes land-based border crossings (lEII) while the 

remaining four variants are predicted by an EII based on air-based human movements (aEII) rather than 

land border crossings (Table 1). These results may explain why Gamma was rarely detected during airport 

genomic surveillance. 
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Figure 2. Viral importation dynamics and ports of entry. A) Trends in inferred viral importations over 
time. Smoothed density estimates of the numbers of importations per variant over time plotted by the 

TMRCA of individual transmission lineages. B) Posterior probability densities of the inferred number of 

viral importations per variant estimated through Bayesian phylogeographic analysis. C) Time series for 

the estimated importation intensity (EII) indices from selected states (for USA and Brazil - described in 

each panel) and countries. EIIs are estimated weekly for each variant and country; solid lines with circles 
show EIIs based on air travel volume (aEII) and dashed lines with squares show EIIs based on land border 
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crossings (lEII). D) Posterior probability densities of the inferred number of importations stratified by 
importation route per variant. ‘International to Airport’ show estimated transitions from international 

location nodes to SCL airport nodes; ‘Airport to Community’ show estimated transitions from international 

location nodes to SCL airport nodes to Chile nodes detected through community surveillance; 

‘International to Community’ show estimated transitions from international location nodes to Chile nodes 

detected through community surveillance. 

 
Airport testing and genomic surveillance were implemented as a public health measure and were combined 

with requirements for returning travellers of self-isolation following a positive test result (Supporting 

Text). Therefore, this surveillance scheme aimed to minimise and ideally contain transmission from 

infected incoming travellers. Its effectiveness depends on the sensitivity and accuracy of the testing itself 

and the proportion of viral introductions through the airport rather than by other routes. We consequently 

hypothesise that cases identified during airport surveillance would result in more limited transmission in 

the community. To explore this hypothesis, we used a discrete phylogeographic approach to estimate the 

number of viral movements between countries other than Chile and the SCL International Airport, the 

movements from SCL airport into the community within Chile, and importations from other countries 

directly into community circulation in Chile (i.e., not detected or mediated via airport surveillance). The 

importation dynamics appear specific for individual variants: Gamma and Lambda importations were 

predominantly inferred directly from international destinations into the community with no evidence of 

airport mediation, while Alpha and Mu show an equivalent number of importations into the SCL 

International Airport as they did into the community. Delta shows a higher proportion of importations 

through the airport compared to directly into the community. Overall, negligible numbers of transitions 

from the airport into the community were inferred (Fig. 2D).  We note however that importations with no 

evidence of airport mediation could still have been imported through the airport but went undetected due 

to the timing of testing (no detectable virus at arrival) or that positive cases were not sequenced (although 

~95% of positive cases from airport surveillance during 2021 were sequenced, those excluded were those 

where sample quality prohibited genome sequencing and likely occurred at random across the collection of 

samples). 

 
An independent estimation of both lEII and aEII for individual source countries per variant shows the likely 

contributors of viral importations over time (Fig. 2C), with Gamma and Mu introductions likely derived 

from a single source country (Argentina and Colombia, respectively), while Alpha and Delta likely being 

imported from multiple countries (or states within the USA and Brazil) simultaneously. Lambda exhibits a 

distinct pattern, in that its predominant source changed from Peru (via air travel) during early 2021, to 

Argentina (via land border crossings) after April 2021 (Fig. 2C), although the expected importation wave 

from Argentina was not observed using genomic data (Fig. 2A, Table 1). In the case of Gamma, only 

Argentina and Peru lEIIs show a significant correlation with inferred viral introductions, further suggesting 

that land mobility played a bigger role in the seeding of this variant in Chile compared to air travel. This is 

corroborated by the increased number of Gamma viral imports directly into the community compared to 

the airport-mediated importations (Fig. 2D). Interestingly, both the aEII and lEII for Peru significantly 

correlate with the observed importations for all variants, suggesting that both land and air routes of entry 

played an important role in how seeding events from this country into Chile took place (despite the fact that 

there is a single land border crossing point between Peru and Chile;  Table 1). Again, the relatively high 

number of introductions that show no evidence of being airport-mediated (Fig. 2D) for Alpha, Lambda and 

Mu suggest that land importations were also commonplace during this time. All global EII estimates 

(combining both lEII and aEII, Fig. S5) and the phylogenetically inferred viral imports are temporally 

associated (FAlpha = 15.00, pAlpha < 0.001; FGamma = 7.19, pGamma = 0.01; FLambda = 12.97, pLambda < 0.001; FMu = 5.46, pMu = 

0.02; FDelta = 32.28, pDelta < 0.001). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2024. ; https://doi.org/10.1101/2024.01.18.24301504doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.18.24301504
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Granger-causality test results between phylogenetically inferred viral imports and estimated 
importation intensity indices for both air (aEII) and land (lEII) mobility components. 

 
 

Human mobility drives SARS-CoV-2 spatial invasion across comunas 
Given the limited ports of entry for different variants into Chile, the arrival of individual lineages to new 

comunas after their introduction is expected to be driven by infected people moving within the country and 

seeding new local epidemics. We estimate the impact of local scale human mobility on the invasion 

dynamics of different TLs by comparing comuna-to-comuna arrival times extracted from a continuous 
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phylogeographic approach (32) (see Methods). The spread of these TLs took place during periods of 

changing mobility in the country as lockdowns were enacted as part of the Paso a paso plan, which 

established a tiered system for the implementation of mobility restrictions to mitigate viral transmission 

(the plan employed various stringency tiers that can be summarised as (i) a high stringency full lockdown 

with mobility restrictions every day of the week, a (ii) mid-stringency weekend lockdown with mobility 

restrictions only during weekends and (iii) a low stringency lockdown with no mobility restrictions; 

Supporting Text). This plan gave individual comunas the authority to determine the appropriate stringency 

for these NPIs and the appropriate times to change stringency. Consequently, real-time mobility data 

(estimated from mobile phone data) is important in accurately estimating the contribution of human 

mobility to viral spread. Between January and October, there were at least three periods when increasing 

numbers of comunas were placed under lockdown (Fig. 1C); an accompanying reduction in mobility 

followed, reaching its lowest point around the April lockdown season, when up to 80% of comunas were 

under lockdown (Fig. 3A). The bounceback following this downward trend also coincided with a policy 

implemented on May 26, when individuals with a complete immunisation schedule were issued a “mobility 

pass” which allowed them free movement, even within comunas under lockdown (Fig. 3A).  

