Understanding exogenous factors and biological mechanisms for cognitive frailty: a multidisciplinary scoping review

Carol Holland^{a,1}, Nikolett Dravecz^a, Lauren Owens^b, Alexandre Benedetto^b, Irundika Dias^c, Alan Gow^d, Susan Broughton^b

^aDivision of Health Research, Health Innovation One, Sir John Fisher Drive, Lancaster University, Lancaster, LA1 4YW, UK. <u>c.a.holland@lancaster.ac.uk;</u> <u>n.dravecz2@lancaster.ac.uk</u> ^bDivision of Biomedical and Life Sciences, Furness College, Lancaster University, LA1 4YG,

UK. <u>lauren.owens97@yahoo.co.uk;</u> <u>a.benedetto@lancaster.ac.uk;</u> s.j.broughton@lancaster.ac.uk.

^cAston University Medical School, Aston University, Birmingham, B4 7ET UK. <u>diashki1@aston.ac.uk</u>

^dCentre for Applied Behavioural Sciences, Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh, EH14 4AS <u>a.j.gow@hw.ac.uk</u>

¹Corresponding author. Email <u>c.a.holland@lancaster.ac.uk</u>

Highlights

- Specific impairments in cognition distinguish cognitive frailty from early dementias.
- Depression mediates links between frailty and cognitive impairment in aging.
- Psychosocial and environmental factors impact underlying biological processes.
- Health behaviour and population interventions could prevent or reverse cognitive frailty.
- Development of model organism models of cognitive frailty is needed.

Abstract

Cognitive frailty (CF) is the conjunction of cognitive impairment without dementia and physical frailty. While predictors of each element are well-researched, mechanisms of their co-occurrence have not been integrated, particularly in terms of relationships between social, psychological, and biological factors. This interdisciplinary scoping review set out to categorise a heterogenous multidisciplinary literature to identify potential pathways and mechanisms of CF, and research gaps. Studies were included if they used the definition of CF OR focused on conjunction of cognitive impairment and frailty, AND excluded studies on specific disease populations, interventions, epidemiology or prediction of mortality. Searches used Web of Science, PubMed and Science Direct. Search terms included "cognitive frailty" OR (("cognitive decline" OR "cognitive impairment") AND (frail*)), with terms to elicit mechanisms, predictors, causes, pathways and risk factors. To ensure inclusion of animal and cell models, keywords such as "behavioural" or "cognitive decline" or "senescence", were added. 206 papers were included. Descriptive analysis provided highlevel categorisation of determinants from social and environmental through psychological to biological. Patterns distinguishing CF from Alzheimer's disease were identified and social and psychological moderators and mediators of underlying biological and physiological changes and of trajectories of CF development were suggested as foci for further research.

Keywords: Cognitive frailty; physical frailty; cognitive impairment; ageing mechanisms; psychosocial risk factors; model organisms

1. Background

Frailty increases the risk of future cognitive decline and cognitive impairment increases the risk of future frailty (Robertson et al., 2013), suggesting common pathways or interactions with mechanisms associated with ageing. For example, Grande et al., (2019) demonstrated that 20% of people with physical frailty also had cognitive impairment with no dementia (CIND), and 15% with CIND were assessed as physically frail. Physical frailty has been defined: (i) as a physical phenotype (Fried et al., 2001) in which a person is classified as frail when three or more of five characteristics of physical weakness are present (e.g. slow gait speed, self-reported exhaustion, muscle weakness); (ii) by an 'accumulation of deficits' approach to produce a frailty profile (Rockwood & Mitnitski, 2007). Both definitions relate to a recognised syndrome characterised as a state of increased vulnerability to adverse health outcomes when exposed to stressors (Clegg et al., 2013). Underlying biological changes are relate to an absence of physiological resilience, including accelerated muscle wasting, metabolic deficits, cardiovascular disease, and inflammatory symptoms. Symptoms and related long-term conditions in turn accelerate cognitive decline, leading to further worsening quality of life (QoL) and reduced healthy lifespan. Occurrence of frailty in cognitively impaired older people rapidly worsens physical and mental health, increasingly impacting their economic activity, independence, need for care and, therefore, economic cost to society.

This simultaneous presence of both physical frailty and cognitive impairment without concurrent dementia was defined as Cognitive Frailty (CF) (Kelaiditi et al., 2013). CF has been described as a potentially reversible syndrome (Ruan et al., 2015; Ruan et al., 2020), sharing similar life course predictors to dementia, including education, physical activity and metabolic pathologies. A review on the effectiveness of interventions to prevent frailty progression in older people (Apostolo et al., 2018) found that some frailty interventions also improved cognitive outcomes, suggesting that CF is indeed a reversible syndrome. From a biological perspective, understanding of ageing, including underlying causes of cognitive change and dementia, has greatly progressed through research on animal models. However, understanding of the biological underpinnings of the association between CIND and physical frailty remains limited. This scoping review therefore focuses on research considering contributions of both exogenous factors (e.g., social determinants) and cognitive and biological mechanisms related to CF (or related concepts in model organisms) including potential mediators of primary mechanisms.

Earlier reviews and meta-analyses were identified. Robertson et al., (2013), published prior to the 2013 definition of CF (Kelaiditi et al.), reviewed evidence for associations between frailty and cognitive impairment. Proposed underlying mechanisms included brain neuropathology, hormonal dysregulations, cardiovascular risk and psychological factors. They identified frailty components of gait speed and grip strength as reliable predictors of cognitive decline, while other aspects (e.g. unintentional weight loss) were less predictive. Cognitive domains robustly associated with frailty included processing speed and executive functions, specifically sustained and divided attention, but a frailty-memory link was less reliable. The review emphasised links between gait speed and these cognitive domains, and between frailty and cardiovascular disease, itself associated with slowed reaction times and reduced executive function. Evidence for mechanisms connecting cognitive impairment and frailty included: endocrine factors; nutrition (e.g. anti-oxidants); inflammation; vascular risk factors; mood disorders, particularly the interaction between vascular burden and depression; reduced physical activity; social engagement/vulnerability. The review advanced understanding of mechanisms that link cognitive decline and frailty, but was published prior to the research intensification that followed the CF definition.

Grande et al.'s (2019) meta-analysis quantified the association of the co-occurrence of CIND and physical frailty (i.e., CF) with incident dementia; people with both CIND and physical frailty had a five-fold increased risk of dementia compared to people with neither CIND nor frailty (CIND alone provided a three-fold increase). Vatanabe et al., (2022) examined risks and predictors of CF. Meta-analysis could only be conducted on older age and history of falls, and though factors including sociodemographic, health, and blood-brain alterations were explored, potential mechanisms were not. Huang et al., (2023) also reviewed CF prediction models, concluding that most included age, depression, physical exercise, education and chronic disease.

Facal et al., (2019) focused on conceptual definitions of CF, the concept of brain and cognitive reserve, neuropathology, and important yet understated relationships between motor signs of ageing, cognitive functions and CF reversibility. Articles cited evidenced associations between CF and global cortical atrophy, white matter hyperintensities, and inflammation. They referred to Motoric Cognitive Risk (MCR) syndrome, defined by slow gait and cognitive impairments in the absence of dementia but related to increased risk of developing dementia. They emphasised a possible role for brain regions and circuits involved in motor and prefrontal executive functions in CF aetiology, and presented brain/cognitive reserve as a possible integrator of exogenous risk factors (e.g. occupation or social/intellectual complexity) and target for interventions.

Sugimoto et al., (2018), following Canevelli & Cesari (2015), suggested that executive function be used as a criterion for distinguishing neurodegenerative disorders (dementias that typically present with memory impairments), from cognitive impairment (CI) related to physical frailty (PF), which more commonly shows executive function decline. Finally, a bibliometric analysis of articles mentioning CF (Hui et al., 2022) yielded 2077 publications since the definition date of 2013, across a wide range of disciplines. Papers were ranked by most frequently mentioned key words: older adult, cognitive impairment, frailty, risk, dementia, prevalence, mortality, health, and Alzheimer's disease, in that order, with sarcopenia, mortality, prevalence, predictors, and prevention also featured. Underlying biological mechanisms were not covered. Given such limitations in previous works, we determined that a multidisciplinary scoping review is required that comprehensively surveys potential mechanisms of CF (from socio-cultural and economic determinants to biological), to guide further investigations into CF, improve understanding across disciplines, and map pathways for interventions.

2. Methods

This scoping review's methodology was guided by Arksey & O'Malley (2005), with reference to Peters et al., (2015). The search, inclusion and exclusion, and scope of extracted information were based on the question: What are the exogenous factors and biological mechanisms, including potential mediators of underlying mechanisms, that may lead to cognitive frailty? This was addressed in a multidisciplinary fashion, search terms adapted to include human sciences, social science, and model organism research. We also aimed to identify gaps in knowledge and research on CF and make recommendations for future research.

2.1. Keyword searches

We searched for papers published between 2013 (CF definition) and July 2022, and updated our searches in August 2023. Searches were conducted using PubMed, Science Direct and Web of Science using the initial search ("cognitive frailty") OR (("cognitive decline" OR "cognitive impairment") AND (frail*)) AND ("mechanisms" OR "predictors"). This was

subsequently extended to include: cause, risk factor, mediator, pathway. To retrieve relevant research in model organisms, where "cognitive frailty" is rarely used, the search was adapted to include combinations of: ("behavioural" OR "cognitive" OR "age-related") AND ("senesce" OR "senescence" OR "decline") AND ("model organism" OR "elegans" OR "mice" OR "drosophila"). Papers that cited Robertson et al. (2013) were included as potentially relevant. Relevant articles were identified from their titles and abstracts, and added to a Rayyan database. Abstracts were screened and papers selected according to the inclusion and exclusion criteria for full-text screening.

2.2. Inclusion/exclusion criteria

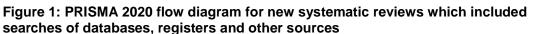
Exclusion: studies based in specific disease populations (e.g. dementia, cancer, HIV), no definition of frailty, studies focused on epidemiology or demography only, studies focussed on interventions only, studies not published in English.

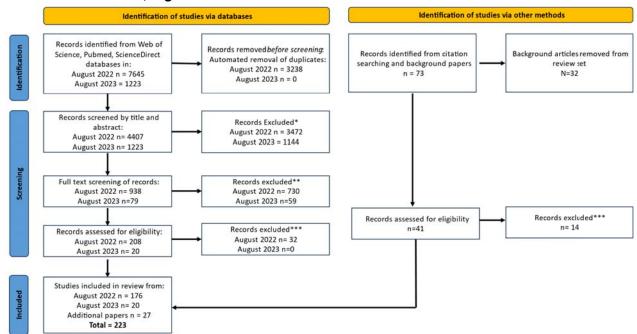
Inclusion: studies using a definition of CF or focusing on the conjunction of cognitive impairment no dementia and frailty; studies focusing on potential mechanisms, predictors or causes leading to CF (or equivalent terms in model organisms); published from 2013.

