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Abbreviations: 1 
4C metrics: qualitative review metrics including completeness, correctness, conciseness, and clinical 2 
utility. 3 
AI: Artificial Intelligence 4 
DL: Deep Learning 5 
Echo: Echocardiography 6 
FT: Fine-Tuning 7 
GPT: Generative Pre-trained Transformer 8 
ICL: In-Context Learning 9 
NLP: Natural Language Processing 10 
Seq2seq: Sequence-to-sequence 11 
TTE: Transthoracic Echocardiography  12 
TEE: Transesophageal Echocardiography 13 
LLM: Large Language Model 14 
NLP: Natural Language Processing 15 
QLoRA: Quantized Low-Rank Adaption 16 
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Abstract 1 
Background 2 
The increasing need for diagnostic echocardiography (echo) tests presents challenges in preserving the 3 
quality and promptness of reports. While Large Language Models (LLMs) have proven effective in 4 
summarizing clinical texts, their application in echo remains underexplored. To address this, we proposed 5 
EchoGPT, a dedicated, domain specific LLM focused on echo report summarization. 6 
 7 
Methods 8 
Adult echo studies conducted at the Mayo Clinic from January 1, 2017, to December 31, 2017, were 9 
collected and categorized into two groups: development (all Mayo locations except Arizona) and AZ 10 
validation (Mayo Arizona) sets. We adapted open-source LLMs (Llama-2, MedAlpaca, Zephyr, and Flan-11 
T5) using In-Context Learning (ICL) and Quantized Low-Rank Adaptation (QLoRA) fine-tuning for echo 12 
report summarization. The models' performance was assessed both quantitatively with automatic metrics 13 
and qualitatively by cardiologists. 14 
 15 
Results 16 
The development dataset included 97,506 reports from 71,717 unique patients, predominantly male 17 
(55.4%), with an average age of 64.3±15.8 years. The final split contains 95,506 for training, and 1,000 18 
each for validation and testing. EchoGPT, a QLoRA fine-tuned Llama-2 model, outperformed other 19 
LLMs with win rates ranging from 87% to 99% in various automatic metrics (BLEU, METEOR, 20 
ROUGE-L, BERT Score, and RadGraph F1 Score), and produced reports comparable to cardiologists in 21 
30 randomly selected cases for qualitative human review (significantly preferred in conciseness (p< 22 
0.001), with no significant preference in completeness, correctness, and clinical utility). 23 
  24 
Conclusions 25 
Capable of generating echocardiography reports on par with cardiologists, EchoGPT could be used to 26 
generate draft reports for human review and approval, with significant workflow advantages. 27 
 28 
 29 
Clinical Perspective  30 

1. What is new?  31 
● This study is the first attempt to compare multiple open-source LLMs and different 32 

model adaptation methods in echocardiography report summarization. 33 
● The resulting system, EchoGPT, can generate echo reports comparable in quality to 34 

cardiologists. 35 
● Future metrics for echo report quality should emphasize factual correctness, especially on 36 

numerical measurements. 37 
2. What are the clinical implications? 38 

● EchoGPT system demonstrated the potential of introducing LLMs into echocardiography 39 
practice, to be used as an AI co-pilot to generate echo reports. 40 

 41 
 42 
 43 
 44 
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Introduction 1 
 2 
Echocardiography (echo) is the mainstay imaging modality in the current practice of cardiology1, providing 3 
vital, non-invasive assessments of heart anatomy and physiology to guide clinical decisions2. In the past 4 
decade, the rising demand for diagnostic echo tests3 has posed significant challenges in maintaining the 5 
quality and timeliness of diagnostic reports4–7, underscoring the necessity for automated solutions to 6 
enhance both efficiency and report quality8–10.  7 
 8 
With the recent emergence of artificial intelligence (AI), automated echo reporting has been proposed to 9 
use deep learning (DL) models to generate diagnostic predictions and measurements to fill a pre-set report 10 
template8,10,11. These frameworks focused on specific image processing tasks8,11 rather than the report text, 11 
and are technically equivalent to generating individual findings. However, these frameworks were not 12 
designed to handle the high-level cognitive activity of synthesizing clinically relevant impressions from 13 
detailed findings12. In practice, physicians usually spend a significant amount of time summarizing detailed 14 
findings to clinically relevant final impressions13,14. While this task is crucial, it can be time-consuming and 15 
prone to errors15. 16 
 17 
The advance of large language models (LLM) marked an important milestone for the application of AI in 18 
healthcare to automate clinical information summarization13,14,16 and expert-level question-answering17. A 19 
major advantage of LLMs is the flexibility of input and output18, as well as the capability of handling 20 
conversations and interaction with human experts19. While similar functionality can be achieved through 21 
commercially available LLMs (e.g., ChatGPT; OpenAI, San Francisco, CA)20, only a few healthcare 22 
institutions have integrated ChatGPT21. Furthermore, fine-tuning ChatGPT for specific tasks still requires 23 
uploading data to a central server, which also raises privacy concerns22. In contrast, open-source LLMs are 24 
free of charge and can be locally fine-tuned for specific tasks within each healthcare institution's secure 25 
confines18. 26 
  27 
Previous studies predominantly focused on electronic health records13,16 and chest X-rays (CXR)13,18 have 28 
highlighted the potential of using LLMs to summarize clinical text. In contrast, echo-related studies were 29 
mainly on data extraction or classification, rather than report summarization23–25. Tang et al. used rule-based 30 
systems and the BART (Bidirectional and Auto-Regressive Transformer) model26 for this purpose and 31 
demonstrated convincing results. However, BART-generated content was less favored by human experts 32 
more than 50% of the time, perhaps due to the smaller number of parameters than current state-of-the-art 33 
LLMs26. The application of using billion-parameter LLMs to generate echo reports remains under-34 
explored27,28.  35 
 36 
In this work, we proposed to construct a local, domain-specific LLM (EchoGPT) dedicated to 37 
echocardiography report summarization through an instruction fine-tuning approach, which is known to be 38 
an effective strategy to adapt LLMs for similar tasks13,18. We anticipate that the fine-tuning procedure 39 
improves LLMs’ performance on the task of echocardiography report summarization. EchoGPT will fill 40 
the knowledge gap for using open-source LLM in the domain of echocardiography reporting and could 41 
enhance the efficiency of the current workflow with uncompromised report quality.    42 
 43 
Method 44 
Echocardiography Report 45 
Following the American Society of Echocardiography recommendations29, a standard echocardiography 46 
report at the Mayo Clinic contains the following major sections: Final Impressions, Findings, and 47 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2024. ; https://doi.org/10.1101/2024.01.18.24301503doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.18.24301503
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 
 