 
We identified three distinct periods of human mobility within which the largest observed TLs were 

introduced into Chile: i) epoch 1, between January and March when large Alpha, Lambda and Gamma TLs 

were imported, ii) epoch 2, between May and July, when major Mu TLs were imported and iii) epoch 3, 

between July and September, when major Delta TLs were imported (Fig. S6). The arrival times of TLs to 

new comunas correlated with the mobility flow between the origin and destination comunas in the epoch 

during which the TLs were imported; this pattern is consistent for all epochs and for all variants (Fig. 3B). 

The strength of the correlation is generally greater for variants introduced during epoch 1, which predates 

the issuing of the mobility passes. 
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Figure 3. Human mobility, local NPIs and viral spread. A) Human mobility trends in Chile during 2020 
and 2021 inferred from individual mobile phone device movements. Daily percentage of comunas under 

lockdown is shown for reference (light pink); this includes comunas under full lockdown or under weekend 

lockdown, producing the weekly spiking pattern after July 2020. The mobility metric L (see Methods) 
relative to a baseline level (9-15 March 2020) from before the start of the COVID-19 pandemic is shown 

and used to estimate the reduction of links between comunas over time. The implementation date for a 
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Mobility Pass (May 26 2021) for fully vaccinated individuals is marked in red. B) Spearman correlations 
between the total human mobility over the epoch when variants were first introduced (shown in panel B), 

here referred to as Mseed, and the time to the first detection in new comunas for each TL, here referred to as 

arrival times. 

 
TLs spread rapidly across the country as a result of these seeding events, predominantly in central Chile 

and in large urban centres either to the south (such as Temuco and Concepción) or to the north (such as 

Antofagasta; Fig. 4A). Following importation into the country, each TL spread via short and long-range 

domestic seeding events into new comunas which occurred early in the invasion timeline of a TL. Some of 

the observed epidemic synchronicity between comunas (Fig. S7) is likely the result of these early seeding 

events taking place to locations which are both close and distant from the origin of a TL. While the timing 

of domestic seeding contributes to epidemic dynamics across the country, local transmission is likely 

affected by human mobility and mixing within specific locations which are in turn driven by different NPIs 

in effect before and during the occurrence of viral seeding events. 

 

Targeted non-pharmaceutical interventions and their effects on the spatial dynamics and 

persistence of SARS-CoV-2 lineages 
An additional important factor in the unfolding of these epidemic waves are the highly localised NPIs 

implemented during 2021 following the national Paso a Paso plan. Despite the decentralised authority on 

their implementation, the stringency of these NPIs tended to be synchronised across the country (more 

strongly amongst comunas in the same region) and followed national epidemiological COVID-19 trends 

(Fig. S8). This created a scenario in which viral movements could occur between comunas under different 

lockdown stringency tiers. We hypothesise that movements within comunas should decrease with higher 

stringency lockdown tiers, which might also confer a protective effect on other comunas due to fewer viral 

imports. 

 
To test this, we implement a negative binomial model to estimate whether higher lockdown stringency 

levels (n = 3) is associated with fewer inferred viral movements (modelling details can be found in 

Methods). Our results show that lockdown stringency is significantly negatively correlated with the inferred 

number of viral movements after accounting for new reported cases, both within comunas (χ 2 = 7.95, p = 

0.02) and between comunas (χ2 = 23.24, p < 0.001). Compared to comunas under full lockdown, comunas 

under no lockdown receive a greater number of inferred viral movements from other comunas (IRRbetween_comunas 

= 1.16, 95% CI: 1.06 - 1.26); comunas under weekend lockdown receive approximately the same number 

of viral movements from other comunas (IRRbetween_comunas = 0.97, 95%, CI: 0.88 - 1.08). These inferred viral 

movements are dependent on and limited by the probability of new imports generating cases that can be 

detected through genomic surveillance and the genomic surveillance intensity across the country (i.e., the 

likelihood of detecting a TL given the sampling process that produces the genomic data). 

 
The effects of lockdown stringency on inferred viral movements within the same comuna exhibit a similar 

pattern: a limited and non-significant reduction is observed for comunas under no lockdown compared to 

comunas under full lockdown (IRRwithin_comunas = 1.05, 95% CI: 0.98 - 1.14) and comunas under weekend 

lockdowns show no significant differences compared to comunas under full lockdown (IRRwithin_comunas = 0.95, 

95%, CI: 0.88 - 1.04). The magnitudes of these differences are small due in part to the large variation in the 

proportion of viral movements under each lockdown tier: essentially large numbers of viral movements are 

inferred for some comunas, while for others only rare and sparse viral importations are inferred (Fig. 4B). 
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Figure 4 (legend). Mapping the spread of SARS-CoV-2 variants in Chile. Continuous phylogeographic 
reconstruction of the spread of the largest individual transmission lineage for each SARS-CoV-2 variant in 

Chile (Alpha TL 13, Gamma TL 35, Lambda TL 103, Mu TL 82 and Delta TL 64). Estimated median ages 
of tree tips and nodes are shown for each transmission lineage. B) Proportions of inferred viral movements 

by comuna for the 20 largest transmission lineages in Chile, grouped by lockdown stringency level (of the 

comuna where each inferred viral movement culminates). The upper panel shows inferred movements 
between comunas (i.e., domestic importations of viral lineages from other comunas) and the lower panel 

shows inferred viral movements within comunas (i.e., viral movements that start and end in the same 
comuna, interpreted as localised viral transmissions). 

 
A separate factor that could affect viral lineage movements in Chile is the implementation of the mobility 

pass for fully vaccinated individuals, to whom official lockdown restrictions did not apply.  We expanded 
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the previous model to account for the times before and after the implementation of the mobility pass on 

May 26. No evidence was found that the implementation of the mobility pass was associated with 

significant changes in the number of viral movements within comunas (χ2 = 1.04, p = 0.31), but we find a 

near two-fold increase (IRRbetween_comunas_mobility_pass = 1.73, 95% CI = 1.42 - 2.09) in the numbers of viral movements 

between comunas (χ2 = 29.87, p < 0.001). 

 
Lineage size distributions have been shown to vary due to importation times, such that earlier importations 

lead to larger transmission lineages, and these larger lineages persist for longer after implementations of 

NPIs (30). We measure persistence using an ad hoc analysis of the Bayesian posterior tree distribution for 

the largest Gamma lineage (35, see Methods). We  find that the proportion of persisting branches per 

comuna decays over time across all lockdown tiers (Fig. S9). The rates at which persisting branches decay 

over weeks vary when assessed by a fitted exponential curve (44.85%, 22.72% and 19.74% weekly 

reduction for comunas under full, weekend and no lockdown respectively) but wide credible intervals for 

all cases limit the interpretability of these differences between lockdown tiers. Future work should assess 

the location- and context-specific factors driving transmission lineage decay rates, including sampling 

intensities, geography, climate, and social interactions. 