Types of Methods: All methods were included, ranging from laboratory research with animal models to research with human participants. Lifespan research was included where the focus was clearly on relevant ageing outcomes.

2.3. Screening process

Two reviewers independently screened titles and abstracts for eligibility (ND, LO). Specialists from our multidisciplinary team then screened full texts according to their expertise.


Characteristics of included papers were extracted, with borderline or uncertain inclusions referred to other appropriate specialists within the team. Data were charted according to: authors; year of publication; title; research question(s)/aims; study population (organism, age, gender distribution, number, any other characteristics e.g. care home population); key words; methodology/design; mechanism/predictor/biomarker; concept; outcome measures; key findings in relation to mechanisms of CF (see Table 1, supplementary materials).

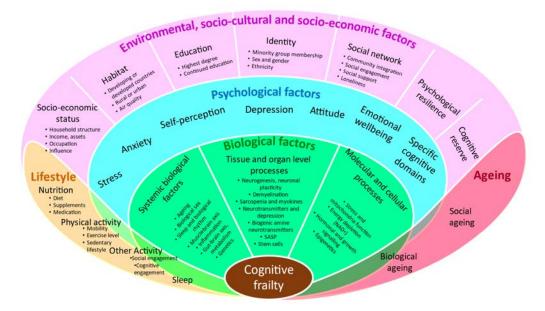

A descriptive analysis provided high-level categorisation of the different mechanisms, with an interdisciplinary focus. The reviewers then described findings within broad categories from the different specialisms, focussing on interactions between levels (e.g. between socioeconomic factors and psychological factors, or psychological and biomedical), and on perceived gaps in the literature.

3. Results

3.1. Search outcomes and included articles

A total of 7645 papers were initially entered into the Rayyan database in 2022 and a further 1223 in the update in August 2023, 1,017 of which were screened at full-text level, with 223 papers included in the scoping review. The screening process is illustrated in Figure 1. Quality appraisal of papers is not required in scoping review methodology.

*Exclusion reasons: Not about cognitive frailty (n=2923), Specific disease population (n=622), Intervention, not mechanism (n=373), Only epidemiology/demography (n=216), Immunity with no other function (n=136), Focused on neurodegeneration (n=116), Wrong publication type (n=69), Development/germline ageing (n=46), Not ageing related (n=49), Background article (n=25), Old paper (n=13), Stem cell ageing only (n=12), Foreign language (n=9), Too model specific (8)


**Exclusion reasons: Not about cognitive frailty (n=120), Association between cognition and frailty without mechanism (n=117), Outdated paper/research moved on (n=111), Frailty only (n=110), No or limited focus on mechanism (n=87), Cognition only (n=69), Specific disease population (n=45), Impacts of cognitive frailty (n=41), Focused on neurodegeneration (n=26), Intervention only, not mechanism (n=23), Study outline, no data (n=11), Background article (n=10), Not ageing related (n=7), Full text not available (n=7), Immunity only (n=3), Retracted article (n=2)

***Exclusion reasons: Intervention only, not mechanism (n=18), Not about CF (n=10), Specific disease population (n=3), Focuses on cognition and/or frailty separately (n=3), Focused on neurodegeneration (n=2), No focus on the mechanism of CF (n=2), Different CF definition (n=2)

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. For more information, visit: <u>http://www.prisma-statement.org/</u>

3.2. Categorisation of topics

Figure 2 illustrates the high-level categorisation. Description of the scope of existing knowledge follows and is presented by the categories depicted.

Figure 2: Categorisation of the literature focussing on mechanisms of cognitive frailty

Extracted data from all articles can be seen in Table 1, supplementary materials.

3.3. Factors Associated with Cognitive Frailty Identified in Human Studies

3.3.1. Socio-cultural, environmental and socio-economic factors

Education

Education, (years of education, highest attainment or level of literacy), was among the most commonly considered psychosocial risk factors, though many studies only included it for sample description, e.g. Bortone et al., (2021) suggested people with MCR had an average of one year less education. Education was an independent risk factor, mediator or moderator of associations between other risk factors. Higher education was associated with lower levels of PF and/or CF (Bortone et al., 2021; Chu, Bandeen-Roche, et al., 2021; Das, 2022; Ge et al., 2020; Giné-Garriga et al., 2021; Howrey et al., 2020; Khezrian et al., 2019; Ma et al., 2017; Navarro-Pardo et al., 2020; Rietman, Hulsegge et al., 2019; Sargent et al., 2018; Sugimoto et al., 2022; Zhang et al., 2021). Education (literate versus not) also reduced likelihood of transition from physical to cognitive frailty and was associated with improvement in CF (Yuan et al., 2022).

Most studies did not explain the education-CF association, but some discussed education as a marker of cognitive reserve in the development of CF (Chu, Bandeen-Roche, et al., 2021; Navarro-Pardo et al., 2020; Yuan et al., 2022; Zhang et al., 2021), given that education may modify the association between PF and cognitive decline. S. M. Lin et al., (2022) suggested education modified the association between frailty (assessed by gait speed) and cognitive function but that low education was simultaneously a predictor of lower cognitive ability and poorer health, often via other sociodemographic factors or health behaviours such as diet and physical activity.

Education has been proposed to explain reported ethnic differences in frailty prevalence, specifically where there are differences in educational opportunities (Gu et al., 2019), reflecting inequalities. Education may also be relevant to how public health messages are

received and evaluated to support healthy lifestyles and behaviours (Das, 2022), and the impact on access to health care, active ageing activities, work complexity, nutrition and levels of physical exercise (Navarro-Pardo et al., 2020).

While many studies report education as an independent predictor (Giné-Garriga et al., 2021; Howrey et al., 2020; Khezrian et al., 2019; Navarro-Pardo et al., 2020), not all do. Some reported that lower education was not retained as a predictor of CF once age, rurality and a range of health commodities and behaviours (Ma et al., 2017) or disease history (Chu et al., 2019) were included. This does not, however, mean education is not relevant to the development of CF and life course data could be examined to determine how education, generally from early life, may predict later health and behavioural factors throughout mid/later adulthood, which then predict CF.

Cognitive Reserve

Cognitive reserve refers to the ability to cope with brain pathology such as neurodegeneration using pre-existing cognitive processing or enlisting compensatory approaches (e.g. Stern, 2012). People with higher education, more cognitively stimulating occupations, leisure activities and retirements generally have more reserve.

Studies examining the PF to Mild Cognitive Impairment (MCI) pathway (development of CF) investigated the role of cognitive reserve indicated by proxies such as education. Older people who were frail at baseline showed steeper 5-year decline in cognition which was moderated by levels of education (Chu, Xue, et al., 2021), and other studies also showed moderation of the PF-cognition link (S. M. Lin et al., 2022).

Examining direct cross-sectional and longitudinal impacts of cognitive reserve, Quattropani et al., (2021) found that cognitive reserve was associated with cognitive function, a frailty index and individual frailty indicators such as walking speed, grip strength and Activities of Daily Living measures (ADLs). Higher reserve was associated with less decline in global cognition over one year, and higher frailty associated with more decline. However, cognitive reserve as a potential moderator of the impact of frailty on cognitive decline was not examined. In a mediation analysis, Jia et al., (2022), showed that cognitive reserve (a combination of education, occupation and social and cognitive engagement in later life) accounted for 20% of the relationship between frailty and cognitive impairment. Linguistic ability could be considered an aspect of cognitive reserve. Garcia et al., (2022) reported that people aged >65 demonstrating a greater number of ideas within spontaneous speech had a lower likelihood of CI and PF 9 years later, controlling for age and education, excluding anyone with PF/CI at baseline.

Cognitive reserve is closely associated with neural reserve, with functional changes being apparent when reserve is no longer sufficient to compensate for neurodegenerative changes. Studies demonstrated an association between CF and magnetic resonance imaging (MRI) features of neurodegeneration: Yoshiura et al., (2022) found more white matter lesions, lacunar infarcts, small-vessel disease lesions, microbleeds, and reduced medial temporal lobe volumes in those with CF as compared to normal controls and people with MCI or PF only.

Socioeconomic status

Among socioeconomic factors that predict CF, occupation underpins many as it determines income and socioeconomic status. Being out of work was a predictor of CF in women living in rural India (Das, 2022), and Navarro-Pardo et al. (2020) found that those in low qualification professions were at 2.56 times increased risk, accounting for age, education and psychological wellbeing. The link may not be direct; more professional occupational status (and associated education) increases access to health services, better working

conditions, more active lifestyles and better health behaviours. Confortin & Barbosa (2015) considered the nature of lifetime occupation (agricultural versus other sectors) and current working status (full/part-time, volunteering) as predictors of frailty and cognition in women in rural Brazil. While lifetime occupational sector did not predict PF, not working was associated with poorer outcomes. The authors suggested that, other factors accounted for, those who continue to work at older age are healthier and physically fitter. Causal direction could not be considered given the cross-sectional design.

In a Scottish cohort, an occupational profile was created by combining information on the highest status job completed, complexity of work with people, data and things, and occupational stress (Chapko et al., 2016). Association between occupational profile and the "triad of impairment" (cognitive, emotional and physical) was reported. Since markers of cognitive challenge made the largest contributions to the occupational profile, it was suggested those might be mechanistic targets, for example via job re-design. Other studies noted that poorer cognitive and physical outcomes can derive from social, economic and/or environmental circumstances, including lower income (Kritchevsky et al., 2019) and deprivation (Bongue et al., 2016). Das (2022), considered occupational and socioeconomic status simultaneously; both predicted CF, suggesting independent contributions. Not all studies support that, however, as though income was associated with CF in Ma et al. (2017), it was not retained in a final predictive model.

Habitat

Macro-level descriptions of where people live, such as high- versus low- or middle-income countries, or rural versus urban within countries, and also specific location markers such as air pollution, have been considered as predictors of CF. Although air pollution is one of twelve dementia risk factors identified (Livingston et al., 2020), only one paper relevant to CF was identified: Cohen and Gerber (2017) considered mechanisms for impaired cognitive function via vascular, inflammatory and oxidative pathways, which may also increase frailty risk. In addition, they proposed that the presence of frailty may increase vulnerability to detrimental effects of air pollution.

Two papers considered associations between rural/urban status and CF (Ma et al., 2017; Yuan et al., 2022) though others specifically recruited from rural areas (e.g., Confortin & Barbosa, 2015) ensuring often underrepresented groups were included. Ma et al. (2017) found that rural participants had higher CF prevalence. Mechanisms were not examined and as a cross-sectional analysis, it was not determined whether rurality increased likelihood of CF (e.g., due to fewer educational or occupational opportunities, poorer access to healthcare, etc.), or whether CF determined the likelihood of remaining in a rural environment with increasing age. Yuan et al. (2022) considered directionality in a longitudinal study. Rurality increased likelihood of transition to CF from an initial PF state, although no mechanistic pathway was suggested.