Measurements. The Measurements section contains only measurement values without free text. The key 1 
measurements such as left ventricular ejection fraction, aortic valve area, and right ventricular systolic 2 
pressure are included in the Findings section with corresponding statements. Considering the report 3 
structure above, only the information from the Final Impressions and Findings sections was used in this 4 
work (Figure 1).  5 
 6 
Dataset 7 
Mayo Clinic Reports: All adult (> 18 years old) echocardiography studies performed from 1/1/2017 to 8 
12/31/2017 at Mayo Clinic Enterprise were retrieved. The types of studies include transthoracic 9 
echocardiography (TTE), transesophageal echocardiography (TEE), and stress echocardiography 10 
(including exercise and pharmacological studies). Text in the “Findings” and the “Final Impression” 11 
sections of each report was extracted for the current study (Figure 2).  The study was approved by the 12 
Mayo Clinic IRB (protocol#: 22-010944). 13 
MIMIC-III ECHO-NOTE2NUM Dataset (v.1.0.0, referred to as MIMIC-EchoNotes below)30: This 14 
publicly available dataset contains 43,472 valid free-text echocardiography reports from the intensive care 15 
unit at the Beth Israel Deaconess Medical Center between 2001 and 2012. The dataset was used for 16 
external validation.  17 
 18 
Data Curation and Preprocessing 19 
Mayo Clinic Reports: Echocardiography reports were excluded according to the following criteria: (1) 20 
reports without Finding or Final Impression sections, (2) reports whose Finding or Impression section 21 
contained less than 15 words, as these are frequently canceled studies in our practice, and (3) labeled in 22 
report metadata as limited report, fetal study, nuclear stress, or vascular study. After this filtering process, 23 
the text of each report was further processed as follows: (1) Remove capitalized subheadings (e.g., LEFT 24 
VENTRICLE, VALVES, OTHER FINDINGS, etc.), (2) Remove template sentences that make 25 
comparisons to prior reports, as no information from previous reports has been provided, and (3) Remove 26 
quality control-related sentences such as “study performed per left ventricular function protocol” and  27 
“the goals, risks, and alternatives to moderate sedation were explained to the patient.”  28 
MIMIC-EchoNotes Reports: Cases in this dataset were excluded based on criteria (1) and (2) above, as 29 
the metadata differed from that of the Mayo Reports. We also removed the subheadings and template 30 
sentences as described previously. We observed fundamental differences in report structure, including the 31 
"General Comments" section, which typically contains comments related to study quality, and the 32 
"Conclusions" section, which usually consists of the physician's interpretation of findings. However, the 33 
Impression section often contains only 2-3 sentences summarizing the most pertinent study findings, 34 
which was difficult for head-to-head comparison in this study. Given the distinct report structure, the 35 
contents under the subheadings "General Comments" and "Conclusions" were integrated into the 36 
"Findings" and "Impression" sections, respectively. Common abbreviations in the text were expanded to 37 
their full forms. 38 
 39 
Data split 40 
Data from Rochester, Florida, and Mayo Clinic Healthcare sites were used as the model development set.  41 
Considering variations in practice style among different sites, the data from the Arizona site was 42 
designated as the external validation set (referred to as the AZ validation set). Within the development set, 43 
1,000 non-duplicated cases were randomly selected for the test and validation sets, respectively; the rest 44 
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of the cases were used for fine-tuning (training set). Similarly, from the AZ validation and the MIMIC-1 
EchoNotes datasets, we selected 1,000 non-duplicated random cases from each. For basic dataset 2 
statistics, the token length was calculated based on the natural language processing toolkit (NLTK) 3 
tokenizer31, and the lexical variance was defined as the ratio of the number of unique tokens to the 4 
number of total tokens in each example13. 5 
 6 
Model Selection 7 
Due to patient privacy policy regulations, proprietary LLMs such as GPT-3.5 and GPT-4 were not 8 
considered in this work because versions of those models that were safe for protected health information 9 
were not yet available. Among open-source models, we selected representative auto-regressive models 10 
including Llama-2-7b-chat27, Zephyr-7b28, and Med-Alpaca32 models considering their performance and 11 
max input context length on general natural language processing (NLP) tasks and radiology report 12 
summarization 13. For sequence-to-sequence (seq2seq) models, we used Flan-T5 (base) as the 13 
representative model as it is known for accurate text summarization13,33. 14 
 15 
Model Inference Hyperparameter Search 16 
LLM inference was conducted by using Hugging Face’s (Manhattan, NY) transformer pipeline via the 17 
open-source LangChain framework34. After initial tests, text generation and summarization were used as 18 
the task type for auto-regressive models and seq2seq models, respectively. A subset (10%, n=100) of 19 
examples were randomly selected from the test set for the hyperparameter search. We specifically tested 20 
the following configuration parameters that can significantly affect performance: temperature (0.1, 0.5, 21 
and 0.9) and repetition penalty (1.1, 1.2, and 1.3). These two parameters were tested separately, when one 22 
parameter was being tested, the other was fixed at the lowest value. The generated contents were 23 
evaluated by both automatic metrics and qualitative assessment. We chose the following configuration for 24 
model inference: {temperature 0.1, repetition penalty 1.1} after comparing automatic metrics and 25 
qualitative assessments; see Supplemental Table 1). We did not complete a dedicated search procedure 26 
for the optimal LLM inference configurations, but the configurations used in our study were similar to 27 
prior reports, and the generated contents were satisfying on qualitative review. Of note, the configurations 28 
were tested in a zero-shot setting, and the best configuration was directly applied to the ICL and QLoRA 29 
fine-tuned models13.  30 
 31 
Model Adaptation 32 
Prompt: A prompt template was created with components of the prefix, instruction, and suffix13 (Table 33 
1). The final prompt was decided after qualitatively evaluating several different variants of each 34 
component on a small subset of the data. We also specified that the summarization should be “concise” 35 
and use “a minimal amount of text” to avoid LLMs generating lengthy reports13. Likely due to the 36 
difference in the reporting style of the MIMIC-EchoNotes dataset, the final prompt above led to 37 
suboptimal responses. Therefore, we adopted a new prompt tailored to match the reporting style by 38 
incorporating new instructions below: 1) Write a 10-bullet points clinical summary, and 2) Avoid using 39 
numbers other than LVEF.  40 
 41 
In-context Learning (ICL): ICL has been proposed to improve LLM’s performance without changing the 42 
base model weights13,35,36. Also, using relevant in-context examples is shown to have better model 43 
performance compared to random examples in ICL. To obtain relevant in-context examples, we adopted 44 
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the approach to select m (m=1, 2, 4…) nearest neighbors from the training set for each test set case, after 1 
embedding both sets by the PubMedBERT model37.  2 
 3 
Instruction tuning with quantized low-rank adaptation (QLoRA): Due to the size of candidate models, we 4 
opted for quantized low-rank adaptation (QLoRA)38, a type of parameter efficient fine-tuning (PEFT)39 to 5 
optimize our LLMs for echo report summarization tasks. The same prompt template (Table 1) was used, 6 
and the Final Impression text from the same report was used as the target output 13,14. 7 
 8 
We configured the training process as follows: load model in 4-bit precision, with a LoRA configuration 9 
of (alpha = 16, LoRA dropout = 0.1, LoRA r= 64). The batch size and gradient accumulation were 10 
adjusted for each model to achieve an effective batch size of 24 that fits on a single NVIDIA RTX A5000 11 
24G GPU setting. A paged-AdamW 32-bit optimizer was used, with an initial learning rate of 1e-3, which 12 
decayed to 1e-4 (by a cosine scheduler) after the initial 100 warm-up steps. The above configuration 13 
provided the most stable training process after attempting different configurations reported in prior 14 
studies13,38. 15 
 16 
Model Performance Evaluation 17 
Automatic NLP evaluation metrics: To evaluate the models' performance on the information 18 
summarization task and compare it to prior works, we utilized four established automatic metrics that 19 
have been used in other clinical text summarization studies40,41: BLEU (Bilingual Evaluation 20 
Understudy)42, METEOR (Metric for Evaluation of Translation with Explicit ORdering)43, ROUGE-L 21 
(Recall-Oriented Understudy for Gisting Evaluation - Longest Common Subsequence), and the BERT 22 
(Bidirectional Encoder Representations from Transformers) score44, which represents the similarity 23 
between generated contents and the corresponding reference at words/characters (n-gram), single word 24 
(unigram), longest sequence of words, and contextual level, respectively For ROUGE-L, we present the 25 
F1 score component26,45. For factual correctness, the RadGraph-F1 metric (level: all) was reported46,47 26 
This metric served as the primary evaluation criterion for model performance, considering its significance 27 
in ensuring the factual correctness of generated clinical content.  28 
 29 
Evaluation of Significance of Measurement Numbers in Automatic Metrics: Considering the importance 30 
of measurements in echo studies, we also attempted to evaluate whether the current automatic metrics can 31 
detect changes in measurement numbers. For this purpose, we generated synthetic reports by replacing all 32 
the measurement numbers with random numbers ranging from 1 to 99 in the reports. We then compared 33 
the automatic metric scores with the corresponding reports with the original measurements. 34 
 35 
Human expert evaluation metrics: We designed a human expert evaluation process based on previous 36 
clinical text summarization studies13,18,26. The Findings with corresponding ground truth (Final 37 
Impression) and LLM-generated summarization of 30 randomly selected cases were presented to four 38 
echocardiography-board-certified cardiologists for blinded quality review. We noted that physician-39 
summarized Impressions may contain free-text information beyond the Findings (e.g., documenting 40 
events during the study or communication with the ordering provider), and the reviewers were instructed 41 
to rate only based on information within the Findings section. Each metric was rated for the preference (5 42 
levels) between the two summarizations (Supplemental Figure 1)13. The “4C metrics” evaluated by 43 
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echocardiography experts are completeness, conciseness, correctness, and clinical utility14, as described in 1 
Table 2. 2 
 3 
Statistical analysis: Automatic metric performance between each pair of models was compared using a 4 