 

Discussion 
Our results provide an interdisciplinary evaluation of the utility of airport genomic surveillance and the role 

of targeted interventions in detecting and predicting viral spread of multiple viral variants. Airport and 

community genomic surveillance in Chile presented an opportunity to investigate the context-specific 

spatial dynamics of SARS-CoV-2 variants. We find that new viral importations (as inferred from genomic 

data) are correlated with estimates of the expected intensity of viral importations. These measurements use 

independent data sources, with the former relying on phylogenetically-inferred viral importations and the 

latter combining the flows of passengers, prevalence of the variant in the source country and the number of 

cases. While this has been demonstrated in other settings, previous studies have typically focussed on one 

viral variant at a time (1, 4, 30, 33). Incorporating the changing landscape of variant prevalence across 

South America revealed not only the importance of air travel but also that of land based transport from 

neighbouring countries, especially Chile’s large shared border with Argentina, which facilitated direct viral 

importations into the community, as observed for the Gamma variant. A previous study has shown the 

importance of land-based transport in Jordan and the Middle East (13). Airport surveillance appeared to be 

effective in detecting lineages at the airport and we found some evidence that it prevented these lineages 

from further circulating in the community (Fig. 2D). The earliest location of detection of a new importation 

does not necessarily cluster geographically with its possible source, likely due to limited spatiotemporal 

resolution of genomic sampling and surveillance. 

 
The frequencies of SARS-CoV-2 variants during late 2020 and 2021 provide important context to our 

findings; in some regions, the pandemic was characterised by a sequence of genetic sweeps during which 

new variants displaced the circulating viral genetic lineages. In North America and Europe this process 

started with Alpha (4, 34–37) which was subsequently replaced by Delta (1, 38–41) and ultimately Omicron 

(33, 42–45). Similarly, in South Africa epidemic waves were driven by emerging and imported VOCs; 

starting with Beta, followed by Delta and finally Omicron (6, 7). Given the high connectivity of various 

South American countries with European countries and US states (18, 31, 46, 47), SARS-CoV-2 lineages 

that were dominant in the northern hemisphere heavily influenced the viral lineage composition of the 

region during the early epidemic waves (48–57). Nonetheless, locally emerging variants played an 

important role in the viral dynamics of the continent, as exemplified by the emergence and spread of Gamma 

(5, 58). A more extensive quantification of the differences in importation and transmission dynamics in the 

region could bring the possibility of predicting which variants would become dominant in a country given 

the regional and global context; this would also require the characterisation of both the unique immunity 

landscape of regions and the antigenic characteristics of novel variants. 
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Human mobility patterns within the country and the implementation of highly targeted NPIs played a role 

in the domestic spread of viral lineages within Chile. The time delay between the introduction of a new 

lineage in Chile and the local introduction of the lineage in a different comuna within Chile is negatively 

correlated with the intensity of local human movements from the source; this observation sets the basis for 

a probabilistic measure of viral invasion during the early stages of an epidemic as more remote comunas, 

which are less central in the country’s mobility network, would expect a greater delay between the epidemic 

taking off in central locations of the country and their own epidemic seeding.  

 
Links between human mobility and viral seeding may also have consequences for the efficacy of NPIs, 

such as the highly localised comuna-level lockdowns. The reactive nature of the implementation of higher 

lockdown stringency levels likely resulted in a synchronised pattern of NPI stringency across the country 

(with strong regional synchronicity, Fig. S8). Viral genomic data suggests that the patterns of lineage 

movements across comunas show some limited differences dependent on lockdown stringency, but the 

limited spatiotemporal coverage from genomic surveillance poses a considerable limitation to the 

interpretation of these differences. Furthermore, the observed decay in the proportion of persisting lineages 

across all lockdown tiers follows patterns observed in other contexts (30) and it is therefore unclear the 

extent to which these are attributable to the NPIs themselves. A detailed analysis on the effects of these 

stringency levels should be paired with the quantification of the mobility changes produced by NPIs to fully 

understand the causal relationship of lockdowns, changes in human behaviour and the infection dynamics.  

 
Our study has several limitations. First, after the emergence of Alpha, Gamma, and Beta, Chile 

implemented and increased their airport and community surveillance during 2021. This meant that the 

proportion of cases sequenced increased which was visible especially during the declining Delta wave at 

the end of 2021 (Fig. S2). The significantly larger number of inferred Delta introductions therefore needs 

to be interpreted with caution. We did however also estimate an increase of Delta EII during that time. 

Secondly, our EII calculations are biassed due to variable case reporting across space and time. Previous 

work has proposed that sequencing ~5% of all cases allows the detection of a new viral lineage with a 

detection probability >80%, and that the sequencing intensities displayed by lower-middle and upper-

middle income countries (as is the case for many cases in South America) allow for the estimation of a 

lineage prevalence with a small margin of error (59). It is unclear whether lower levels of sequencing 

observed for certain countries resulted in biases in genomic prevalence estimates (i.e. the true prevalence 

of a variant could be either higher or lower than expected), which adds further uncertainty to our EII 

estimates. Thirdly, the mobile phone data represent roughly one quarter of the population of Chile and it 

has been shown that they overrepresent urban areas and higher income groups. Accounting and adjusting 

for these biases will be an important area of future work. Fourth, following an importation, viral lineages 

spread in the country widely and circulated more intensely in key regions in north and central Chile. While 

continuous phylogeographic analyses are prone to sampling biases (60, 61), the distribution and circulation 

of these lineages around important urban areas and locations attractive for tourists suggests that viral 

movements in the country follow from human movements, as has been reported previously (1, 4, 9, 30, 31, 

62, 63). The invasion process appears to be explained by the connectivity between comuna pairs, making 

human movement estimates from mobile phone usage an important predictor of arrival times of a new viral 

lineage into different comunas. Nonetheless, the effects of the heterogeneous NPI landscape in the country 

during the study period are also meaningful and likely represent an atypical mobility regime for Chile. A 

full description of the link between lockdown tiers and the true changes in human movement patterns (i.e., 

compliance with NPIs) is required to clarify the link between viral movements, human mobility and NPIs. 