Studies also examined living arrangements: Rogans-Watson et al. (2020) explored prevalence of frailty in people experiencing homelessness living in a hostel, compared to population levels. Frailty was defined by cognitive or physical parameters rather than CF per se. Though participants' mean age was 58, they reported an average of 2.6 of 5 frailty criteria, comparable to the average 89-year-old. Homelessness may increase risk of frailty via a number of mechanisms, including social isolation; almost a third of the participants reported no contacts with friends/family. Other residential settings may be associated with CF, with studies conducted in care homes (Bekić et al., 2019), though frailty likely precedes admission. Baptista et al. (2020) focused on the gut microbiome and suggested people in long-term care had less diverse faecal microbiota than those in the community (Claesson et al., 2012). Even if frailty precedes residential status, the latter may determine future frailty, and targets for intervention such as the microbiome may be considered.

Social network: Social engagement, social support and loneliness

The simplest marker of social connectedness considered was marital status. Single people had higher prevalence of PF, CI, and their co-occurrence (Ge et al., 2020; Xie et al., 2021), even in models that included markers of social support (Das, 2022). Widowed individuals were at higher risk (Ma et al., 2017), though not when other risk factors (age, depression, exercise, etc.) were included. Ruan et al. (2020) suggested marital status was associated with cognitive function but not PF and single individuals were at higher risk of "reversible CF". Such findings may allow targeted support to those at increased risk. Peng et al. (2023) examined indicators of progression from multi-morbidity to CF in a community sample, emphasising factors that could be easily assessed: education, marital status, living alone, exercise, intellectual activity, social activity, fall history, and sleep were all predictors of CF.

Social engagement was examined by several studies. Church attendance in an older Mexican American population reduced the probability of combined rapid cognitive decline and increasing frailty, suggesting activities which include social support and cognitive stimulation may have preventive effects (Howrey et al., 2020). Social participation, e.g. voluntary work, was associated with lower prevalence of CF (Xie et al., 2021), with mechanisms proposed as being via increased self-esteem, positive mood or reduced depression. Social participation and having larger social networks were associated with more physical activity and opportunities for cognitive training (stimulation), and social support impacted physical, social and intellectual engagement, reducing potential impact of PF on cognitive function (Foong et al., 2021; Zhang et al., 2021). Panza et al., (2018) showed that social isolation and loneliness reduce likelihood of being physically active. However, both PF and CI may result in less social participation (Jing et al., 2020). In a cross-sectional survey Choi & Ko, (2023) suggested that social factors (social activities, living arrangements, emotional support, etc.) attenuated the association between CF and disability, supporting interventions to improve contact and support, and in longitudinal analyses, Wang et al. (2022) found that social support and psychological distress were both associated with CF after one year, social support reducing the negative effect of psychological distress. Rivan et al. (2019) also found that lower social support independently predicted CF, alongside depression, age and poorer activities of daily living.

A lack of social contact because of restrictions imposed during the COVID-19 pandemic provided an additional way to consider the impact of social contact on physical and/or cognitive function. In a sample of women, Papi et al. (2022) found 'self-quarantine' over a 7-month period was associated with physical and cognitive decline, suggesting the loss of opportunities for physical activity and social interaction accounted for the changes. Some social circumstances are associated with higher burden, for example, providing care to a spouse or other family member. In one study of caregivers, higher levels of frailty were associated with poorer cognitive performance (Brigola et al., 2017). Older caregivers may represent another higher risk group, with reducing burden and the importance of maintaining physical functions suggested as possible intervention targets.

A factor often implicated in social withdrawal is age-related hearing loss which has been associated with development of cognitive impairment and dementia (e.g. Livingston et al., 2020). Bowl and Dawson (2019) noted that hearing loss is a predictor of social isolation and Alvarado et al. (2021) noted it as an important factor within a network of interrelationships of frailty and neurodegenerative diseases and therefore, a possible target for intervention. One study noted independent prediction of CF from both depression and hearing impairment (Ma et al., 2017). Similarly, Itokazu et al. (2022) suggested eye frailty was associated with cognitive function, depressive mood and social withdrawal, and Lee et al (2023) found that having eye problems was a risk factor for transition from PF to CF over time, but higher education level and cognitively stimulating activities were protective factors.

Resciniti et al. (2023) proposed a mechanism whereby social engagement and isolation play roles in the development of CF: physical frailty results in reduced social activities, which increases loneliness, which then increases depression. Depression then causes CI either directly or via vascular health deterioration. Physical activity may be reduced by increasing PF, by reduced social engagement and by effects of depression, but any reduction in physical activity will feedback to increase PF. Hou et al. (2022) suggested that although CF risk is increased 1.5 times in the presence of depression (Kwan et al., 2019) and by 75% in people who are already frail (Yuan et al., 2022), the mechanism is not yet clear. They proposed loneliness as an important mechanism, with well-established links between loneliness and frailty, and loneliness and MCI, (Fang et al., 2023; Gale, Westbury, et al., 2018; Giné-Garriga et al., 2021) and showed that loneliness may be an important mediator between depression and CF; although depression was strongly associated with CF, when loneliness was included, depression was no longer a significant predictor, 37% of the total effect of depression on CF being explained by mediation of loneliness. Giné-Garriga et al. (2021) reported that loneliness was an independent predictor of CI, lack of physical activity and fatigue in older adults, and Ma et al. (2022) found that depression partially mediated the relationship between PF and CI (9.54%). Here, the interaction between depression and social relationships (including social activities, networks and support) on cognitive function was significant as was the interaction between frailty and social relationships in the effect of frailty on cognitive function.

In terms of mechanisms, social isolation's link to PF and CI may be partly accounted for by the mediation of chronic inflammation (Panza et al., 2018; Panza, Seripa, et al., 2015; Panza, Solfrizzi, et al., 2015). These authors noted that reverse causation could be an issue too: social isolation could be an outcome of CI as well as a risk factor.

Identity (sex, gender, and ethnicity)

Many studies considered gender, mainly in terms of sex. Zhang et al. (2021) suggested sex was not a clear risk factor for CF. Sugimoto et al., (2022) indicated a number of studies reporting a higher prevalence of CF in women (Das, 2022; Ge et al., 2020; Ma et al., 2017; Mu et al., 2021). Though women experience higher rates of CI (Sharifi et al., 2021), or both PF and CI (Ge et al., 2020), men may be at higher risk of physical limitations only (Ge et al., 2020), and (Kritchevsky et al., 2019) noted higher functional limitations in women. Other studies have considered not just prevalence but transitions, with one suggesting the transition from physical frailty to CF was higher for women (Yuan et al., 2022).

Mechanisms underlying sex differences are likely to be partly biological, though some studies considered social and cultural aspects associated with gender, or inherent inequalities (e.g. educational and occupational opportunities), that may predict CF independently of biological sex differences. Higher prevalence of frailty in women may be related to their longer life expectancy (Das, 2022) and Sharifi et al. (2021) suggested the higher level of CI observed might be related to hormone changes or fewer social roles for women. The latter explanation was from an Iran-based study, highlighting how socio-cultural contexts and opportunities must be considered in sex differences observations, and how these differ across countries/regions. Other psychological factors may be implicated, e.g., the link between frailty and cognitive health was partly mediated by depressive symptoms in women but not men (Resciniti et al., 2023).

Similarly, there was limited consideration of ethnicity, and studies that considered this often focused on grouping participants rather than on identity or culture. The way people are treated because of their race/ethnicity or opportunities available to them, may affect CF, but so do cultural practices such as religious involvement. Kritchevsky et al. (2019) considered studies reporting a higher prevalence of physical or cognitive limitations in ethnic minorities, suggesting differences likely reflect cumulative disadvantage related to socioeconomic

status throughout life. In one study, ethnic group did not predict frailty or CI (Chu et al., 2019). Another study based in Western China (Ge et al., 2020) reported "substantial" differences in prevalence of PF, CI or both across 18 ethnic groups, ranging from 9.4% to 25.6%. The authors discussed possible differences in cultural and exercise activities, or access to education, though these pathways were not specifically tested.

3.3.2. Psychological factors:

Stress, anxiety and depression

Depression, psychological stress, and/or anxiety were included in 27 papers. In most, depression was one of a range of potential independent predictors/associates of CF (e.g. Das, 2022; Ge et al., 2020; Kelaiditi et al., 2013; Ma et al., 2017; Sargent et al., 2018; Vatanabe et al., 2022; Zhang et al., 2021), with some indicating higher prevalence of depression in participants with CF versus PF or CI alone (e.g. Ge et al., 2020; Kwan et al., 2019; Yoshiura et al., 2022). Zhang et al.'s (2021) meta-analysis suggested that only papers using the Geriatric Depression scale (GDS), EQ-5D, and GHQ12 found a clear increased risk of CF in the context of depression. Some studies suggested possible mechanisms, e.g. Vatanabe et al. (2022) suggest the association of CF with falls suggests that falls and associated injuries could lead to social withdrawal, isolation and depression.

A few papers examined the role of depression as a mechanism, mediator or moderator of frailty and CF. Amanzio et al. (2021) related grip strength and gait speed to attentionexecutive function but also to a depression-apathy-anxiety construct; when gait speed was slow, depression mediated the effect of lower psychomotor speed on fatigue. In a previous study. Few studies examined apathy alongside depression though this should be considered in future studies.

Hwang et al. (2023) examined the role of depression alongside motor changes in relation to differentiating reversible from potentially reversible CF. Older age, female sex, lower balance confidence, reduced global cognition, depressive symptoms, slower gait velocity, and greater double-support time variability were associated with potentially reversible CF. Studies often controlled for depression as a possible non-associated cause of self-reports of physical exhaustion or low physical activity. However, the relationship between depressive symptoms and psychomotor function, motor function, gait speed, and grip strength were significant features of the literature. Bortone et al. (2021) found that depressive symptoms were more likely in older adults with MCR than in those without, linking MCR with inflammatory markers, which have also been associated with depression via cortisol and Hypothalamic-pituitary-adrenocortical (HPA) pathways (Ruan, D'Onofrio, Sancario, et al., 2017). The association of depression with PF was also highlighted by Giudici et al., (2019), focussing on muscle mass loss and strength; depression was suggested as a cause of unintended weight loss, and Arrieta et al., (2022) reported an association between mysostatin, a regulator of muscle mass, and measures of depression.

Depression, stress hormones and gender

Resciniti et al. (2023) examined the role of depression as a potential mediator between PF and cognitive outcomes. Given a one unit increase in frailty symptoms, one unit increase in depression symptoms resulted in decreased cognitive function. Depression mediated 11% of the relationship between PF and cognition. This longitudinal data replicated cross-sectional data (Jing et al., 2020) in which mediation by psychological distress (anxiety and depression) accounted for 11% of the effect of CI on PF.