two-tailed paired Student's t-test or Wilcoxon signed-rank test for normally and non-normally distributed 5 
data, respectively. Models were also compared based on win rates, which are defined as the percentage of 6 
head-to-head victories in performance between two models for each selected metric13. For the 7 
performance bias analysis, data were grouped based on sex (male versus female) and race (white, black, 8 
other). In the case of sex, we employed two-tailed Student's t-tests or Mann-Whitney U tests for normally 9 
and non-normally distributed data, respectively. For race, we utilized one-way ANOVA. In human expert 10 
qualitative analysis, the 4C metrics were compared by a one-sample Wilcoxon signed-rank test13, and the 11 
agreement of ratings between experts was assessed by Fleiss’ kappa coefficient48, and interpreted as 12 
recommended by Landis et al49. We conducted Pearson correlation analyses to explore the relationships 13 
between each human expert evaluation metric, assessing their independence. Additionally, we conducted 14 
similar analyses to examine the correlation between human and automatic metrics. Statistical analyses 15 
were performed using Python 3.8 and SciPy 1.8.0. All the comparisons consider a p-value < 0.05 as 16 
significant. 17 
 18 
Results 19 
Patient Cohort and Dataset 20 
Our development set contains 97,506 reports from 71,717 unique patients, with a mean age of 64.3±15.8 21 
years, 54,005 (55.4%) were male, 89,466 (91.8%) were white. Randomly selected from Mayo Arizona 22 
studies (19,557 reports/15,853 unique patients), the AZ validation set contains 1,000 reports from 1,000 23 
unique patients with a mean age of 63.9 ±16.0 years, 584 (58.4%) were male and 885 (88.5%) were 24 
white. Detailed demographic information was not available for the MIMIC-EchoNotes dataset. Other 25 
detailed patient characteristics and statistics of text data are summarized in Table 3. Transthoracic 26 
echocardiography was the predominant study type in development, AZ validation, and MIMIC-Echo 27 
datasets (81.9%,77.6%, and 86.4% respectively).  28 
 29 
Zero-shot, ICL, and QLoRA fine-tuned performance 30 
Table 4 is a summary of the performance of zero-shot and fine-tuned LLMs, including MedAlpaca, 31 
Llama-2, and Zephyr. QLoRA fine-tuning significantly improved LLMs’ performance from baseline. 32 
Note that T5 and MedAlpaca were not fine-tuned so only zero-shot results were provided for reference. 33 
Among the candidate models, Llama-2 generally had the best zero-shot performance, which was 34 
consistent in ICL. While Flan-T5 had a similar or superior performance to Llama-2 across most metrics, it 35 
was particularly worse on the RadGraph F1 score (Table 4; Figure 3). On qualitative review, we noted 36 
that T5 provided concise summaries, however important clinical information was missed in this process 37 
(Supplemental Table 2). 38 
 39 
In ICL, LLMs that allow longer context length (Llama-2 and Zephyr) had the best performance across all 40 
metrics when one example was provided (ICL-1). The performance gradually trended down with more 41 
examples (ICL-2 and ICL-4). In contrast, the performance of LLMs with shorter max context length 42 
started to trend down with one example (Figure 3).  43 
 44 
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Based on the zero-shot and ICL performance of the candidate models, Llama-2 and Zephyr were selected 1 
for instruction fine-tuning. Compared to zero-shot, QLoRA significantly improved the performance of 2 
selected LLMs across all metrics (Table 4). For the head-to-head comparison in model win rates, fine-3 
tuned Llama-2 was superior to all other models, including Zephyr (base and fine-tuned), MedAlpaca 4 
(base), and Flan-T5 (base) across all 5 automatic metrics (Figure 4). Llama-2 maintained similar 5 
performance in the AZ validation set (n=1,000) and was consistently superior to fine-tuned Zephyr 6 
(Supplemental Table 4). Regarding potential biases, we did not observe significant biases regarding sex 7 
and race across the automatic metrics, except for a slightly better RadGraph F1 performance in female 8 
patients in the AZ validation set (male vs. female: 0.38 ± 0.14 vs. 0.40 ± 0.15, p=0.04) (Supplemental 9 
Figure 2). Because Llama-2 had the best performance on zero-shot, ICL, and QLoRA fine-tuning 10 
approaches, fine-tuned Llama-2 was selected as EchoGPT and used for the subsequent expert qualitative 11 
review. 12 
 13 
Significance of Measurement Numbers in Automatic Metrics 14 
After replacing the measurement numbers with random numbers, we observed relatively minor decreases 15 
in BLEU, METEOR, ROUGE-L, BERT, and RadGraph F1 scores, while statistically significant 16 
(p<0.0001). One can see that in the provided examples, the report with random numbers doesn’t make 17 
clinical sense when compared to the original content (Table 5). 18 
 19 
Human Expert Evaluation 20 
We observed slight agreement for correctness, fair agreement for conciseness and clinical utility, and 21 
moderate agreement for completeness (Supplemental Table 5). Among the 4C metrics, we observed that 22 
EchoGPT significantly outperformed human experts in conciseness (p<0.001). There was no significant 23 
preference among the other three categories (Figure 5A). The 4C metrics were not completely 24 
independent. There was a high correlation between clinical utility and completeness (Pearson’s r= 0.78), 25 
and modest to moderate correlations between other metrics (Figure 5C). We also observed that across all 26 
automatic metrics, RadGraph F1 had modest to moderate correlations with all 4 human evaluation metrics 27 
(Figure 5C).  28 
 29 
External Validation on the MIMIC-EchoNotes dataset 30 
In the MIMIC-EchoNotes dataset (n=1,000), we observed a performance drop in fine-tuned models, while 31 
EchoGPT was still superior to fine-tuned Zephyr (Supplemental Table 4). Regarding the expert review, 32 
we observed moderate agreement for completeness and conciseness, but slight agreement for correctness 33 
and clinical utility (Table 6). The original reports (combined Conclusions and Impression sections) were 34 
preferred over EchoGPT in completeness, correctness, and clinical utility (p< 0.001); while EchoGPT 35 
was superior in conciseness (p<0.001) (Supplemental Figure 6A). RadGraph F1 still had the strongest 36 
correlations with the 4C metrics, although other metrics also had stronger correlations (Supplemental 37 
Figure 3). A representative example demonstrated the difference in reporting structure and style, along 38 
with reviewers’ feedback on the two datasets (Table 6).  39 
 40 
Discussion 41 
 42 
To the best of our knowledge, this study is the first attempt to compare multiple open-source LLMs in 43 
echocardiography report summarization through different model adaptation methods. Trained on one of 44 
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the largest echocardiography report datasets in the world, we demonstrated that QLoRA fine-tuning can 1 
significantly improve LLMs’ performance for the desired summarization task, with at least comparable 2 
qualities to human experts. Our results also indicate that ICL is associated with significant limitations for 3 
clinical practice, including compromised patient privacy and report quality. Additionally, we 4 
demonstrated that current automatic metrics are not sensitive to the change in measurement numbers in 5 
echo reports. The current study provides insights into the construction of a dedicated local LLM for echo 6 
report summarization and can pave the way for an AI-enabled echocardiography interpretation system 7 
with a human-AI interaction interface.  8 
 9 
Model Adaption Approaches: ICL vs. Fine-tuning 10 
Our results suggested that both ICL and QLoRA fine-tuning improved LLMs’ performance over zero-11 
shot, and fine-tuning performance was consistently above ICL across all automatic metrics (Figure 3). 12 
Additionally, we observed substantial limitations of ICL for echo reporting, including relatively longer 13 
context length and compromised patient privacy, as discussed below.  14 
 15 
Compared to CXR reports, echocardiography reports come with a relatively longer context, which 16 
directly affects the available choices of LLMs. In contrast to a prior study that used 32 or more 17 
examples13, we were only able to test up to 4 examples for ICL, therefore not able to assess the models’ 18 
behavior with more examples. However, across all metrics, LLMs’ had gradually down-trending 19 
performance when more examples were provided (Figure 3), which is consistent with prior studies13,35. It 20 
is also important to consider that the computation time and resources required in ICL can increase with 21 
the number of examples used35. Additionally, we note that LLMs integrate information from the example 22 
ICL cases, which compromises the report quality and potentially patient privacy (Supplemental Table 23 
3). While this behavior was not reported in other studies13,35, we believe it could be a common condition, 24 
that is easier to identify with numerical values (in echo) compared to narrative statements (in CXR). 25 
Therefore, even in scenarios where ICL can outperform fine-tuning13, fine-tuning may be preferable.  26 
 27 
The EchoGen study previously demonstrated that Bidirectional Auto-Regressive Transformers (BART) 28 
was superior to other rule-based approaches for summarizing echocardiogram reports, with BART 29 
achieving ROUGE-based scores between 0.65 and 0.73, however, human summaries were preferred by 30 
the majority of the time over those generated by the BART model26. Although EchoGPT didn't match the 31 
scores in ROUGE-L, it compared favorably to human experts in qualitative assessments. Additionally, in 32 
our study, we observed that T5 (as the representative seq2seq model) generated summaries that were 33 
overly brief, so important clinical information was missed (Supplemental Table 2). Although the 34 
EchoGen authors did not provide qualitative examples generated by their BART model, we assume that 35 
similar behavior occurred with BART which led to the unfavorable rating by physicians. 36 
 37 
Evaluation of Echo Report Summarization 38 
Automatic evaluation of LLM in clinical text summarization tasks is an emerging area, and there is no 39 
gold standard metric that can evaluate all aspects of a report13,26. Our study reinforces this conclusion. We 40 
noted that MedAlpaca and Zephyr can generate medical-professionally-sounding content that frequently 41 
includes hallucinated information. These differences were mainly reflected by the factual correctness 42 
metric RadGraph F1 (Table 4).  43 
 44 
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The practice style at each institution could greatly affect the quantitative performance of a model18. In the 1 
AZ validation set, we observed a 5-10% drop in performance of both fine-tuned Llama-2 and Zephyr 2 
(Supplemental Table 4). This is likely secondary to the differences in practice style: the AZ validation 3 
set, despite having a similar Finding section length, contained an average of 9.5 additional tokens in the 4 
Final Impression section (Table 3). A more significant drop in performance was observed in reports from 5 
the MIMIC-EchoNotes datasets (RadGraph F1 from 47.7 to 25.1; Supplemental Table 4), which was 6 
anticipated and within a reasonable range50. According to our observations and the input of expert 7 
reviewers, the key factors leading to the performance drop were: 8 
 9 