 
Coordinated genomic surveillance and the use of human mobility data can aid in the monitoring and 

prediction of viral spread during a large-scale national epidemic of directly transmitted pathogens. The 

weight of each of these data streams in the inference of pathogen lineage dynamics is an important question 
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to address, as scaling up genomic pathogen surveillance can be costly, and data on human movements can 

be unavailable, or sensitive when not aggregated appropriately. Nonetheless, we find that surrogate 

measures such as EIIs correlate with inferred introductions, although EIIs require the collection and 

accessibility of epidemiological (and sometimes genomic) data from other countries. Identifying which 

locations act as key sources of viral importations can help to prioritise surveillance (64). Furthermore, our 

findings on the effect of human movement on the arrival times of viral lineages to new locations and the 

mitigating effects of mobility restrictions at targeted spatial scales can inform consideration of NPI 

packages that have a minimal effect on human freedom of movement whilst maintaining a high efficacy in 

epidemic control. 
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Materials and Methods 

SARS-CoV-2 sampling from community and airport surveillance in Chile 
Chile implemented a systematic genomic surveillance programme in April 2021. During epidemiological 

week (epiweek) 47 of 2020 (2020-11-21 to 2020-11-27), randomisation of community samples for the early 

identification of variants of interest was implemented through PCR testing of variant-associated mutations 

(65, 66). This strategy considers random, representative sampling without incorporating clinical or 

epidemiological criteria to estimate the prevalence of SARS-CoV-2 variants and lineages circulating in 

Chile, using a weekly sample size based on the number of new cases registered the previous week. During 

epiweek 5 of 2022 (2022-01-30 to 2022-02-05), this strategy was updated for sampling from Arturo Merino 

Benítez International Airport (in this work referred to as the Santiago International Airport or SCL for short) 

and the laboratory requirements for submitting samples to the Instituto de Salud Publica (ISP) for genomic 

sequencing of SARS-CoV-2 cases (67) . The strategy provided specific details regarding the sample size, 

which was based on the number of cases in travellers during the previous epiweek (with a novel variant 
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prevalence set at 0.50%, or 1/200, and considering a 95% confidence level; (68). This approach aimed to 

identify novel variants entering the country and estimate the incidence of circulating variants in travellers. 

 

Data from COVID-19 epidemics in Chile and connected countries 
Epidemiological, genomic and human mobility data was collected between November 2020 (which 

includes the earliest estimated ancestor of a transmission lineage in Chile with a TPMRCA on 2020-11-01; 

TPMRCA referring to the time of the parent node of the earliest tree node inferred to have occurred in 

Chile, followed by local viral transmission inside the country) and October 2021 (which includes the latest 

sample collection date for our study time period on 2021-10-12). This time span is henceforth referred to 

as the ‘study period’. 
  
The monthly numbers of air travellers entering Chile during the study period were collected from the 

National Civil Aviation Agency and the National Ministry of Transportation and Telecommunications 

(Junta Aeronáutica Civil, Ministerio de Transportes y Telecomunicaciones) at 

http://www.jac.gob.cl/estadisticas/informes-estadisticos-mensuales-del-trafico-aereo/ (retrieved on 03-08-

2022). This data includes the source city from which passengers arrived into Chile, as well as the airport to 

which they arrived. Given that 99.24% of returning travellers entered the country through the Santiago de 

Chile International Airport (SCL) and that all other international airports only served travellers from 8 

countries (Argentina, Colombia, Peru, Paraguay, Venezuela, Bolivia, Haiti and Uruguay) out of 23 

countries where travellers arrived from, data from airports outside of SCL was not considered for further 

analyses as their overall contribution was negligible. Furthermore, genomic data from airport surveillance 

was only collected at SCL, making the use of this data more comparable to our phylogenetic inferences. 

Given that counts for incoming air travellers was only available on a monthly basis, the total number of 

passengers per month was divided equally across the weeks that make up each month to obtain weekly 

estimates. This transformation assumes equal numbers of passengers entering every week from each origin 

city, which is justified by the periodic frequencies of airline scheduling practices (69). The monthly number 

of individuals entering the country through land border crossings was obtained through an Information 

Transparency request to the government of Chile data portal (https://datos.gob.cl). This data included the 

name of the specific border crossing station at which the numbers were recorded, from which we can 

identify the source country from where travellers entered and the comuna in Chile where they first arrived. 

We also divided the numbers of travellers equally across weeks in any given month for convenience, even 

if the periodic flight schedule assumption is unlikely to apply to land border crossing data. 
  
Anonymised, individually reported COVID-19 cases from Chile were provided by the ISP of Chile. For 

each case, the sample collection date and comuna (lowest administrative level in Chile equivalent to adm3) 

of residence of the patient are recorded. Cases are aggregated daily and by comuna to produce 

epidemiological time series for the country. During the study period, Chile established a unique 

decentralised system for non-pharmaceutical interventions (NPIs) where individual comunas had 

autonomous authority to place their area under one of three tiers of stringency on limitations to human 

movements and gatherings (Supporting Text). Daily records for the NPI stringency tier for each comuna 

were used to estimate the total population under lockdown on any given day by multiplying the number of 

comunas under lockdown by their respective population sizes (provided within the same data files, obtained 

through the public COVID-19 GitHub repository of the Government of Chile, available at 

https://github.com/MinCiencia/Datos-COVID19/tree/master/output/producto24). Population sizes and 

aggregated case counts per country for locations from which incoming travellers were recorded into Chile 

during the study period were obtained from the Our World in Data COVID-19 dashboard 

at  https://ourworldindata.org/covid-cases (retrieved on 05-12-2021; (70)). 

 
Genomic data from Chile was generated through two distinct genomic surveillance programmes and is 

described in the SARS-CoV-2 genomic data from community and airport surveillance in Chile section. 
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Metadata for these sequences separated by surveillance programme was provided by the ISP, including an 

individual sequence ID which matches the ID assigned to viral genomes when uploaded to GISAID (71). 

Genome sequences from Chile were downloaded from GISAID (retrieved on 2022-06-30) and filtered by 

matching individual IDs with the metadata provided by the ISP. 

 

Generation of a background genomic data set utilising international human mobility data  
Global genome datasets assigned to each variant under investigation (Alpha, Gamma, Lambda, Mu and 

Delta) were downloaded jointly with the Chile sequences from the aforementioned GISAID dataset. To 

gain an overview for the global introductory events into Chile, we curated a bespoke global dataset using 

openly available human mobility data. For each dataset, all global sequences were sorted by their location 

and their relative contribution to all international human movements into Chile. The top 5 countries with 

the highest relative international movements into Chile were included in our dataset, in addition to the top 

7 countries outside of South America with direct flights to Chile. All datasets were then subsampled 

uniformly across time per epidemiological week over the study period. This resulted in datasets with an 

approximate 1:1:1 ratio of sequences from Chile versus sequences from countries with the highest relative 

mobility versus countries with the most direct flights from outside of South America: 609 sequences for 

Alpha, 4826 sequences for Gamma, 3164 sequences for Lambda, 1720 sequences for Mu, and 6983 

sequences for Delta. 