Resciniti et al., (2023) suggested several explanations for this mediating effect, ranging from the impact of PF on social engagement and physical activity which could affect depressive symptoms and cognitive function directly, and also cognitive function via depression, to

effects of inflammatory factors associated with PF, CI and depression. PF had a greater effect on cognitive function for men than women, but the mediation of depression was only significant for women. In another longitudinal study, Yuan et al. (2022) demonstrated that being female, having a rural household registration and being depressed or dissatisfied with life were predictors of CF given PF at baseline (four years earlier). Ruan, D'onofrio, Wu, et al., (2017) noted that depression is more common in post-menopausal women than in similarly aged men, as are osteoporosis and obesity that may increase risk of sarcopenia and frailty. Depression and other psychosocial stressors may therefore have greater impact on older women, with heightened HPA responses to psychosocial stress in postmenopausal women around three times greater than the ageing effect on the cortisol response in older men. The links between cortisol and HPA dysfunction and muscle wasting (sarcopenia), depression and CI (including impacts on hippocampus plasticity or atrophy), imply a circular effect (depression contributes, but is also a result of the effect).

Cortisol also acts via its impact on inflammation and immunosenescence. Bachmann et al., (2020) described the link between stress, depression and inflammation, separating different sources of stress e.g., chronic rather than acute stress, chronic restraint stress and repeated social defeat stress. These types of stress have been associated with cortisol production and the HPA axis, as well as with immune and inflammation responses, associated with CF. Chronic unpredictable mild stress was associated with body mass reductions via impact on the liver and pancreas and carbohydrate and lipid metabolism.

Depression and Cerebrovascular Disease

Robertson et al., (2013) drew attention to the interaction between cerebrovascular-based depression and development of frailty. Yoshiura et al. (2022) identified that severe depressive symptoms were associated with cerebrovascular small vessel disease (SVD) in people with CF, compared to people with MCI alone, PF alone, and age-matched controls. Neuroinflammatory markers such as interleukin-6 identified as a biomarker for CF, are associated with both SVD and depression. Similarly, Aguilar-Navarro et al., (2019) found reduced cerebral vascular reactivity and increased risk of depression in those with vascular-type MCI (MCIv) and PF compared to those with just MCIv or PF.

Other variables that may contribute to the association of co-occurring CI and PF with emotional deficits (depression) were investigated by Chapko et al. (2016). Occupational complexity had an important influence on later life cognitive, physical and emotional deficits, pointing to a role of complex cognitive endeavour across the lifecourse. This may be associated with concepts of cognitive reserve (Section 3.2.1).

Trajectory

Distinguishing between depression as a predictor versus an outcome of CF was not always possible given many studies were cross-sectional, although Ma et al., (2017) distinguished between depression as an overall predictor of CF, and depression as a predictor of CF given physical frailty.

Bekić et al., (2019) used cluster analysis to identify that somatic anxiety (anxiety manifesting in physical symptoms such as pain, or gastrointestinal disturbances), was more common in older age groups and was an independent predictor of PF. This suggests another potential mechanism, in that mental health symptoms are difficult to separate from physical and cognitive symptoms, so should be considered in care of frailer older people.

In a longitudinal study, Yuan et al., (2022) used a multi-state Markov model to explore transitions and predictors of transitions, e.g. from PF or CI alone to CF, or from CF back to one component or none. Risk of progression to CF was increased by being female, dissatisfied with life, history of falls, rural household registration, multimorbidity and

depression, and depression reduced likelihood of CF improvement over time. Y. C. Lin et al., (2022) examined what predicted reversal from a physical-cognitive decline state (PCDS - similar to CF) to non-PCDS over 2.5 years. Predictors included stronger hand grip, better memory as well as younger age. Some papers emphasised specific patterns of frailty that are associated with depression or mood and motivation (Panza et al., 2018) and suggested that this conjunction may represent a manifestation of increased biological ageing that affects both conditions. Panza et al discussed a potential link with cognition via increased cortisol levels associated with long term stress, and referred to the interplay between vascular depression, cognition, frailty and vascular burden. Panza et al., (2023) referred to a depressive frailty phenotype whereby underlying biological and physiological mechanisms overlapped in the trajectory of cognitive decline.

Nutritional factors linked to depression

Several studies demonstrated the role of nutritional factors when exploring the impact of depression on CF, though only one suggested a mechanism in terms of a lower intake of Niacin (B3) being associated with CF, but also in other studies having been associated with depression (Rivan et al., 2019).

Psychosocial risk factors and depression

Depression was linked with other psychosocial risk factors for PF and CI, including loneliness, age, education level, income, socio-economic status, employment stress, rural versus urban living, marital status, employment status or occupational complexity (Chapko et al., 2016; Das, 2022; Ge et al., 2020; Ma et al., 2017; Ruan et al., 2020; Sargent et al., 2018; Vatanabe et al., 2022; Yuan et al., 2022) although mechanisms were not suggested. Yuan et al., (2022) showed that depression and education had opposing effects on the risk of progression to CF or improvement in a CF state. Rivan et al., (2019) grouped depression with poor social support as proximal predictors of CF but did not describe a mechanism. Brigola et al., (2017) found that carer burden and frailty were independently associated with CI in older people caring for an older dependent, based on previous work showing relationships between family caregiver role and chronic stress, anxiety and depression, and the link between these factors and cognitive decline and their own self-care, adjusting for potential confounders such as education and age.

Health Behaviour and depression

Studies mentioned physical activity, exercise or sedentariness in conjunction with depression as independent predictors of CF (e.g. Bachmann et al., 2020; Ma et al., 2017) and Resciniti et al., (2023) suggested that reduced physical activity related to PF would increase risk of depression, increasing risk of progression to CF. Panza et al., (2018) drew attention to the common characteristics of depression and PF, namely low energy, fatigability and low activity, and indicated that low activity often leads to a reduction in social networks, with social isolation and loneliness also known contributors to frailty and cognitive decline. Zhang et al., (2021) highlighted that those taking part in physical activities often have opportunity for more social engagement, as part of those activities, which may have further positive effects on mood, and socially active people tend to be more physically active. Panza et al., (2018) also associated loss of appetite, poor nutrition and weight loss with depression, loss of muscle mass and nutrient deficiencies contributing to CF. Finally, smoking and high alcohol intake are other health behaviours which have been associated with mental health and also with frailty (e.g. Sargent et al., 2018) but no mechanism for an effect on CF was suggested.

Attitudes, self-perception, and emotional wellbeing

Papers examined the role of emotional wellbeing and attitudes towards ageing and frailty from the older person's perspective. Navarro-Pardo et al. (2020) found that psychological wellbeing (perceived stress, anxiety, feelings of fear, sleep disturbances, psychosomatic

conditions) predicted CF, and Furtado et al., (2020) found that cognition and aspects of emotional wellbeing (subjective happiness but not depression) and attitudes to ageing showed significant negative relationships with PF. The distinction between the role of depression and that of subjective happiness is important, given that depression may interact with a range of other predictors of CF such as fatigue and slow movement.

Gifford et al., (2019) reported that subjective perception of cognitive decline was associated with objective markers of frailty, specifically in women. This was particularly apparent for executive function components (planning and organisation). The authors proposed that as gait speed, a sensitive marker of frailty, was associated with subjective memory decline, this might reflect underlying changes in specific brain regions in the early stages of Alzheimer's pathology. As the associations between frailty and subjective cognitive decline were present before objective cognitive impairment was observable, it was suggested those with frailty and a perception of cognitive decline could be targeted for intervention, with the goal of preventing CF.

3.3.3. Specific Cognitive Domains

While many studies used a measure of global cognitive function (e.g., Mini Mental State Exam (MMSE)) or self-reported memory loss to define CF or for inclusion purposes, some examined specific domains to determine whether any were specific to the concept of CF. This could potentially distinguish the link between frailty and cognitive impairment from factors related to neurodegenerative conditions such as dementia, and support potentials for intervention. The most common cognitive domains assessed were Executive Function (20 studies), followed by memory (15 studies) and processing speed (9 studies).

In 12-year longitudinal data with people aged over 70 years, Bunce et al., (2019) examined associations between baseline frailty and change over time in a range of cognitive measures. People with frailty had poorer performance on processing speed, verbal fluency (a measure of executive function), reaction time (RT) and intraindividual variability (IIV) but not on global cognition (MMSE), word or face recognition or episodic memory. Contrary to expectations, frailty did not predict faster decline for cognitive measures. The authors concluded that the frailty-cognition association is not related to neurodegeneration associated with dementia, supporting the view that executive function is key to the distinction between CI associated to frailty, compared with CI related to neurodegeneration in dementia (see also Canevelli & Cesari, 2015). People with neurodegenerative conditions can also be physically frail, so Bunce et al., (2019) repeated their analyses excluding participants with MMSE score of 24 or less, confirming their findings. Likewise, Delrieu et al., (2016) specifically excluded people with dementia and found that participants with CF differed from those with CI and no frailty in terms of cognitive domains of impairment, again identifying a sub-cortico-frontally mediated group of functions: executive function, processing speed, selective attention and semantic fluency, but not memory. They used the number of deficits in a Fried frailty profile (1, 2 or 3+) to show that these cognitive impairments were related to severity of frailty. Other studies distinguished between executive function and/or processing speed as associated with frailty, pre-frailty, and frailty components such as hand-grip strength, gait speed or sarcopenia, versus memory or global cognition which were not (Amanzio et al., 2021; Chou et al., 2019; Chu, Xue, et al., 2021; Gross et al., 2016; Inoue et al., 2022; Kaur et al., 2019; Kim & Won, 2019; Sharifi et al., 2021; Siejka et al., 2022). Shim et al., (2020) showed the same pattern for the MCR syndrome and Wu et al., (2015) demonstrated the same for pre-frail participants, but that frailer participants also had a higher risk for memory impairments. Over 2.5 years, poorer memory and language ability predicted transition to PCDS, while better memory predicted a reversal for those with PCDS at baseline (Y. C. Lin et al., 2022).

Chou et al., (2019) examined the relationship of aspects of physical frailty (gait speed and grip strength) to cognitive domains in a 10-year longitudinal study. The slowest gait speed group showed the greatest decline in the digit symbol substitution test (DSST) (processing speed, visuospatial skills, some elements of executive function) but the lowest grip strength group showed the greatest decline in a measure of global cognition, the MMSE (which does not include an Executive Function component), controlling for age, depression, education and comorbidities. The well-known relationship between slow gait and decline in executive function suggests that mechanisms related to specific brain areas demonstrated to be linked to the two functions, may underlie the relationship, notably the cerebellum, basal ganglia, hippocampus, and parietal and frontal cortices, with Liu et al., (2020) demonstrating extensive grey matter volume depleted regions in \geq 65-year-olds with PCDS, and a focus on disrupted hippocampus-amygdala-cerebellum connections.