1. The distinct report structure (Findings/Impressions versus Findings/Conclusions/Impressions). 10 
2. The use of reporting languages (templated statements at Mayo versus the free-text style of the 11 

MIMIC-EchoNotes dataset). 12 
 13 
Specifically, the combination of the Conclusion and Impression sections makes the section almost as long 14 
as the Findings (184.3 ± 50.0 vs. 163.2 ± 40.4; Table 3), and even longer in some cases. Additionally, the 15 
physician's interpretation often contains information beyond the Findings, or variations of the original 16 
sentences, that the model won’t be able to summarize. Moreover, the sentence templates at Mayo include 17 
measurement numbers in relevant statements (e.g., ejection fraction, right ventricular systolic pressure, 18 
left atrial size index), while MIMIC-EchoNotes did not (Table 6). These factors contributed to the overall 19 
less favored completeness, correctness, and clinical utility of EchoGPT summaries on the MIMIC-20 
EchoNotes dataset (Supplemental Figure 3). It is important to note the low agreement on correctness and 21 
clinical utility metrics, which also implies the challenge on comparing reports with distinct styles 22 
(Supplemental Table 5). The difference across institutions, as listed above, could limit the direct 23 
generalization of a fine-tuned LLM for report summarization. However, while not comprehensively tested 24 
in the current study, we noted that adjusting the prompt to fit the reporting style could lead to better 25 
summaries without further fine-tuning50,51.    26 
 27 
Regarding the correlations between automatic metrics and human expert preference, our results were 28 
similar to the prior studies, showing that most of the metrics were not strongly correlated13.  Notably, the 29 
highest correlation was observed between the RadGraph F1 scores and the 4C metrics, particularly in 30 
terms of clinical utility (r=0.42) (Figure 5C). This suggests that the quality of echo reports judged by 31 
cardiologists may not be well captured in automated metrics that do not capture notions of factual 32 
correctness. While stronger correlations were observed in the MIMIC-EchoNotes examples 33 
(Supplemental Figure 3), we believe it was reflecting the strong preference secondary to the distinct 34 
reporting style. 35 
 36 
As a specific subtype of clinical text, echocardiography reports contain unique terminology, including 37 
precise measurements. Clinically, 25% and 55% LV ejection fraction values indicate a significant 38 
difference, however, our study demonstrates that this distinction is difficult to capture with current 39 
automatic metrics (Table 5). While this aspect of reporting can be easily captured in qualitative analyses, 40 
such analyses are expensive to conduct at scale because of the limited availability of in-domain experts. A 41 
dedicated metric for echocardiography diagnostic quality evaluation, with emphasis on measurement 42 
accuracy, is still needed to address this knowledge gap. 43 
 44 
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Application of EchoGPT 1 
Our study shows the feasibility of introducing LLMs into echocardiography practice. Through the 2 
QLoRA fine-tuning process38, the EchoGPT model was able to learn clinically relevant knowledge to 3 
summarize echo report findings at a quality level comparable to echocardiography-trained cardiologists 4 
(Figure 6A).  5 
 6 
The current study concentrated solely on the performance of EchoGPT in summarizing echocardiogram 7 
reports. However, as an LLM-based system, EchoGPT holds promise for broader applications, including 8 
providing in-context clinical reasoning, answering questions based on patient data, and interacting with 9 
human experts or other models12,16,52. In contemplating these expanded functionalities, two critical factors 10 
emerge: the maximum permissible context length and the model's proficiency in managing conversations. 11 
These considerations might restrict the use of existing seq2seq models in such scenarios33. 12 
 13 
We envision that EchoGPT could be used as a reporting interface or a co-pilot that could generate echo 14 
reports with various inputs53. EchoGPT inherits the limitations of LLMs, including hallucination13,18,54. 15 
Although the fine-tuning process can potentially reduce hallucinations, additional efforts such as 16 
optimization for factual correctness46 or paired with a retrieval augmented generation system55 are still 17 
required to minimize hallucinations before clinical implementation. 18 
 19 
Conclusion 20 
Our study successfully built EchoGPT through QLoRA fine-tuning of open-source LLMs and 21 
demonstrated that the model is capable of generating echocardiography reports on par with cardiologists, 22 
marking an advancement in integrating LLMs into current echo practice. Through further optimizations in 23 
the future, EchoGPT is envisioned to become a human-AI co-pilot for echo report generation. 24 
 25 
Limitations 26 
This study is limited by its retrospective nature and a predominantly white population served by the 27 
healthcare system. However, we were able to demonstrate that the algorithm is not biased by sex and race. 28 
Our echocardiography reports are based on standardized statements, with an option to add free text. While 29 
the lexical variance was high, the corpus could differ from reports composed entirely of free text contents. 30 
Due to patient privacy regulations, this work did not assess the performance of GPT-3.5 and GPT-4. 31 
However, we compared the performance of state-of-the-art open-source LLMs, which provided important 32 
insights for model selection when data privacy is a critical consideration. Instead of full fine-tuning, 33 
QLoRA was used as the fine-tuning approach, however, it has been demonstrated as an effective 34 
approach as full fine-tuning is often not feasible for LLMs. Last but not the least, although QLoRA fine-35 
tuning demonstrated improvements in echo report summarization tasks, our current approach does not 36 
include optimization for factual correctness and human expert preference. 37 
 38 
Data Availability 39 
The data that support the findings of this study are not openly available due to reasons of sensitivity and 40 
patient privacy. Data are located in controlled access data storage at the Mayo Clinic. The MIMIC-41 
EchoNotes (ECHO-NOTE2NUM) data is publicly available at https://doi.org/10.13026/xhrz-ht59 42 
 43 
Code Availability 44 
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We released a checkpoint of the fine-tuned Llama-2 model, along with the QLoRA fine-tuning, inference, 1 
and statistical analysis code. The code and checkpoint are available on GitHub: 2 
https://github.com/chiehjuchao/EchoGPT.git 3 