 

Extraction of mobility estimates from mobile phone network data 
We analysed up to 3.5 million individual daily trajectories (which correspond approximately to 24% of the 

Chilean mobile phone subscription market share) from a total of 6.5 million Telefonica mobile phone users. 

We then aggregate individual trajectories into mobility indicators, selecting three main mobility aggregation 

methods, and we proceed by evaluating the interplay of the mobility process, with the spatial invasion. The 

first aggregating method counts the number of displacements between any two consecutive eXtended Detail 

Records (XDRs) made by a user, and it accounts for the full trajectory of each individual (D). The second 

coupling matrix connects the residence location of each user to all their visited locations, with a coupling 

force that is proportional to the number of XDRs made in each location (L). The third coupling matrix (L1) 

connects the residence location of each user to all their visited locations, with a coupling force that is 

proportional to the time spent in each location (72). We quantified the associated coupling matrices (D, L, 

L1) for each month during the study period in Chile at the comuna level. 

 

Phylogenetic inference of SARS-CoV-2 viral importations into Chile 
Variant-specific genomic data sets were aligned to the Hu-1 reference genome (73, 74) using Minimap2 

(75), and a maximum likelihood (ML) phylogenetic tree was estimated for each alignment using IQtree 

(76) under a GTR substitution model and by modelling the evolutionary rate variation across sites using a 

Gamma distribution with four site categories. The temporal signal for each phylogeny was evaluated by 

estimating the regression between root-to-tip lengths and sample collection dates using TempEst (77), after 

establishing the most likely root for each phylogeny by a minimisation of residuals from each regression. 

Sequences for which the residuals were estimated to fall more than two standard deviations from the mean 

were removed, and the ML tree re-estimated under the same conditions described above. For these 

phylogenies, polytomies were not randomly resolved but rather maintained in the trees. 

 
Branch lengths for the inferred ML trees were re-scaled to fit a temporal timescale using TreeTime (78). 

For all phylogenies, a fixed evolutionary rate of 7.4x10-4 subst/site/year was used for these analyses, 

following the empirical findings by Ghafari et al (79). Given that individual analyses were performed per 

variant, the use of a fixed evolutionary rate allows us to ignore the likely inflated evolutionary rate observed 

prior to the emergence of individual variants (80) while also minimising potential comparability issues 

among data sets due to the increased rate variation amongst lineages due to the different data set sizes and 

sampling periods which can obscure the temporal signal (81). 
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Time-scaled ML phylogenies were further analysed using an alignment-free likelihood estimation method 

implemented in BEAST v1.10.5 (pre-release; commit:d1a45) commonly known as Thorney BEAST, and 

described in further detail in (30). The time-scaled ML phylogenies were used as starting trees, while the 

previously described polytomic ML phylogenies were used as data trees; Thorney BEAST samples from 

different node heights and resolutions for polytomies to generate a posterior sample where branch length 

(in genetic terms; i.e., number of mutations) likelihood estimates are calculated as a function of a Poisson 

distribution with mean equal to the evolutionary rate multiplied by the branch length (in time units; (1)). 

Individual MCMC chains for each data set were run for 100 million steps with a burn-in of approximately 

10% of the initial steps. All runs had a fixed evolutionary rate of 7.4x10-4 subst/site/year and a non-

parametric Skygrid tree prior (82) with breakpoints every two weeks of the sampling period for the specific 

variant being analysed. Trees were sampled every 5000 steps, and convergence of all parameters was 

evaluated using Tracer (83) and defined as parameter effective sample sizes (ESS) higher than 200. 

 
The resulting empirical tree distributions were reanalysed using BEAST 1.10.4 to estimate the number of 

importations into Chile using a discrete trait analysis (DTA) phylogeographic approach. Sequences 

collected from outside of Chile were labelled as “non-Chile”; sequences collected within Chile were further 

identified as “airport” or “community” sequences according to whether they were collected through airport 

surveillance of returning travellers or community surveillance inside Chile, respectively. Transitions 

between discrete states were estimated using an asymmetric model, and individual counts of transitions 

between states were estimated by stochastic mapping in the form of Markov jumps and rewards (84, 85). 

These DTA analyses were run for 10 millions MCMC steps and sampled every 10 000 steps. Summary 

maximum clade credibility (MCC) trees were generated for all data sets using TreeAnnotator. 

 

Phylogeographic reconstruction of the domestic spread of viral transmission lineages in the 

country 
From the discrete phylogeographic analyses, individual importations were identified following the rationale 

used by du Plessis et al (30): subtrees that descend from a node inferred to have occurred inside Chile, 

which in turn descends from a node inferred to have occurred outside Chile. These subtrees, referred to as 

transmission lineages (TLs, (30)), were extracted using Fertree (https://github.com/jtmccr1/fertree). We 

analyse the 20 largest TLs (Alpha, n = 1; Gamma, n = 2; Lambda, n = 5; Mu, n = 5; Delta, n = 7) which 

correspond to those with sizes greater than the 93rd percentile of all identified lineages within the country 

(> 61 tips). These transmission lineages range in size from the largest being Gamma TL 35 (n = 1827) for 

Gamma (corresponding to the Chile-specific PANGO designated Gamma sublineage N.4) to the smallest 

being Mu TL 61 (n = 61) for Mu. We extracted these larger transmission lineages from the summary MCC 

trees and performed individual continuous phylogeographic analyses for each to map their spread across 

comunas within Chile. 

 
Sequence metadata was available for sequences up to the comuna (adm3) level, but no individual 

georeferenced coordinates were collected to ensure patient privacy. For each individual sequence where the 

comuna sampling location was known, we randomly assigned a grid cell with sample weights proportional 

to the population density within the comuna obtained from WorldPop, at a resolution of 1km2 grid 

(https://hub.worldpop.org/geodata/summary?id=44918). Sequences assigned to the same grid cell were 

further given random coordinates within the grid with uniform sampling to ensure that all sequences have 

unique coordinates as required by the continuous phylogeographic model. A final check was placed to 

ensure that the final coordinates fell within the comuna polygon. 