Focusing on another component of physical frailty, Giudici et al., (2019) examined the impact of >5% weight change (loss, gain and no change groupings) over one year on cognitive function (a combined measure including memory, speed of processing/visuospatial memory, DSST, and semantic ability). Although all groups showed some cognitive and hippocampal volume decline (participants were all over 70 with self-reported memory complaint but no dementia, difficulty in one instrumental ADL or slow walking speed), weight loss was related to greater 5-year cognitive decline. They suggested that hippocampal atrophy, normally associated with Alzheimer's pathology, may not be associated with frailty indices, and the association of unintentional weight loss with cognitive decline was part of the CF pattern rather than dementia development. The different cognitive domains were not separable in this study and other areas of the brain were not assessed; future studies should distinguish development of dementia from CF to determine potential intervention strategies. Other studies examined specific functions and areas of activity in the brain to distinguish development of CF or dementia. Maruya et al., (2021) demonstrated differences in cerebral blood flow between pre-frail and healthy participants in both a category fluency (EF) task (lower flow) and a walking task (higher flow).

Another study (Inoue et al., 2022) found an association between the conjunction of sarcopenia and osteoporosis (osteosarcopenia), both important components of PF, and executive function, visuospatial abilities, and orientation, suggesting that endocrine function, nutritional status and physical activity may be related, particularly among women. However, the association between sarcopenia and cognitive function was stronger for men than women in Kim & Won's (2019) study, with an effect for processing speed only for women, but for processing speed and executive function for men.

Gross et al., (2016) assessed both memory and executive function longitudinally. Over 9 years, CI more often preceded PF than the other way round, and impairment in executive function was more likely to precede PF than memory impairment. Slower decline in executive function was associated with a lower risk of frailty. Underlying common biological changes that may be related to both executive function and components of frailty were suggested, emphasising inflammation, energy dysregulation, HPA axis dysregulation, and cerebrovascular disease. In these studies, sample characteristics had important influences: studies focusing on those with existing memory impairments (e.g. recruited their sample from memory clinics) found more of a relationship between memory and frailty components (S. M. Lin et al., 2022).

3.3.4. Health behaviours and CF

Dietary choices and nutrition

Papers suggested that balanced diet could maintain cognitive function (Fostinelli et al., 2023; Gómez-Gómez & Zapico, 2019) and poor nutrition is a determinant of both PF and CI

(Adachi et al., 2018; Chye et al., 2018). Older adults with CF exhibited lower dietary diversity and lower consumption of dairy products, whole grains, vegetables, fruit, meat and nuts (Huang et al., 2021), Chhetri et al. (2018) found that older people with coexisting PF and CI had low Vitamin D and omega 3 polyunsaturated fatty acids, and a review (Halil et al., 2015) described a clear association between PF and CI via vascular and hormonal changes, nutrient and vitamin deficiencies, especially vitamin D and B12, inflammation and insulin resistance. Other studies suggested dyslipidaemia exacerbated cognitive decline and increased risk of dementia via neuropathological processes: (Lv et al., 2019) reported each 1mmol/L increase in triglyceride levels corresponded to ~20% decreased risk of cognitive decline and frailty over 5 years. A systematic review reported positive associations between Mediterranean diet and better cognition. Over 3 years, those consuming vegetables daily or almost daily were 34% less likely to experience cognitive decline, also reporting the importance of high protein consumption to reduce the likelihood of frailty (Nowson et al... 2018). Vicente et al. (2020) suggested that more inflammatory diets could lead to higher chances of being frail/pre-frail. In another review, O'Connor et al., (2023) suggested that micronutrients B12 and folate, vitamin B12 and folate; vitamin D; carotenoids, lutein and zeaxanthin were all important, but most of the consituent studies reviewed examined PF or CI, not CF. Khalid et al., (2022) however, specifically associated Beta-cryptoxanthin and zeaxanthin with CF. The European muti-centre MARK-AGE study analysed biomarkers in more than 2000 older adults and found lower levels of antioxidants, including β cryptoxanthin and zeaxanthin, in those who were physically, cognitively, or psychologically frail (Rietman, Spijkerman, et al., 2019). Jiang et al., (2022) found that a urinary biomarker, 8-oxoGsn, was associated with poor physical performance and worse cognitive function, relationships persisting once several confounders including age were controlled for, suggesting levels may be a useful indicator for early screening for MCI in frail patients and could be used to determine efficacy of anti-oxidative stress interventions.

Two studies associated poor nutritional status in PF with poor bone health and metabolic abnormalities including higher low-density lipoprotein cholesterol, and lower high-density lipoprotein cholesterol (Kim et al., 2021; Chung et al., 2021). Sarcopenia and poor muscle strength, commonly associated with malnutrition (Lauretani et al., 2018) is also a risk factor for CI, (Chye et al., 2018; Das, 2022; Hu et al., 2021). Older adults with sarcopenia have increased arterial stiffness, linked to brain white matter hyperintensities (WMHs), a risk factor for cognitive decline, associated with both frailty and CF (Sugimoto et al., 2019; Kohara et al., 2017). Cipolli et al., (2023) examined the trajectory between sarcopenia and CI longitudinally. While previous authors have shown an association when sarcopenia is present at baseline, they showed the opposite trajectory examining CI at baseline, suggesting a bi-directional relationship in relation to joint underlying mechanisms involving a nutrition-inflammation complex syndrome. Finally, Tou et al., (2021) demonstrated an association between sarcopenic obesity, obesity (and high fat mass index), low muscle strength (grip strength), low physical function (slow gait), and CI, focusing on global cognition, visuospatial abilities and attention, with suggested mechanisms including inflammation and impaired insulin sensitivity. Nutrition, a modifiable lifestyle factor, can therefore be considered one approach in managing inflammation and so CF.

Exercise, Physical Activity and Sedentary lifestyle

Physically active lifestyles are associated with lower risk of frailty and cognitive decline. However, no studies were identified examining physical function/frailty and cognitive function together, or CF. A review (Anderson et al., 2014) included studies only examining one or other. Underlying mechanisms were included in some studies: Bachmann et al., (2020) associated sedentary behaviour with defective immunoregulation and inflammatory cytokines. Izquierdo et al., (2021) cited Pedersen's, (2019) summary of potential mechanisms linking physical activity with cognitive function and reduction of PF, for example, increasing cerebral blood flow, increasing production of brain derived neurotrophic factors (BDNFs) and insulin-like growth factor-1 (IGF-1), and consequent neurogenesis in key brain areas associated with cognition and white matter connective pathways. Lauretani et al., (2017) reviewed BDNFs as a link between physical activity and cognitive decline. Pedersen, (2019) also suggested exercise downregulates neurotoxic factors including C-reactive protein, cortisol, insulin and inflammatory cytokines, all of which affect disease processes associated with CF, including depression. Physical activity may also reduce or prevent CF via gut microbiota (Shin et al., 2019). Some studies examined Covid-related self-quarantine in terms of lowered physical and social activity. Papi et al., (2022) found increased fall risk, reduced dynamic balance and almost 5-points reduction in MMSE in women aged 60+. Garner et al., (2022) found higher multidimensional frailty scores (including PF and cognitive function) in populations aged 70+ when lockdown was stricter, but self-reported physical activity was associated with reduction in frailty as lockdowns eased.

Sleep anomalies

Gabelle et al., (2017) showed that excessive sleepiness and spending longer in bed at night was associated with higher risk of 3-year cognitive decline in frail people aged 70+ (excluding people with dementia). Kaur et al., (2019) examined whether poor sleep quality mediated the relationship between PF and Cl. Sleep quality mediated the relationship between PF and Cl. Sleep quality mediated the relationship between frailty and cognition for executive function, learning, processing speed and delayed recall. Mechanisms suggested were via the impact of sleep disturbances on insulin resistance and oxidative stress. Atienza et al., (2018) reviewed the evidence that low-grade inflammation affects the relationship between sleep disruption, dysfunctional adiposity and cognitive decline, while Sugimoto et al., (2022) and Zhang et al., (2021) also mentioned sleep disturbance as a risk factor for CF. Fabrício et al., (2020) described a list of shared mechanisms between PF and Cl, with possible evidence for hypothalamic-pituitary-adrenal (HPA) axis hormones, particularly corticosteroid metabolism and diurnal patterns. Zhang et al., (2021) suggested sleep interventions as a useful CF prevention strategy.

3.4. Clinical evidence for biological drivers associated with CF in humans

The studies above identified how social, psychological, cognitive and environmental factors may be linked to underlying biological factors in CF. One study examined the direction of the trajectory in a longitudinal dataset (Zhao et al., 2022), determining that the accumulation of deficits associated with PF is what is driving the co-occurrence of PF and CI suggesting the predictive relationship only works in one direction. We conclude this section by reviewing evidence for biological processes underpinning CF, beyond general ageing.

CF and clinical markers of inflammation

During ageing, release of proinflammatory cytokines (e.g., interleukin-6 (IL-6) and Tumour necrosis factor- α (TNF- α)) increases and is not counterbalanced by anti-inflammatory systems (Bachmann et al., 2020). Prolonged mild chronic proinflammatory status, "inflammaging", is related to adverse age-related outcomes including increased exposure to infections and chronic inflammatory diseases such as CVD, diabetes, chronic kidney disease and arthritis (Ferrucci & Fabbri, 2018). Serum inflammatory biomarkers such as IL-6, TNF- α , IL-8 and C-reactive protein (CRP) are increased in PF. Ma and Chan, (2020) and Diniz et al., (2022) showed that both CF and PF alone are associated with elevated IL-6. Mu et al., (2021) found that CRP, TNF- α , MMP-3, and MDA levels were associated with CF in patients with cerebral small vessel disease, suggesting anti-inflammatory treatment may be helpful to delay cognitive decline. Recently, Visconte et al., (2023) showed that microglia-derived extracellular vesicles (MDVs), suggested to be involved in propagation of inflammatory signals, were increased in patients with MCI and frailty compared to non-frail controls. The authors suggested that frailty exacerbates the release of these vesicles in patients with MCI.

Cognition related biomarkers

Zhou et al., (2022) examined a range of neural biomarkers that have been associated with cognitive decline and dementia in relation to any link to frailty (tTau, pTau (Thr181), NFL, A β 40, A β 42, S100B 1, VLP-1, AD7cNTP, β APP, CHI3L1, sCR1 and hFABP). pTau was related to frailty, but other plasma biomarkers were not, including beta amyloid, a marker for Alzheimer's Disease (AD). The authors highlighted that pTau is also related to pathways involved in weight loss and insulin signalling. Carini et al (2021) reviewed the role of micro-RNAs, identifying several that may serve as biomarkers and/or play an active role in CF, in particular miR-92a-5p and miR-532-5p. A broader study by Sargent, Nalls, Amella, Slattum, et al., (2020) further identified single nucleotide polymorphisms (SNPs), inflammatory (IL-1, IL-6, TNF α , ESR), nutrient and lipid (vitamin E, omega-3 and-6, ceramides, LDL), blood and urine biomarkers of CF.