Figure Legends 4 

Figure 1. The current workflow of summarizing echo Findings into clinically relevant Final Impressions.  5 
 6 
Figure 2. Overview of the EchoGPT study. 7 
 8 
Figure 3. ICL performance of each LLM. Panel A to E correspond to BLEU, METEOR, ROUGE-L, 9 
BERT Score, and RadGraph F1 Score, respectively. Zero-shot and fine-tuned Llama-2 (EchoGPT; 10 
horizontal purple dashed line) performance was included for reference. 11 
 12 
Figure 4. Model win rates on the test set. Model win rate heatmap illustrates the head-to-head win rate 13 
comparisons (in percentile) among different models based on the selected metrics. Cool colors indicate 14 
lower win rates and warmed colors indicate higher win rates. We compared Llama-2 (base and fine-15 
tuned), Zephyr (base and fine-tuned), T5 (base), and MedAlpaca (base). Fine-tuned Llama-2 consistently 16 
outperformed all other models across all 5 automatic metrics. FT: fine-tuned. ZS: zero-shot (base model). 17 
 18 
Figure 5. Human expert qualitative evaluation results. Panel A. In the 4 categories, EchoGPT 19 
significantly outperformed human experts in conciseness (p<0.001). We didn’t observe significant 20 
differences among the other three categories (completeness, correctness, and clinical utility). Panel B. 21 
showed interdependence of the 4C metrics, especially the correlations between clinical utility and 22 
completeness (Pearson’s r= 0.78), and modest to moderate correlations between other metrics. Panel C. 23 
Correlations between automatic metrics and the 4C metrics. Across all automatic metrics, RadGraph F1 24 
had modest to moderate correlations with all 4 human evaluation metrics. Preference ratings were 25 
expressed as mean ± standard deviation, **indicates p<0.001. 26 

Supplemental Materials 27 

Supplemental Figure 1. Echocardiography expert review questionnaire. Expert readers were asked to 28 
rate summaries A and B concerning the 4C metrics without knowing it’s a human- or LLM-generated 29 
summary.  30 

Supplemental Figure 2. This bar chart displays model performance across five automatic metrics, 31 
considering sex (male vs. female) and race (white, black, and other) variables. Panels A and B compare 32 
metrics by sex and race variables in the test set, while Panels C and D perform the same comparisons in 33 
the AZ validation set. There were no significant biases detected for sex or race, except for slightly better 34 
RadGraph F1 performance in female patients within the AZ validation set (male vs. female: 0.38 ± 0.14 35 
vs. 0.40 ± 0.15, p=0.04). Scores were presented as mean values ± standard error bars. Demographic 36 
information was not available for the same analysis in the MIMIC-EchoNotes dataset. 37 

Supplemental Figure 3. Human expert qualitative evaluation results on the MIMIC-EchoNotes dataset. 38 
Panel A. In the 4 categories, the original reports (combined Conclusions and Impression sections) were 39 
preferred over EchoGPT in completeness, correctness, and clinical utility (p< 0.001); while EchoGPT 40 
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was superior in conciseness (p<0.001). Panel B. Interdependence of the 4C metrics, especially the 1 
correlations between clinical utility, completeness, and correctness (Pearson’s r= 0.48 and 0.66, 2 
respectively). Panel C. Correlations between automatic metrics and the 4C metrics. Across all automatic 3 
metrics, RadGraph F1 still had the strongest correlations with the 4C metrics, although other metrics also 4 
had stronger correlations. Preference ratings were expressed as mean ± standard deviation, **indicates 5 
p<0.001. 6 
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Tables 1 

Table 1. Prompt Template 2 

 Prompt Component 

Prefix “You are a knowledgeable cardiologist.” 

Instruction “For the following echocardiography report findings, 
please write a concise summary with a minimal 
amount of text.” 

Suffix (ICL only) “Use the following examples to guide word choice.” 

 3 
Table 2. Definition of the 4C Human Expert Evaluation Metrics 4 

Metric Definition 

Completeness This metric evaluates whether the generated contents 
include all relevant details, elements, or aspects, 
leaving no important information gaps. 

Conciseness This metric measures the quality of being clear and 
succinct, presenting information or content in a brief 
and straightforward manner without unnecessary 
elaboration or redundancy. 