 
For the 20 extracted subtrees, we pruned all sequences not collected in Chile and assigned the 

aforementioned coordinates to the remaining tips. We then used BEAST to estimate the continuous 

diffusion of the TLs using a relaxed random walk (RRW) model with a Cauchy distribution to account for 
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among-branch dispersal velocity heterogeneity (32). MCMC chains were run by duplicate for 50 000 000 

steps each, with multiple runs performed when necessary to achieve convergence. Multiple chains for each 

TL were combined using LogCombiner, and the summary MCC trees for each TL were generated with 

TreeAnnotator. Mapping the dispersal of each TL in Chile was done with custom Python scripts 

(https://github.com/leoferres/spatial_dynamics_covid_chile). 

 
Estimated importation intensity (EII) indices from variant prevalence, case, and human travel data 
To estimate the expected number of importations of each VOI/VOC into Chile over time independently 

from our phylogenetic inference, we compute a weekly estimated importation intensity (EII) index for every 

country from which incoming flights into Chile were recorded during late 2020 and 2021. Exceptions to 

the country-level EIIs were considered for the USA and Brazil where state-level estimates were produced 

instead to account for the broad geography of both countries and their heterogeneous epidemiological 

landscapes. Five states from the USA (Florida, New York, Texas, Georgia and California) and seven states 

from Brazil (São Paulo, Rio de Janeiro, Goias, Parana, Rio Grande do Sul, Bahia and Santa Catarina) were 

included as these are the only states in each country from which direct flights arrive to SCL. 
  
For any variant under investigation X (Alpha, Gamma, Lambda, Mu, Delta) and source location l, the EII 

over n epidemiological weeks is defined as 

 

𝐸𝐼𝐼𝑋,𝑙,𝑖 =
𝐼𝑙,𝑖

𝑃𝑙
𝑔𝑋,𝑙,𝑖𝐴𝑙,𝑖    

 
where Il,i is the aggregate number of new cases for epidemiological week i in location l, Pl is the population 

from location l, gX,l,i is the proportion of viral genome sequences (available in GISAID) that were sampled 

at location l in week i and that are assigned to variant X, and Al,i is the total air passenger volume coming 

into Chile from location l on week i. For the three neighbouring countries (Argentina, Bolivia and Peru) 

that share a land border (and therefore border crossings) with Chile, variation of the EII was estimated 

(lEII) as 

 

𝐸𝐼𝐼𝑋,𝑙,𝑖 =
𝐼𝑙,𝑖

𝑃𝑙
𝑔𝑋,𝑙,𝑖𝐿𝑙,𝑖  

 
where Ll,i is the number of land travellers entering Chile from location l on week i. For these countries, the 

air-travel-based EII described previously (referred to as aEII when relevant) was combined with the lEII 

to estimate a global EII as 

 

𝐸𝐼𝐼𝑋,𝑙,𝑖 =
𝐼𝑙,𝑖

𝑃𝑙
𝑔𝑋,𝑙,𝑖(𝐴𝑙,𝑖 + 𝐿𝑙,𝑖) 

 
Since this formulation of the EII estimates the numbers of individuals expected to enter the country infected 

with variant X, we also derive a combined cEII from all locations from which international air travellers 

come to Chile: 

 

𝑐𝐸𝐼𝐼𝑋,𝑖 = ∑ 𝐸𝐼𝐼𝑋,𝑙,𝑖

𝑙

 

  

Vector autoregressive (VAR) models to test forecasting power of EIIs on viral imports per variant 
Given the weekly estimates, every EII variation for each individual viral variant X is concatenated into a 

time series covering t = 48 epidemiological weeks, describing the expected number of introductions per 
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variant over time. These EII time series are compared to time series of inferred observations of viral 

importations from the genomic data P, taken as the weekly aggregate counts of phylogenetic nodes which 

are the most recent common ancestors of individual Chile transmission lineages. We formulate a bivariate 

vector autoregression model from both time series: 

 

𝑦𝑋,𝑡 =  0 + ∑ 𝛽𝑖𝑦𝑋,𝑡−𝑖 + 𝜐𝑡

𝑘

𝑖=1

 

 
Where yx,t is a vector of both P and EII values at week t and k is the maximum lag, equal to 12 to 

represent a maximum allowed delay between expected and inferred importations of approximately three 

months. From this, the system of equations is: 

 

(
𝑃𝑋,𝑡

𝐸𝐼𝐼𝑋,𝑡
) = (

𝛽𝑋,𝑃

𝛽𝑋,𝐸𝐼𝐼
) + (

𝛽𝑃𝑃 𝛼𝑃,𝑃

𝛼𝐸𝐼𝐼,𝑃 𝛽𝐸𝐼𝐼,𝑃
) (

𝑃𝑋,𝑡−1

𝐸𝐼𝐼𝑋,𝑡−1
) + (

𝜐𝑃𝑡

𝜐𝐸𝐼𝐼𝑡
) 

 
The optimum value for k is evaluated by comparing information criteria from each lag value using the 

vars package in R; we specifically evaluate the Akaike Information criteria (AIC), Hannan-Quinn 

information criteria (HQ), Schwartz criteria (SC) and Akaike’s Final Prediction Error (FPE). We take the 

lowest value amongst the four indicators as the indicator of the optimum lag value indicator, which in 

most cases corresponds to SC or AIC (Table 1). To test whether phylogenetically inferred importations P 

are forecasted by the EII estimates, we perform Granger causality (GC) tests with =0.05. Contrary to 

what its name suggests, GC tests do not establish causality between the time series but rather temporally 

dependent correlation; we therefore refer to our findings as one time series Granger-causing the other, 

which is not true causality. 

  

Estimation of the effects of human mobility at the comuna level on viral movements 
Following a viral importation, some transmission lineages (TLs) spread domestically within Chile. The 

comunas where these local TLs were first detected are not a reliable measure of where the introduction 

likely took place due to delays between importation and detection as has been shown previously (30) (Fig. 

S10 shows the numbers of ‘first detection’ events in the country and the location of land border crossings 

in the country; the lag between the TMRCAs and the first detection of TLs in Chile was estimated to be 

9.59 ± 8.95 days). Instead, we estimate the impact of local scale human mobility on the invasion dynamics 

of different TLs by comparing comuna-to-comuna specific arrival times extracted from our continuous 

phylogeographic analysis to human movements. 