Influence of human genetics and epigenetics in CF

The same genome (for instance in zygotic twins) can lead to very distinct ageing trajectories due to epigenetic modifications accumulated throughout life. Several studies measured epigenetic age acceleration in human blood samples (Gale, Marioni, et al., 2018); Breitling et al., (2016) found an association between frailty and epigenetic age acceleration independent of age, sex and leukocyte distribution. Epigenetic biomarkers for frailty could improve the early diagnostic accuracy of frailty at the pre-clinical status.

Biological sex and sex-specific determinants of CF

Ruan, D'onofrio, Wu, et al., (2017) systematically reviewed how sex differences affect people's susceptibility to frailty and cognitive decline, focussing on interactions between ageassociated endocrine changes, genetic and epigenetic factors, immunosenescence and iron accumulation. They highlighted that menopause plays an important role in the sexual dimorphism of brain ageing, as hormonal changes happen rapidly whereas hormonal levels decline gradually in ageing men. They concluded that differences in the levels and trajectories of CF are likely to be partly determined by endocrine changes before and after the menopause and andropause.

Moreover, sexual dimorphism in inflammatory responses is significant in humans, with women often displaying 'stronger' immune systems and responses (Bachmann et al., 2020). Finally, metabolic biomarkers may also explain different transitions between men and women: Waters et al., (2020) suggested that better outcomes (in terms of gait speed) were predicted by maintaining a lower body fat percentage and LDH in women.

Blood pressure

Choi et al., (2022) examined the role of blood pressure (BP) in relation to frailty and cognitive impairment in older people in long-term care. Systolic and diastolic BPs were lower in patients with PF compared with robust/pre-frail patients, and systolic BP was lower in those with CI. There was no difference between those with CI and without in terms of hypertension status and treatment, but both frail and cognitively impaired patients had higher BP variability. Related to this, Cosarderelioglu et al., (2020) reviewed the possible role of the Brain Renin–Angiotensin System in CF, which dysregulation with age is thought to compromise brain cells, leading to cognitive decline and frailty.

3.5 Potential Biological Mechanisms of CF from Experimental Studies in Model Organisms.

Model organisms (nematode worm, fruit fly and mouse) have significantly contributed to the elucidation of biological mechanisms of ageing, identifying and characterising evolutionarily conserved intracellular signalling pathways that modulate ageing, age-related diseases, and

age-associated behavioural and cognitive decline (see Fontana et al., 2010). However, CF has not been defined in such models and biological mechanisms of ageing identified have not been integrated with socio-economic and psychological factors robustly associated with ageing and functional decline in humans. Biological mechanisms underlying CF have likely been studied in animal models of ageing without linking them to CF. Similarly, reductive human cell, tissue and organoid models have enabled the study of biological processes at the cellular, organellar and molecular scales, that may contribute to CF.

As noted in the Methods, search parameters were adapted to include biological studies that focused on mechanisms of ageing-related cognitive and/or locomotor/physical decline, excluding works on mechanisms underlying non-ageing related cognitive dysfunction, neurodegeneration alone, or behavioural control. Findings are presented from organismal scale processes down to molecular mechanisms.

3.5.1 Systemic biological factors underpinning CF.

Inflammaging

Bektas et al., (2018) explored the confluence between inflammation and metabolism in effects on CF, combining evidence from human studies and experimental models including cells, worms and mice. Their theoretical model involved four major domains of ageing mechanisms: 1) changes in body composition; 2) imbalance between energy availability and demand; 3) dysregulated signalling networks that maintain homeostasis; and 4) neurodegeneration with impaired neuroplasticity. Work, mainly in mice, confirmed the link between inflammation and age-related declines. Two intervention studies in mice indicated the role of inflammation (involving IL-6 and RAGE/MAPK/NF-κB signalling) in locomotor and cognitive decline (Roda et al., 2021; Wang et al., 2019). Further studies in mouse models proposed inflammation as a mechanism underlying cognitive deficits during ageing (Fielder et al., 2020; Ambrosi et al., 2021).

Giorgetti et al., (2019) showed that voluntary exercise in mice modulated age-associated microglia-mediated neurotoxicity in the spinal cord that is harmful to motor neurons. To identify underlying mechanisms that initiate and sustain maladaptive inflammation with ageing, Minhas et al (2021) identified a role for the lipid messenger prostaglandin E2 (PGE2) in myeloid cells.

Genetics and Epigenetics

Four papers examined epigenetic factors in neuronal function or cognitive/behavioural decline in model organisms. Azpurua and Eaton (2015) reviewed neuronal epigenetics of the ageing synapse, focusing on central and peripheral synapse function and neurotransmission disruption. They showed examples of epigenetic factors that can directly modify synaptic proteins as well as the function of synapses. Hahn et al., (2020) showed that DNA methyltransferase-1 (DNMT1) is involved in age-related loss of cortical inhibitory interneurons, suggesting DNMT1 directly or indirectly affects the survival of parvalbuminpositive interneurons in aged mice. A main epigenetic regulator, TET1, was identified in mouse and zebrafish models as necessary for myelin repair (Section 3.5.2), which becomes defective with ageing (Moyon et al., 2021), possibly contributing to cognitive decline. Finally, Yuan et al., (2020) reported two evolutionarily conserved epigenetic negative regulators of ageing; genome-wide RNA-interference-based screening identified 59 genes that promote behavioural deterioration in ageing Caenorhabditis (C) elegans: BAZ-2, and a neuronal histone 3 lysine 9 methyltransferase: SET-6), speed up behavioural decline by negatively affecting mitochondrial function. Examination of human studies showed that human orthologues (BAZ2B and EHMT1) of the C. elegans epigenetic regulators in the frontal cortex increase with age and correlate with Alzheimer's disease progression.

Sleep and biological rhythms

Circadian rhythms have a strong influence on health from flies to men, particularly during ageing when their deregulation promotes faster locomotory and cognitive decline (De Nobrega & Lyons, 2020). Sleep loss reduced spatial learning in fruit flies via modulation of dopamine signalling, while ageing-related impairment in spatial learning could be reversed by enhanced sleep (Melnattur et al., 2021). Metaxakis et al. (2014), showed that reduced IIS (insulin/IGF-like signalling) ameliorated age-related sleep fragmentation through increased octopaminergic signalling. IIS notably links metabolism and behaviour through its molecular effectors S6K and dFOXO, which act on different neuronal circuits and neurons to modulate sleep.

In ageing rats, Zhou et al., (2021) report that downregulation of melanocortin receptors (which regulate circadian rythms) in the occipital lobe, hippocampus (MC1R and MC5R) and midbrain, correlates with age-related cognitive decline.

A muscle-brain axis may explain the impact of physical activity on CF.

A recent review advances the idea that a muscle-brain axis underpins the co-occurrence of CI and sarcopenia or frailty in humans (Arosio et al., 2023), without referring explicitly to CF. Supporting this idea, studies examined impact and mechanisms of physical exercise in ageing animal models on frailty and cognition. In a postmenopausal animal model, García-Mesa et al. (2014) found that increased body fitness prevented the mice from developing frailty induced by ovariectomy or AD genes. Physical exercise also protected against brain alterations and reduction in brain plasticity by enhancing neuroprotective pathways, such as catalase, p-CREB and BDNF.

Giorgetti et al. (2019) found that ageing induces microglia activation, impacting motor unit health. Decreased motor unit numbers may be prevented by countering neurotoxic microglia in the aged spinal cord. Voluntary exercise or CSF1R inhibition in mice reversed muscle innervation loss, preventing motor unit loss by reversing microglial activation. This suggests that age-related neurotoxic microglia play a direct role in neuromuscular decline. In *C. elegans*, genetic (*slo-1* mutation) and pharmacological intervention into the ageing motor nervous system resulted in improved neuromuscular health span and lifespan, indicating that intervention into the brain impacts on frailty in nematodes (Li et al., 2019). Optogenetically induced swimming exercise in *C. elegans* also improved neuromuscular health, learning ability, and slowed neurodegeneration (Laranjeiro et al., 2019), showing that intervention into muscles benefits the brain, thus supporting the concept of muscle-brain axis.

Involvement of the gut-brain axis and the gut microbiome in CF.

Six reviews considered the relationship between gut microbiome and the brain in ageing. Shin et al., (2019) identified an association between cognitive dysfunction or PF and the gut microbiome. Although the mechanism is still unclear, it likely involves modulation of small chain fatty acid (SCFA) producers in the gut microbiome by physical exercise. SCFAs reduce systemic inflammation, promote healthy ageing and protect against frailty. Ticinesi et al. (2018) reviewed evidence for a role of gut microbiotas in CF, concluding that microbiota diversity and abundance of species improve cognitive function and suggested that probiotics might protect against CF. Baptista et al., (2020) reviewed evidence linking the gut microbiome, the brain and families of bioactive lipids in CF (eicosanoids, sphingolipids and phospholipids, endocannabinoids, resolvins), suggesting that gut microbiome interventions represent potential treatment strategies for CF. Li et al (2021) reviewed evidence for gut microbiota as a controller and intervention target in brain ageing and CI, and Arnoriaga-Rodríguez & Fernández-Real (2019) reviewed impact of microbiotas on chronic inflammation and metabolic syndrome with related cognitive dysfunction, in human and animal studies. Angoorani et al. (2022) summarised recent human and animal studies on the effect of gut microbiota composition in cognitive disorders.

Impact of environmental richness on neuroprotective processes in animal models

The biology underlying the role of social engagement, habitat and hearing loss in CF may be revealed in experimental studies on environmental enrichment (EE). Gelfo et al. (2018) reviewed biological effects of environmental enrichment in animal models finding positive, neuroprotective effects on neurogenesis, gliogenesis, angiogenesis and synaptogenesis. More recently, in a pro-inflammatory mouse model, multisensory stimulation reversed memory impairment (Ravache et al., 2023). Karoglu-Eravsar et al. (2021) further showed that EE with sensory components prevented age-related decline in synaptic dynamics in zebrafish. EE may lead to the maintenance of cognitive processing at older ages in both humans and animals, consistent with the strong association between social isolation or lower social or cognitive engagement and CF (Section 3.3.1). Conversely, hearing loss in mice, which leads to sensory deprivation, was found to accelerate age-related decline in hippocampal neurogenesis and microglial degeneration (Zhuang et al., 2020).

3.5.2 Tissue and organ level processes

Cell senescence

Cell senescence, the loss of replicative capacity in proliferating cells, largely stems from telomere erosion during ageing and disrupts tissue homeostasis, causing inflammation and impairing brain function (Ambrosi et al., 2021; Desdín-Micó et al., 2020; Fielder et al., 2020; Spehar et al., 2020). In a mouse study, TRF1 telomere gene therapy rescued age-related TRF1 level decrease, prolonging health span and improving cognitive and motor function (Derevyanko et al., 2017). Human telomere regulation differs, and studies have not strongly supported a role for telomere shortening in age-associated frailty (Breitling et al., 2016). Factors other than telomere shortening can also trigger cell senescence; Salas-Venegas et al., (2023) found obesity-induced neuroinflammation causing senescence and cognitive decline in rats.