Correctness This metric assesses whether the generated 
information is true, free from mistakes, and aligned 
with established facts or standards. 

Clinical Utility This metric evaluates whether the generated 
information is useful in clinical practice. 

 5 
Table 3. Data distribution of the development and AZ validation sets. 6 

  Development Set AZ validation set MIMIC-EchoNotes 

  All Train Validation Test    
  n= 97,506 n= 95,506 n=1,000 n=1,000 n=1,000 n=1,000 

Age 64.3 ± 15.8 64.3 ± 15.8 64.9 ± 16.0 64.7 ± 15.7 63.9 ± 16.0 -- 
Race            

White 89466 (91.8%) 87632 (91.8%) 914 (91.4%) 920 (92.0%) 885 (88.5%) -- 
Black 3326 (3.4%) 3257 (3.4%) 35 (3.5%) 34 (3.4%) 42 (4.2%) -- 
Other 2850 (2.9%) 2790 (2.9%) 28 (2.8%) 32 (3.2%) 35 (3.5%) -- 
Asian 1415 (1.5%) 1390 (1.5%) 16 (1.6%) 9 (0.9%) 22 (2.2%) -- 

Native American 362 (0.4%) 353 (0.4%) 5 (0.5%) 4 (0.4%) 13 (1.3%) -- 
Pacific Islander 87 (0.1%) 84 (0.1%) 2 (0.2%) 1 (0.1%) 3 (0.3%) -- 

Sex            
Male 54010 (55.4%) 52920 (55.4%) 563 (56.3%) 527 (52.7%) 584 (58.4%) -- 

Female 43496 (44.6%) 42586 (44.6%) 437 (43.7%) 473 (47.3%) 416 (41.6%) -- 
HTN 11578 (11.9%) 11320 (11.9%) 115 (11.5%) 143 (14.3%) 125 (12.5%) -- 
DM 14406 (14.8%) 14105 (14.8%) 142 (14.2%) 159 (15.9%) 115 (11.5%) -- 
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CAD 4983 (5.1%) 4863 (5.1%) 51 (5.1%) 69 (6.9%) 57 (5.7%) -- 
CHF 38908 (39.9%) 38105 (39.9%) 384 (38.4%) 419 (41.9%) 293 (29.3%) -- 
CKD 15071 (15.5%) 14759 (15.5%) 140 (14.0%) 172 (17.2%) 170 (17.0%) -- 
Stroke 2879 (3.0%) 2812 (2.9%) 30 (3.0%) 37 (3.7%) 21 (2.1%) -- 
Echo Study Type            

Adult TTE 79902 (81.9%) 78243 (81.9%) 833 (83.3%) 826 (82.6%) 776 (77.6%) 881 (88.1%) 
Adult TEE 7829 (8.0%) 7685 (8.0%) 65 (6.5%) 79 (7.9%) 63 (6.3%) 108 (10.8%) 

Exercise Stress 6781 (7.0%) 6652 (7.0%) 64 (6.4%) 65 (6.5%) 131 (13.1%) 11 (1.1%) 
Pharmacological Stress 2994 (3.1%) 2926 (3.1%) 38 (3.8%) 30 (3.0%) 30 (3.0%) -- 

Data Characteristics             
Average Number of Tokens 

(Findings) 215.7 ± 55.8 215.7 ± 55.9 213.1 ± 55.2 214.8 ± 53.3 217.1 ± 77.3 184.3 ± 50.0 

Average Number of Tokens 
(Final Impression) 88.2 ± 34.3 88.2 ± 34.3 87.1 ± 33.7 86.8 ± 33.6 97.7 ± 37.9 163.2 ± 40.4 

Average Lexical Variance 
(Findings) 0.51 0.51 0.52 0.51 0.52 0.54 

Average Lexical Variance 
(Final Impression) 0.65 0.65 0.65 0.65 0.64 0.52 

CAD: coronary artery disease, HTN: hypertension, DM: diabetes, CKD: chronic kidney disease, CHF: congestive heart 
failure. TTE: transthoracic echocardiography, TEE: transesophageal echocardiography. 

 1 
Table 4.  Quantitative performance of zero-shot and QLoRA fine-tuned LLMs 2 

Model Flan-T5 MedAlpaca Llama-2 Zephyr 
Metric zero-shot zero-shot zero-shot QLoRA P-value* zero-shot QLoRA P-value* P-value** 
BLEU 9.8 ± 9.8 2.0 ± 4.4 6.8 ± 5.5 45.9 ± 18.9 <0.0001 3.5 ± 4.2 20.6 ± 15.5 <0.0001 <0.0001 
METEOR 35.6 ± 16.0 18.8 ± 9.6 21.6 ± 7.3 62.4 ± 18.0 <0.0001 21.8 ± 7.9 35.0 ± 16.1 <0.0001 <0.0001 
ROUGE-L 22.4 ± 12.0 17.5 ± 9.6 21.3 ± 8.5 55.7 ± 17.8 <0.0001 19.1 ± 7.4 32.8 ± 15.3 <0.0001 <0.0001 
BERT 
Score 85.9 ± 2.5 81.6 ± 3.4 85.4 ± 2.0 91.6 ± 3.0 <0.0001 83.5 ± 2.7 87.4 ± 3.9 <0.0001 <0.0001 
RadGraph 
F1 17.6 ± 10.8 11.2 ± 8.8 24.2 ± 11.6 47.7 ± 14.9 <0.0001 14.7 ± 9.4 29.3 ± 10.4 <0.0001 <0.0001 
*Compared zero-shot to QLoRA performance of the same model; **Compared performance of QLoRA Llama-2 and 
Zephyr. BLEU: Bilingual Evaluation Understudy, METEOR: Metric for Evaluation of Translation with Explicit ORdering, 
ROUGE-L: Recall-Oriented Understudy for Gisting Evaluation - Longest Common Subsequence, BERT: Bidirectional 
Encoder Representations from Transformers. 

 3 
Table 5.  Comparison of Automatic Metrics between the Original Response and the Synthetic 4 

Response 5 
Model: 
EchoGPT 

Original Response Synthetic Response: 
Replaced Measurements 
with Random Numbers 

QLoRA Random 
Measurements  

P-value 

BLEU Grade 1/4 left ventricular 
diastolic dysfunction, 
consistent with low to 
normal left ventricular 

filling pressure. estimated 
right ventricular systolic 

pressure 24 (systolic blood 

Grade 9/53 left ventricular 
diastolic dysfunction, 
consistent with low to 
normal left ventricular 

filling pressure. estimated 
right ventricular systolic 

pressure 68 (systolic blood 

45.9 ± 18.9 40.4 ± 16.4 <0.0001 

METEOR 62.4 ± 18.0 58.7 ± 16.8 <0.0001 

ROUGE-L 55.7 ± 17.8 52.2 ± 16.5 <0.0001 

BERT 
Score 

91.6 ± 3.0 91.2 ± 2.8 <0.0001 
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RadGraph 
F1 

pressure 108). calculated 
ejection fraction; 64%. no 

regional wall motion 
abnormalities. mildly 

enlarged mid ascending 
aorta diameter of 40. 

pressure 52). normal left 
ventricular chamber size. 

calculated ejection fraction; 
98%. no regional wall 
motion abnormalities. 
mildly enlarged mid 

ascending aorta diameter of 
12.  