 
For each epoch v, we compute the metric of mobility exchange between the source comuna s and location 

j, namely Mj
v as: 

 

𝑀𝑗
𝑣 = ∑ (𝐿1𝑠𝑗,𝑡

+ 𝐿1𝑗𝑠,𝑡
)

𝑇

𝑡>𝑡0

 

 
where j represents comunas, t runs from t0, day of first detection of the variant defined in epoch v in the 

source comuna s, to T, days to consider for the mobility aggregation, L1sj,t  is the time spent by residents of s 

in j on day t. Mj
v accounts for the total time spent respectively by users of the source location in comuna j 

and vice versa. Epochs v are defined as 60-day intervals starting on the first date of detection of a variant 

(which defines the epoch) at comuna level and are named after the variant itself. The time window of 

mobility aggregation T must be shorter than the epoch, in Fig. 4 we chose T = 2 weeks. For each epoch, 
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only transmission events with both transmission start date and respective source time t0 falling within the 

epoch time window are chosen. Epochs may include multiple TLs spreading at the same time. Arrival times 

at comunas j are then compared with the human mobility between comuna j and the mobility between j and 

source s. 

 

Estimation of the effects of NPI stringency at the comuna level on viral movements and viral 

lineage persistence 
We formulated simple negative binomial models to test whether the stringency of NPIs implemented at the 

comuna-level had a measurable effect on the estimated numbers of viral movements within a single comuna 

or between comunas. For every inferred viral movement (represented by a branch in the continuous 

phylogeographic analysis, with the ancestral node location accounting for the source comuna for that 

movement and the descendant node or tip location accounting for the destination comuna for that 

movement), we determine the lockdown stringency tier that corresponds to the estimated median age of the 

source and destination comunas, and aggregate all movements based on the lockdown tier of the destination 

comunas. The models estimate the aggregated counts of viral movements (either into each comuna or within 

a comuna) explained by both the lockdown stringency tier (three levels: No lockdown, weekend lockdown 

or full lockdown) and the numbers of new cases reported during the duration of that lockdown. We 

confirmed the appropriateness of a negative binomial model compared to a Poisson regression model (i.e. 

the assumption of conditional means not being equal to conditional variances) by performing a likelihood-

ratio test between both model fit methods (DF = 1, p < 0.001). From the fitted model coefficients we 

estimate the incidence rate ratios (IRR) to quantify the effect of lockdown tier stringency on viral movement 

counts. We further expand these models to also account for the effect of the implementation of a mobility 

pass for fully vaccinated individuals on May 26, 2021; results for both model formulations are shown even 

if a model which doesn’t account for the mobility pass better fits the data for viral movements within 

comunas (LRT = 1.04, p = 0.31) while accounting for the mobility pass is a better fit for the data of viral 

movements between comunas (LRT = 29.87, p < 0.001). 

 
Following the arrival of viral lineages to a new location (comuna), they could either persist and be detected 

within that location or become extinct. The number of newly arrived lineages and previously circulating 

lineages in a location can be used to estimate the proportions of persisting lineages (46, 86). We analyse 

the posterior tree distributions from the continuous phylogeographic analyses using PersistenceSummarizer 
(86) to estimate the number of persisting lineages within the fourteen comunas with the highest number of 

observed viral movements (five comunas in the Santiago Metropolitan Area: Pirque, Puente Alto, Santiago, 

San Jose de Maipo and San Bernardo; nine comunas from the rest of the country: Arica, Los Angeles, 

Requinoa, Copiapo, Iquique, Valparaiso, Antofagasta, Concepcion and Puerto Montt) under different 

lockdown stringency tiers. We aggregate comunas under the same lockdown tier and set the date when the 

tier was enacted as the ancestral time, and follow up with sequential evaluation times on every week 

following the implementation of the lockdown stringency tier. This way, we can estimate persistence trends 

in different comunas under the same lockdown stringency tier despite the fact that these were implemented 

at different points in time, and that stringency tiers were enacted and relaxed on multiple occasions across 

our study period. Full and weekend lockdowns were implemented for a maximum continuous time of 16 

and 20 weeks respectively (Fig. S11), we therefore perform lineage persistence analyses for a maximum of 

25 weeks following the implementation of a specific stringency tier. The remaining comunas beyond the 

fourteen mentioned above are excluded as they display few viral movements and therefore yield insufficient 

information regarding lineage persistence. 

 
To estimate the rate of decay of persisting lineages under different stringency tiers, we fit an exponential 

model to the median number of persisting lineages over every week following the implementation of the 

specific tier. The model is formulated as: 
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𝑦 = 𝑎 ∗ 𝑒𝑏,𝑠 

 
Where y is the median proportion of persisting lineages from Gamma TL 35 and x is the number of weeks 

since the implementation of that lockdown tier. Decay rates are estimated as model parameter b. 
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Supporting text - Contextualising the COVID-19 and mobility situation in Chile during 2020-2021 

 
Located on the southernmost end of the South American Pacific coast, Chile provides an interesting context 

to analyse the effects of human mobility and spatial connectivity in the spread of SARS-CoV-2 as it includes 

highly connected yet largely rural areas. The majority of air travellers enter the country through the Arturo 

Merino Benítez International Airport, located on the outskirts of its capital city Santiago de Chile (in this 

work referred to as the Santiago International Airport or SCL for short), which accounted for 99.24% of all 

travellers entering the country through international flights between october 2020 and december 2021 (the 

remainder entering through six secondary airports, as shown from publicly available data from the Junta 

Aeronáutica Civil, Ministerio de Transportes y Telecomunicaciones; 

http://www.jac.gob.cl/estadisticas/informes-estadisticos-mensuales-del-trafico-aereo/). While this single 

main port of entry drives registers a large portion of all incoming international travellers, the country also 

shares a long border with neighbouring Argentina, the longest international land border of South America, 

covering 5,308km in length; this border features 26 official international border crossings through which 

substantial numbers of travellers enter Chile, most predominantly into the regions of Atacama in the north 

(Paso Sico), Coquimbo (Paso Agua Negra) and Valparaíso (Paso Los Libertadores) in central Chile 

(including Santiago) and Los Lagos (Paso Cardenal Samoré) in the south of the country. Overall, land 

border passes register up to one third of all international arrivals into Chile (e.g. 652,843 travellers entered 

Chile from border crossings in 2021 as shown from data obtained through an Information Transparency 

request, see Methods). Internally, Chile has a generally well developed highway infrastructure and a 

domestic flight network, but its elongated geography along the north-south axis lends itself to the 

establishment of remote areas across the national territory with limited human mobility. Approximately 

38.62% of the population lives within the Santiago Metropolitan Area, with an additional 15.08% of the 

population residing in the major urban centres of Valparaíso, Concepción, Temuco and Antofagasta (2017 

census data available at https://www.bcn.cl/siit). Population densities tend to be high in the central regions 

of the country (1); the rest of the country is less densely populated, including large and mostly unpopulated 

natural parks and remote regions. The vast Atacama desert in the north and the extreme latitude of the 

southernmost regions of Chile might discourage the development of large human settlements but incentivise 

a rich tourism industry. 