Decline in neurogenesis

Maintaining neurogenesis in ageing, which is associated with better cognitive outcomes, relies on brain cell stemness. Reichel et al., (2017) linked age-related cognitive decline to dorsal hippocampal volume loss in mice and Romine et al., (2015) found impaired neural progenitor cell proliferation in the ageing brain. Lupo et al., (2019) reviewed neurogenic decline in the mouse subventricular zone, attributing it to reduced neural stem/progenitor cell (NSPC) pool and function, mitigated by exercise. Other studies in mice (Gontier et al., 2018; Kase et al., 2019; Piccin et al., 2014; Su et al., 2017; Yang et al., 2017; Yousef et al., 2015) explored neurogenesis, but few directly addressed cognitive decline; Seib et al., (2013) showed Dkk1 loss restoring neurogenesis in old mice, possibly via Wnt signaling upregulation, slowing cognitive decline.

Beyond neuronal cells, Lalo et al., (2018) identified a role for astroglial Ca2+-signalling and release of gliotransmitters in ageing- and environment-related cortical metaplasticity. Zhuang et al (2020) reported that accelerated age-related decline in hippocampal neurogenesis in mice with noise-induced hearing loss is associated with hippocampal microglial degeneration. In *Drosophila*, glial dysfunction also caused age-related memory impairment (Yamazaki et al., 2014). Single-cell analysis showed T cells infiltrate aged neurogenic niches, inhibiting neural stem cell proliferation in co-cultures and in vivo, partly by secreting interferon-γ, suggesting that inflammaging may adversely impact neurogenesis (Dulken et al., 2019).

Decrease in biogenic amine neurotransmitter release

Although animal models of depression exist (Moulin et al., 2021; Wang et al., 2017), papers measuring depression in relation to ageing-related cognitive or locomotor decline in model organisms were not identified. However, studies investigating the role of relevant neurotransmitters in cognitive or locomotor decline were. In worms, Yin et al., (2014) showed that serotonin (5-HT) and dopamine (DA) levels decrease with age, and dietary restriction ameliorated behavioural declines *via* maintaining 5-HT/DA levels. In flies, reproductive diapause delayed behavioural declines and maintained levels of these neurotransmitters (Liao et al., 2017). Musumeci et al. (2015) further evidenced increases in serotonin and BDFN expression in frontal cortex and hippocampus of aged rat treated with a diet high in the amino acid tryptophan.

Two studies in flies identified a role for neuronal lamin (a nuclear protein) and sleep in maintaining cognitive and motor function via effects on dopamine during ageing (Melnattur et al., 2021; Oyston et al., 2018). Studies in *C. elegans* linked regulators of serotonin and dopamine in age-related cognitive decline (Yin et al., 2017; 2014; Yuan et al., 2020). Yuan et al. (2020) identified two epigenetic regulators of mitochondrial function and cognitive behaviour. Age-related decline in the level of DOPA decarboxylase (BAS-1), an enzyme involved in both 5-HT and DA synthesis was responsible for loss of these neurotransmitters and associated cognitive decline in model organisms from worms to rats.

Reduced myelination of neuronal processes

Myelination of neurones in vertebrates is essential for cognition and lower myelin content has been associated with motor and cognitive impairment in older adults (Faulkner et al., 2023). A critical role for TET1, an enzyme responsible for the expression of genes regulating the axon–myelin interface in myelin repair during ageing was identified (Moyon et al., 2021). The major growth and developmental retinoid X receptor (RXR) pathway was also identified as a positive regulator of myelin debris clearance, with RXR activation reversing age-related deficiencies in myelin debris phagocytosis and remyelination (Natrajan et al., 2015).

Alterations in neuronal activity patterns

Neuronal activities in various areas of the brain shift with age, highlighted in several studies. Belblidia et al. (2018) described the decline of spatial recognition memory and hippocampal activation profile in mice during ageing. Mack et al. (2016) reviewed the role of actin filament dynamics in dendritic spines, suggesting that age-related shift in spine subtype composition may interfere with memory formation. In C elegans, Li et al., (2020) showed that high neural activity accelerates the decline of cognitive plasticity with age, and Toth et al., (2012) discussed morphological changes in neurite outgrowths that result in locomotory and behavioural decline. Nagy and Aubert (2015) showed that overexpression of the vesicular acetylcholine transporter enhances dendritic complexity of adult-born hippocampal neurons and improves acquisition of spatial memory during ageing. Finally, Wong et al., (2021) showed that the p75 neurotrophin receptor (p75NTR) is a negative regulator of structural and functional plasticity in the brain and thus represents a potential candidate to mediate age-related alterations.

Links between musculoskeletal processes, sarcopenia, and CI

Four reviews examined the link between musculoskeletal processes and cognitive function. Sui et al (2022) reviewed research linking musculoskeletal activity/inactivity and cognition, suggesting an important role for factors (BDNF, myokines and osteokines) released during physical activity in prevention of cognitive decline. In contrast, muscle loss, weakness and frailty are associated with increased inflammation and impaired neuroplasticity in the brain, leading to CI. Scisciola et al., (2021) focused on describing the role of myokines and their involvement in cognitive impairment and sarcopenia. Although not related to cognition, Christian and Benian's (2020) review of the mechanisms of sarcopenia summarised work in

experimental models of muscle loss with age, that help connect models of cognition and locomotor function deficit. Finally, Gaffney et al. (2018) found that as *C. elegans* ages, protein degradation increased, mitochondrial function was reduced, and muscle mitochondrial and sarcomere structure were disrupted. The age-related decline in movement was associated with disruption in the mitochondrial network.

3.5.3 Molecular and cellular level processes

Poor stress handling and inflammation following mitochondrial dysfunction

Metabolic and oxidative stresses are often seen as endogenous by-products of mitochondrial activities, with mitochondria playing a major role in energy production. Mitochondrial dysfunction is an important hallmark of ageing, accompanied by increased levels of reactive oxygen species, which depletes intracellular and extracellular antioxidant pools, leaving cells more susceptible to stress (Ruan et al., 2018; Scassellati et al., 2020; Tamura et al., 2020), with dysfunctions in mitochondrial dynamics and protein misfolding linked to cognitive decline and frailty in humans (Alexiou et al. 2018). In a longitudinal study in mice, Reutzel et al. (2020) demonstrated a connection between age-related declines in cognition, energy metabolism, and mitochondrial biogenesis.

Xue et al., (2019) investigated the concept of frailty in relation to reserve and resilience, exploring biomarkers for phenotype validation. Mice with mitochondrial dysfunctions showed altered responses to stress consistent with human studies linking mitochondrial function to immune, HPA axis, and sympathetic nervous system responses. The authors suggested that decreased mitochondrial function is the initiating event for chronic inflammation via an imbalance of pro- and anti-inflammatory cytokines, leading to CF. Ismael et al., (2021) further showed in mice that thioredoxin interacting protein regulates age-associated neuroinflammation, linking oxidative state and brain inflammation during ageing. Other studies suggested improvements in metabolic, visual, motor, and cognitive decline were possible by intervening in this pathway and mitochondrial function (Liang et al., 2021; Wang et al., 2019; Weinrich et al., 2017).

Morsci et al. (2016) further evidenced that mitochondrial ageing under the control of insulin signalling is responsible for neuronal ageing. Pharaoh et al. (2020) demonstrated that IGF-1 in mice is critical for mitochondrial function in the central nervous system and coordinates spatial learning. They propose that age-associated IGF-1 deficiency in humans may increase brain sensitivity to damage (from stress), and that targeting mitochondrial function in the brain could alleviate age-related CI.

Tarantini et al. (2018) showed that mitochondrial oxidative stress contributes to age-related cerebromicrovascular dysfunction, exacerbating cognitive decline in mice, a link also discussed in humans (Aguilar-Navarro et al, 2016). Tarantini et al., (2019) found that activation of the Poly (ADP-ribose) polymerase 1 (PARP1) upon DNA damage decreases availability of the essential coenzyme Nicotinamide adenine dinucleotide (NAD+), leading to age-related endothelial dysfunction and neurovascular uncoupling, a key contributor to cognitive decline. Finally, Raihan et al., (2019) showed that age-dependent loss of splicing factor SFRS11 in the pre-frontal cortex reduces levels of lipoproteins ApoE and LRP8, leading to activation of the c-Jun N-terminal Kinase (JNK) stress pathway and ultimately to cognitive deficits.

Cellular energy depletion and mitochondria

Aging is accompanied by a decline in NAD+ levels, linked to the development of age-related diseases, such as cancer, cognitive decline, sarcopenia and frailty. Restoring NAD+ levels can slow down or possibly reverse these age-associated diseases, notably through improving the cardiovascular system (reviewed by Csiszar et al., 2019). Covarrubias et al.

(2021) reviewed evidence that physical exercise can increase NAD+ levels and thereby promote healthy ageing. Desdín-Micó et al. (2020) further showed that T cells with dysfunctional mitochondria result in inflammaging and cognitive deficits in mice, and the authors highlight the importance of tight immunometabolic control in ageing.

Neuronal plasticity

Neuronal expression of key transcription factors shifts with age, usually leading to reduced plasticity, identified by Arey and Murphy (2017) as a modulator of age-related cognitive decline. In worms, long-term associative memory performance correlated with levels of active CREB, a transcription factor involved in learning and memory, and maintenance of CREB expression and activity could be predictive of memory performance with age. Arey et al., (2018) directly determined that the Gaq signalling pathway plays a role in associative learning in *C. elegans* and is dependent on CREB. Ageing human brains rely on neuronal plasticity to compensate for regionalised deficits; in this context reduced plasticity would accelerate cognitive decline (Ji et al., 2018; Kanishka & Jha, 2023).

Hormonal and growth signalling pathways

In mice, proinsulin protects against age-related cognitive loss through anti-inflammatory pathways (Corpas et al., 2017). In aged rats, Flowers et al., (2015) provided evidence for a role of Wnt signalling in inflammation.