47.7 ± 14.9 45.3 ± 13.7 <0.0001 

 1 
Table 6. Representative Examples in Reader Study 2 

Mayo Echo 
Report Findings Impression EchoGPT Summary 

Representativ
e Example 

Calculated 2-d linear left ventricular 
ejection fraction 61. No regional wall 
motion abnormalities. aortic valve strands 
(on the ventricular side of the valve). 
Estimated right ventricular systolic pressure 
23 (systolic blood pressure 108). Normal 
abdominal aorta doppler flow pattern. 
Normal left ventricular wall thickness. No 
atrial level shunt by color flow imaging. left 
atrial volume index 30. Trivial aortic valve 
regurgitation. Trivial mitral valve 
regurgitation. Trivial pulmonary valve 
regurgitation. Trivial tricuspid valve 
regurgitation. No pericardial effusion. 
Normal aortic valve. thickness. Normal 
pulmonary valve. Normal mitral valve. 
Normal tricuspid valve. Trileaflet aortic 
valve. Normal left ventricular chamber size. 
Normal right ventricular chamber size. 
Normal right atrial size. Normal left atrial 
size with normal inspiratory collapse 
(>50%) inferior vena cava size normal. 
Normal ascending aorta diameter. Normal 
right ventricular systolic function. Normal 
pulmonary valve systolic velocities. No 
abdominal aortic aneurysm. Normal left 
ventricular diastolic function. Calculated 2-
d monoplane volumetric left ventricular 
ejection fraction 59. 

Normal left ventricular chamber size. 
Calculated ejection fraction 61%. No regional 
wall motion abnormalities. Normal right 
ventricular chamber size and function. 
Estimated right ventricular systolic pressure 
23 mmHg. Inferior vena cava size: normal, 
with normal inspiratory collapse (>50%).  
Normal left ventricular diastolic function. 

No regional wall motion 
abnormalities. Normal 
cardiac valves. Estimated 
right ventricular systolic 
pressure 23 (systolic blood 
pressure 108). No 
pericardial effusion. 
Normal left ventricular 
chamber size and wall 
thickness. Calculated left 
ventricular ejection fraction 
61%. Normal right 
ventricular chamber size 
and systolic function. 
Inferior vena cava size: 
normal, with normal 
inspiratory collapse (>50%)  

Comments 

Numbers were utilized in pertinent 
statements, such as right ventricular systolic 
pressure, systolic blood pressure, ejection 
fraction, and left atrial volume index. 
Typical reports detail the method of LVEF 
measurement alongside the value. 

This section typically contains a 7–10-point 
summary that covers the overall condition of 
the heart. In this case, no information beyond 
the Findings was included. 

EchoGPT captured the 
relevant findings, although 
not in the same order. LV 
ejection fraction 
measurement was included 
in the summary (61%).  

MIMIC-
EchoNote 

Report Findings Conclusions/Impression EchoGPT Summary 
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Representativ
e Example 

Highly mobile echodensity (0.8x0.5 cm) in 
the right atrium, best seen on right ventricle 
inflow views, which appears to be attached 
to a catheter (catheter not fully visualized, 
but patient with history of port-A-cath). 
Doppler across tricuspid valve suggestive of 
tricuspid valve prolapse. Normal left atrium 
size. Normal right atrium size. right atrium 
mass. Normal inferior vena cava diameter 
(<=2.1cm) with >50% decrease with sniff 
(estimated right atrium pressure (0-5 
mmHg). Normal left ventricle wall 
thickness, cavity size and regional/global 
systolic function (left ventricular ejection 
fraction >55%). Normal right ventricle 
chamber size and free wall motion. Normal 
diameter of aorta at the sinus, ascending and 
arch levels. No 2D or Doppler evidence of 
distal arch coarctation. Normal aortic valve 
leaflets (3). No aortic stenosis. No aortic 
regurgitation. Normal mitral valve leaflets 
with trivial mitral regurgitation. TVP. Mild 
tricuspid regurgitation. Normal pulmonic 
valve leaflet. No PS. Physiologic pulmonary 
regurgitation. No pericardial effusion. If 
clinically indicated, a transesophageal 
echocardiographic examination is 
recommended. Echocardiographic results 
were reviewed by telephone with the MD 
caring for the patient. 

The left atrium is normal in size. A highly 
mobile mass, measuring 0.8x0.5 cm, is seen in 
the right atrium (possibly attached to a 
catheter?) which may represent thrombus or 
vegetation. The estimated right atrial pressure 
is 0-5 mmHg. Left ventricular wall thickness, 
cavity size and regional/global systolic 
function are normal (left ventricular ejection 
fraction >55%). Right ventricular chamber 
size and free wall motion are normal. The 
diameters of aorta at the sinus, ascending and 
arch levels are normal. The aortic valve 
leaflets (3) appear structurally normal with 
good leaflet excursion and no aortic stenosis 
or aortic regurgitation. Tricuspid valve 
prolapse is present based on doppler findings 
with mild tricuspid regurgitation. The mitral 
valve appears structurally normal with trivial 
mitral regurgitation. There is no pericardial 
effusion. Highly mobile mass is seen in the 
right atrium (possibly attached to a catheter?) 
which may represent thrombus or vegetation. 
Clinical correlation advised. Normal 
biventricular systolic function. Tricuspid 
valve prolapse with mild tricuspid 
regurgitation. If clinically indicated, a 
transesophageal echocardiographic 
examination is recommended. Drs. and were 
notified of these findings at 4:45 p.m. today. 

Mass noted in right atrium, 
measuring 0.8 x 0.5cm, 
attached to a catheter 
(catheter not fully 
visualized but has history 
of port-A-cath). Doppler 
across tricuspid valve 
suggestive of tricuspid 
valve prolapse. Normal left 
ventricular chamber size, 
normal regional/global 
systolic function, estimated 
ejection fraction 60%. 
Normal right ventricular 
chamber size and function. 
Normal diameter of aorta at 
the sinus, ascending and 
arch levels. No 2D or 
Doppler evidence of distal 
arch coarctation. No 
pericardial effusion. If 
clinically indicated, a 
transesophageal 
echocardiographic 
examination is 
recommended. 

Comments 

In the findings section, normal LVEF was 
described as 'LVEF > 55%' without further 
specification. Measurements such as right 
ventricular systolic pressure, and LA 
volume index were not included in the 
report. 

The combined section was longer than the 
Findings section. The blue and red text 
belongs to the Conclusions and Impression 
sections, respectively. Information beyond the 
Findings was in the text: "Drs. and were 
notified…" 

Relatively brief summary 
generated by EchoGPT, 
capturing the important 
findings (right atrial mass 
attached to catheter) and 
relevant recommendations. 
However, EchoGPT 
hallucinated estimated 
ejection fraction- which 
was a template sentence 
used at Mayo. 