 
As with other countries, Chile suffered local COVID-19 epidemic waves throughout 2020 and 2021. The 

public health response to SARS-CoV-2 in Chile included several key particularities. From a surveillance 

perspective, the country implemented had been running genomic surveillance since 2020 and implemented 

a systematic genomic surveillance programme in April 2021 after the emergence of the Alpha and Gamma 

VOCs amongst others (2); within this broader programme, specific testing was performed on all 

international returning travellers at the Arturo Merino Benítez International Airport (in this work referred 

to as the Santiago International Airport or SCL for short). This dedicated testing programme was used not 

only to inform travellers about their quarantine requirements if they tested positive, but also served as a 

sentinel system to identify incoming viral lineages and specifically VOIs/VOCs. As non-pharmaceutical 

interventions (NPIs), Chile implemented a targeted scheme for partial and complete lockdowns and 

progressive reopening at the comuna level (adm3 administrative divisions; n = 346 communas) called Paso 

a paso nos cuidamos (lit. “Step by step we take care of ourselves”) in July 2020 (3). Comunas were placed 

in one of five possible lockdown tiers (called ‘steps’, lit. Pasos), in order of stringency these are 

‘Cuarentena’ (Quarantine), ‘Transición’ (Transition), ‘Preparación’ (Preparation), ‘Apertura inicial’ 
(Initial opening) and ‘Apertura avanzada’ (Advanced opening). Limitations within these tiers concerned, 

amongst other things, the requirement of special permits to enter/leave the comunas or to circulate freely. 

In practice the different levels of stringency resulted in the following mobility characteristics: 
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1. The Quarantine step limited human mobility throughout the entire week 

2. The Transition step limited human mobility only on weekends when the stringency of the higher 

tier (Quarantine) was maintained. 

3. The Preparation and Initial opening steps share similar mobility regimes, with no restrictions on 

free circulation in the comuna and the main differences between them concerning specific types of 

activities permitted and recommendations on numbers of people for gatherings. 

4. The Advanced opening step results in scenarios with no restrictions. 

 
As such, we re-code the NPI stringency levels into three tiers: (1) full lockdown (includes comunas in 

Quarantine step), (2) weekend lockdown (includes comunas in Transition step) and (3) no lockdown 

(includes comunas in the Preparation and Initial opening steps). The scheme provided some degree of 

autonomy to individual comunas and allowed them to decide when to increase or reduce the lockdown 

stringency level. This resulted in a highly heterogeneous landscape of the timing and intensity of non-

pharmaceutical interventions across the country; the effects of such a spatially heterogeneous 

implementation of interventions on viral transmission remain unclear. 
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Figure S1. Proportion of SARS-CoV-2 variants detected in South American countries. The proportion 

of sequences corresponding to each VOI/VOC per epidemic week (as annotated on GISAID) is shown per 

country, relative to the total number of sequences generated by each country over that two-week period. 
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Figure S2. Epidemic trends and sequencing intensity by geographic region in Chile. Numbers of  cases 

and percentage of cases sequences in 16 geographic regions of Chile per week over 2021. 
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Figure S3. Distribution of transmission lineage sizes. Distribution of the number of sequences in each 

transmission lineage inferred from genomic data (includes singleton, i.e. transmission lineages with n = 1 

taxa) in Chile coloured by variant. Number of taxa shown on a logarithmic scale. 
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Figure S4. Transmission lineage TMRCAs and persistence over time. Rows show individual 
transmission lineages (singletons excluded, i.e. transmission lineages with n = 1 taxa) plotted over the 

time when they were detected and circulating in Chile. Solid lines show the detection period (time lapse 
between the collection date of the earliest sequence, referred to as ‘first detection’, and the collection 

date of the most recent sequence, referred to as ‘last detection’). Faded lines show the detection lag 

period (time lapse between the inferred transmission lineage TMRCA, shown as diamonds, and the date 

of first detection). Size of circles on the date of last detection shows the number of sequences for that 

transmission lineage. 
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Figure S5. Estimated importation intensity (EII) indices over time. Time series for the weekly estimated 
importation intensity (EII) indices from selected states and countries related to Figure 2C. Solid lines 

with circles show EIIs based on air travel volume (aEII) and dashed lines with squares show EIIs based 
on land border crossings (lEII). Broad red lines show the combined global EII. 
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Figure S6. Time of arrival epochs. Importation dates of the 20 largest SARS-CoV-2 transmission 

lineages in Chile coloured by variant. Coloured bars show the epoch over which mobility estimates were 
used to evaluate their effect on viral spread, depending on the dates of the first importation of each 

variant. 
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Figure S7. Reported new cases per comuna in Chile. New cases reported across Chile. Values 

correspond to dates when epidemiological reports were issued (every 2-4 days_ and do not represent a 
complete daily time series. Each row represents an individual comuna, and these are grouped by region 

(Adm1), ordered from north to south. 
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Figure S8. Changes of lockdown stringency in Chile. Upper panel shows the 7-day rolling average of 
total new cases in Chile (as reported by Our World in Data). The lower panel shows the daily lockdown 

stringency based on the number of weeks of the day where mobility restrictions were implemented within 
the Paso a Paso program. Details about lockdown stringency can be found in the Extended Text S1. Each 

row represents an individual comuna, and these are grouped by region (Adm1), ordered from north to 

south. 
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Figure S9. Decay of persisting viral lineages over time. Proportion of persisting lineages from Gamma 
TL 35 across the most affected comunas in Chile under different lockdown tiers estimated with 

PersistenceSummarizer. Persistence was measured on a weekly basis from the start of the lockdown 
period by calculating the proportion of phylogenetic branches (lineages) that persisted from the 

beginning of the lockdown. The dark red line shows a fitted exponential function to the median estimates 

of the persisting lineage proportions. Observations are aggregated over the fourteen comunas with the 
highest number of viral movements in our data set. 
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Figure S10. Number of first detection of SARS-CoV-2 introductions into Chile. Maps show the number 

of first detections of viral introductions (i.e., location of singletons and earliest sequences for each 

transmission lineage inferred from genomic data) by comuna (adm3) in Chile. Grey circles show the 
comunas where the main land border crossings in Chile are located, the radius shows the proportion of 

crossings that go through each one of these land border crossings. 
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Figure S11. Duration of lockdown tiers in Chile. Distribution of the continuous number of weeks for 
which each lockdown tier was implemented. Every individual observation corresponds to a change of 

lockdown stringency tier in a single comuna, and the number of weeks are counted from the start of that 
stringency tier to the next change in the stringency tier for that comuna.  
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