  1 
Supplemental Tables 2 
 3 
Supplemental Table 1. Hyperparameter Search Results 4 

  Temperature (RP fixed at 1.1) 
Repetition Penalty (Temp fixed 

at 0.1) 
  0.1 0.5 0.9 1.2 1.3 

LLaMA-2 
BLEU 8.0 ± 5.4 8.8 ± 6.7 8.0 ± 6.1 5.5 ± 4.6 1.1 ± 1.8 
METEOR 23.3 ± 8.2 24.1 ± 8.2 23.0 ± 8.1 20.1 ± 6.9 12.9 ± 5.7 
ROUGE-L 22.3 ± 7.4 23.2 ± 7.8 23.3 ± 9.3 18.7 ± 7.0 11.6 ± 5.3 
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BERT Score 85.7 ± 1.5 86.0 ± 1.4 85.8 ± 1.6 84.7 ± 2.0 82.4 ± 1.6 
RadGraph F1 26.2 ± 9.9 25.9 ± 10.7 26.2 ± 12.4 20.4 ± 9.9 10.3 ± 7.0 

MedAlpaca 
BLEU 0.9 ± 2.8 0.5 ± 1.6 0.7 ± 2.0 0.1 ± 0.8 0.0 ± 0.0 
METEOR 12.3 ± 7.4 13.9 ± 8.9 13.1 ± 9.4 9.2 ± 6.1 5.6 ± 3.2 
ROUGE-L 9.9 ± 7.3 10.4 ± 7.9 9.4 ± 7.5 6.7 ± 4.9 3.9 ± 2.7 
BERT Score 81.3 ± 2.7 81.6 ± 2.8 81.4 ± 3.1 80.4 ± 2.2 79.4 ± 1.6 
RadGraph F1 7.1 ± 8.2 7.4 ± 7.1 7.9 ± 8.3 3.2 ± 3.9 1.0 ± 2.1 

Zephyr 
BLEU 4.4 ± 6.3 4.0 ± 4.5 4.4 ± 5.0 1.3 ± 2.7 0.1 ± 0.6 
METEOR 23.5 ± 8.3 22.8 ± 7.6 22.6 ± 9.1 18.1 ± 6.6 12.8 ± 5.8 
ROUGE-L 20.2 ± 7.8 19.6 ± 7.4 19.0 ± 7.6 14.6 ± 5.5 10.6 ± 5.1 
BERT Score 83.6 ± 2.8 83.9 ± 2.5 83.5 ± 2.9 82.8 ± 2.0 81.5 ± 1.7 
RadGraph F1 16.5 ± 9.6 16.4 ± 9.8 14.8 ± 10.8 7.9 ± 7.0 3.3 ± 4.7 

Flan-T5 
BLEU 9.6 ± 9.3 10.3 ± 10.2 9.8 ± 8.7 9.3 ± 8.2 9.9 ± 9.3 
METEOR 37.0 ± 14.8 37.9 ± 15.3 37.5 ± 15.0 37.8 ± 15.0 37.7 ± 14.0 
ROUGE-L 22.8 ± 10.2 23.2 ± 10.4 22.7 ± 9.6 22.6 ± 9.8 22.8 ± 10.0 
BERT Score 85.8 ± 2.2 86.1 ± 2.2 85.9 ± 2.3 86.0 ± 2.3 85.9 ± 2.1 
RadGraph F1 18.2 ± 10.3 19.5 ± 10.9 18.3 ± 10.0 17.9 ± 10.4 18.5 ± 9.7 
Temp: temperature, Repetition Penalty: RP, BLEU: Bilingual Evaluation Understudy, METEOR: Metric 
for Evaluation of Translation with Explicit ORdering, ROUGE-L: Recall-Oriented Understudy for Gisting 
Evaluation - Longest Common Subsequence, BERT: Bidirectional Encoder Representations from 
Transformers.  
 1 
Supplemental Table 2. Representative Example of Zero-shot Results 2 

Model Ground Truth LLaMA-2 Flan-T5 Zephyr MedAlpaca 

Representati
ve Example 

Global hypokinesis 
with superimposed 
regional variation 
(please see wall 
motion graphics).  
estimated right 
ventricular systolic 
pressure 32 (systolic 
blood pressure 120). 
no pericardial 
effusion. no 
significant valvular 
heart disease. 
moderate-severely 
enlarged left 
ventricular chamber 
size; calculated 
ejection fraction 
25%. normal right 
ventricular chamber 
size. with borderline 
decrease in systolic 
function. with 
normal inspiratory 
collapse (>50%) 
inferior vena cava 
size normal. 
indeterminate left 
ventricular diastolic 
function." 

The patient presents with global 
hypokinesia and regional 
variation in left ventricular wall 
motion. There is no evidence of 
intracardiac mass or thrombus, 
but the left atrial appendage 
cannot be adequately visualized 
for thrombus exclusion. The 
estimated right ventricular 
systolic pressure is 32 mmHg, 
and there is an anterior 
epicardial fat layer. The 
pulmonary valve is partially 
visualized, and the abdominal 
aorta has an incomplete Doppler 
flow pattern. The left ventricular 
wall thickness is normal, and 
there is no atrial level shunt. 
However, the left atrium volume 
index is slightly elevated, and 
there is mild mitral valve 
regurgitation and trivial 
pulmonary valve regurgitation. 
Additionally, the patient has 
moderate-severe left ventricular 
chamber enlargement, normal 
right ventricular chamber size, 
and normal aortic valve 
function. Overall, the patient's 
cardiac function appears 
compromised, likely due to 
chronic heart failure. Further 

Calculated 2-d 
linear left 
ventricular 
ejection 
fraction 25. 
global 
hypokinesis 
with 
superimposed 
regional 
variation. No 
intracardiac 
mass or 
thrombus. 

LVEF: 25% with 
superimposed 
regional variation 
(hypokinesis) - No 
intracardiac mass, 
but LAA cannot be 
ruled out for 
thrombus 
(transthoracic only) - 
Mild MR; trivial TR 
and PVR - Anterior 
epicardial fat; 
pulmonary valve not 
well visualized - 
Normal RV systolic 
pressures, AV, and 
RA sizes - Moderate-
severe chamber 
enlargement; 
borderline RV syst. 

Summary: This is a good 
study from which I can 
conclude that the patient has 
mild MR and TR. His 
LVESD is slightly above 
normal and his RVSV is 
slightly decreased. His PVR 
is also low. He does have a 
thrombus in the left atrial 
appendage, although it may 
not be noticeable on this 
particular study. His 
pulmonary artery velocity is 
normal but the abdominal 
aorta could not be measured 
adequately. So more 
information is needed for a 
full diagnosis. There is some 
fat in the epicardium, which 
is also nonspecific and might 
be seen in many patients. 
There is evidence of LV 
strain but again, more 
information is needed. The 
LA size is normal as is the 
RV size, and the IVC was 
normal. The aorta was normal 
in size. In general, there are 
no significant abnormalities 
and no cause for concern at 
this time. 
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evaluation and management are 
warranted. 

Comments -- Summary of the findings with 
transitioning words that did not 

alter the original meaning. 

Concise 
summary but 

omitted clinical 
important 

information. 

Concise bullet point 
summary with false 

information. 

Medical Professional-
sounding, but hallucinated 

information. 

 1 
Supplemental Table 3. Representative Example: In-context Learning Integrated Information from 2 
Multiple Examples 3 

 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 

  Sentence Model Summary 

Case Calculated 2-d linear left ventricular ejection fraction 57.  "Calculated 2-d linear left 
ventricular ejection fraction 57, 

61, 75 (3 reports)" ICL Examples Calculated 2-d linear left ventricular ejection fraction 56. 

  Calculated 2-d linear left ventricular ejection fraction 75 

  Calculated 2-d linear left ventricular ejection fraction 69 

  Calculated 2-d linear left ventricular ejection fraction 61 
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Supplemental Table 4. Performance of Fine-tuned LLMs on the AZ Validation and MIMIC-1 
EchoNote Datasets 2 
 3 

 4 

 5 
 6 
 7 
 8 
 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

Supplemental Table 5. Agreement of the Ratings Between Echo-Expert Readers. 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 
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Open Source LLMs (LLaMA-2, Zephyr, MedAlpaca, Flan T5)
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Supplemental Figure 3 - Human eval on MIMIC-Echo
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