Both dietary restriction and the nutrient sensing insulin-IGF-like /TOR intracellular signalling (IIS/TOR) network are established to be evolutionarily conserved modulators of ageing. IIS and dietary restriction have been found to play a role in cognitive decline (Arey & Murphy, 2017). Wrigley et al. (2017) reviewed the role of IGF-1 in brain development and ageing. suggesting that reduced IGF1 activity with age leads to age-related changes, but mutations reducing IGF1-signaling activity can dramatically extend the lifespan of organisms such that the role of IGF1 in the overall ageing process is unclear. Similarly in Drosophila, reduced IIS in neurons resulted in female lifespan extension but an exacerbation of age rlated decline in decision making in both sexes (Ismail et al., 2015). Different neuronal subtypes in Drosophila have individual responses to the lifespan modulating effects of insulin/IGF-like signalling, with IIS in serotonergic neurons modulating lifespan and IIS in cholinergic neurons modulating locomotor senescence (Dravecz et al., 2022). Motor neurons in Drosophila however, respond differently to reductions in IIS. Augustin et al., (2017) showed that reduced IIS attenuated the functional decline of the escape response pathway in the fruit fly involving preservation of the number of gap junctional proteins. In mice, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the ageing phenotype (Toth et al., 2014). Restricted calorie intake may increase the number of divisions that neural stem and progenitor cells undergo in the ageing brain of female mice (Park et al., 2013).

Cell maintenance and stress signalling pathways

Roda et al., (2021) identified roles for IL-6, increased VEGF-immunoreactivity, SOD1, NOS2, COX2 and SIRT1 in locomotor function decline in ageing mice. Wang et al., (2019) also identified direct roles for oxidative stress and neuroinflammation in cognitive declines in mice via effects on RAGE, MAPK and NF-kB. Parks et al., (2020) suggest that reduction in AlloP with age is dependent on increased IL6 and is a major contributor to cognitive decline. Perluigi et al., (2015) reviewed the role of mTOR in ageing and neurodegeneration, focusing on autophagy, glucose metabolism and mitochondrial functions of autophagy in adult worms lead to improvements in health and longevity mediated through neurons, resulting in reduced neurodegeneration and sarcopenia (Wilhelm et al., 2017).

The proteosome has been investigated in terms of its role in lifespan and cognitive decline in *Drosophila* (Munkácsy et al., 2019). Pan-neural augmentation of proteosome function can

ameliorate age-related cognitive decline whereas ubiquitous proteosome overexpression was detrimental to behavioural function, highlighting the importance of the nervous system. Augustin et al., (2018) showed that increasing proteosomal activity in the giant fibre system of ageing flies can prevent functional decline.

Iron and calcium homeostasis

Iron and calcium are essential but toxic ions when deregulated. The mammalian brain accumulates iron with age but it has not yet been linked to CF. Iron accumulation is a conserved ageing process that also occurs in *C. elegans*, where it promotes frailty and negatively impact both healthspan and lifespan (Jenkins et al., 2020).

In mice, age-associated increase in calcium in cortical and hippocampal neurons is associated with increased calpain activity and reduced cell viability. Preventing excess calcium leakage or accumulation was shown to improve cognitive outcomes (memory and learning) in both middle-aged and aged mice (Uryash et al., 2020).

4 Discussion

4.1 Overview

This scoping review considered mechanisms associated with CF, categorising contributions from primary research and reviews. Many CF risk factors are known risk factors for dementia (e.g. Livingston et al., 2020). However, and importantly, this review highlighted differences in symptoms and functional changes that distinguish CF from dementia. It also considered underlying mechanisms and intervention targets to alter the trajectory from having either physical frailty or cognitive impairment to having both, based on the premise that CF is potentially reversible. Factors highlighted included the fundamental roles of socioeconomic and sociocultural factors, which has revealed potential pathways linking inequalities, gender, habitat and ethnicity to CF and outcomes of poorer quality of life, greater need for health and social care support and restricted independence. These factors were then linked to psychological factors whereby the roles of education and related opportunities, such as rewarding and cognitively complex lifetime occupations, were related to cognitive reserve and the ability to find strategies to cope with mild impairments, and contextual stress was related to physiologically damaging anxiety, depression and loneliness. Evidence for reciprocal lines between the biological, experiential and environmental was noted, that could potentially lead to novel pathways for intervention throughout the levels depicted. A specific pattern of cognitive and motor function change was identified, suggesting CF is not a neurodegenerative condition, although may increase risk for such. The influence of health behaviours was also demonstrated, with clear links to underlying biological ageing mechanisms related to nutrition, physical activity, and sleep.

Many biological mediators were suggested, including stresses (oxidative, metabolic, immune), microbiome shifts, neurotransmitter levels (influencing depression and cognitive reserve), inflammation (proinflammatory cytokines with effects on executive function, depression, and heart disease), hormonal sex differences, and exercise levels, with biological ageing as an underlying risk factor itself. Epigenetic moderators integrated environmental and lifestyle factors with biological ageing processes. The multidisciplinary review brought the relationships identified by social and psychological sciences together with experimental studies in cells, tissue cultures, and model organisms. Examples included the muscle-brain and gut-brain axes underlying impacts of physical activity and diet, and evidence from studies of environmental enrichment in model organisms that support findings related to education, socially and intellectually active lifestyles versus impacts of hearing loss, low activity, and loneliness. Animal models of depression were considered, however,

clear CF animal models were not found, with few experimental studies bringing together both cognitive and motor function, and none mentioning CF as a syndrome.

4.2 Predictors and potential mechanisms linking cognitive impairment and physical frailty.

Education and cognitive stimulation throughout life, including studies on cognitive reserve, were among factors with a clear role linking cognitive impairment and physical frailty. Having more education (often used as an indicator of cognitive reserve) was a direct predictor of lower CF risk, and in reducing the likelihood of transition from PF to CF, in improvement of existing CF, or in moderating cognitive decline for physically frail people in longitudinal studies. Lifetime cognitive engagement and occupational factors, both considered important markers of cognitive reserve, were suggested as predictors of CF. Attempts to disentangle the cognitive reserve benefits of lifetime cognitively complex occupations and lifestyles from socioeconomic factors related to occupational level or even employment versus unemployment were featured in very few papers, though it is suggested that occupational interventions may have potential for long term impacts.

There were a range of other socioeconomic and socio-cultural factors associated with CF, including ethnicity, habitat (notably rural versus urban, and homelessness), being widowed or single, low social engagement, caregiving roles, as well as indices of deprivation. Gender differences can also be included though studies attempting to disentangle physiological sex differences such as hormonal changes post-menopause or inflammatory responses, from differences in educational and occupational opportunities, were missing from the literature. Many factors also link to educational and occupational or other cognitive stimulation opportunities but also to other indices of both deprivation and social support/opportunities for social engagement. Socially engaged people with good social networks are generally more physically and cognitively active, but people who have cognitive impairment, physical frailty or other impairments such as hearing loss, can find activities increasingly difficult, with impacts on loneliness and isolation and, therefore, mechanisms of CF.

Mental health factors were also salient, primarily loneliness and depression. These factors were one of the predominant ways that the social and economic environment, including health inequalities, influence underlying physiological and biological mechanisms. Stress and depression have direct impacts on stress hormones such as corticosteroids, and via the HPA pathway, affecting immunageing, inflammation and vascular health, and severe depression has been associated with cerebrovascular small vessel disease in people with CF. Loneliness was suggested as a mediator between depression and CF, and depression as a mediator of the link between cognitive impairment and physical frailty (development of CF). However, aspects of depression such as apathy, low motivation, and self-rated exhaustion were distinguished as having specific relationships with the medial prefrontal ventral striatal network, also associated with specific cognitive domains, notably executive functions including initiation, monitoring and updating of activity. Such functions are commonly associated with aspects of physical frailty, notably walking speed. Studies that separated emotional wellbeing or attitudes towards one's own ageing from more cognitively related aspects of depression such as apathy and motivation were not found; future studies should examine such distinctions.

Cognitive domains including executive function, aspects of attention, intra-individual variability, processing speed and reaction times were more likely to be associated with indicators of PF such as walking speed and grip strength, than episodic memory or global cognition, distinguishing the cognitive impairment associated with frailty indices from that associated with neurodegeneration in dementia. In studies that separated out such domains, the faster cognitive decline in cognition normally associated with PF did not occur over time.

Being able to distinguish people with CF versus early dementia may be possible by ensuring individual cognitive domains are reported rather than using global measures, and that people with levels of cognition indicating probable dementia are carefully considered separately. Studies examined the impact of specific health behaviours on underlying biological ageing, with nutrition and physical activity/sedentary lifestyles featuring strongly. Nutrition, specifically lipid balance, antioxidant dietary components, and vitamin D and B12 deficiencies, were linked to the association between CI and PF. Studies associated aspects of physical frailty to outcomes of poor nutrition such as sarcopenia, poor bone health, and others linking diets high in antioxidants to cognitive health and to reduced risk of frailty, or a diet high in protein to reduced likelihood of frailty. These findings need to be placed in the context of other findings linking muscle mass and action, sarcopenia and gut microbiome to CF.

Studies linking physically active lifestyles to both cognitive health and reduced risk of physical frailty were featured but most examined one rather than both together (i.e. not CF). However, several did examine links of each aspect to underlying mechanisms that have been demonstrated to be related to CF, specifically via increased brain derived neurotrophic factors, IGF-1 and increased cerebral blood flow and downregulated inflammatory factors, stress related hormones and impacts of exercise on the gut microbiome.

Sleep was proposed as another factor that may mediate the relationship between physical frailty and cognitive impairment, but only in terms of executive function, learning, processing speed and delayed recall, not other aspects of cognition, with impacts on inflammation and insulin resistance posited as the process by which this mediation may occur.

4.3 Intervention Targets

While interventions were excluded from this scoping review, a range of potential interventions were suggested within the included papers or by the role of mechanisms evidenced above. Interventions and policies are needed across the lifespan focussing on inequalities and continuing learning and education, and access to psychological support (e.g. for stress and depression in later life). Population health interventions at scale could be implemented to focus on reducing sedentary behaviour and increasing physical activity. Individuals could be encouraged to consider lifespan cognitive challenge and access to educational and learning/training opportunities (via work or community settings). Psychoeducation at key transition points such as retirement could have a significant impact, as could interventions focussing on dietary interventions targeting nutrients and gut microbiome factors related to CF.

Biomedical interventions for cognitive decline, ageing or frailty were suggested in some experimental studies, but not as interventions for cognitive frailty, in the absence of established experimental models of cognitive frailty. In-depth reviews of possible strategies and their specific relevance to CF are needed before recommendations can be made.

4.4 Gaps in knowledge and approaches

Although there is a wealth of knowledge across all ageing research fields, there has been little integration of the biological mechanisms of ageing identified in model organisms with the socio-economic and psychological factors in humans. This is particularly true for CF. Future work must examine the impacts of specific extrinsic or psychological factors on biological stress load, such as redox stress, immunaging, or levels of inflammatory factors. Studies, and particularly interventions, that include biological targets and outcomes alongside behavioural or health interventions would refine understanding in this field.

An obvious gap identified is **the lack of animal models of CF**, which could enable the determination of mechanisms and/or causality of CF risk factors. Such models would also allow knowledge of the biological mechanisms of cognition and locomotor function and ageing-related decline to inform CF studies testing causality of risk factors and feasibility of therapeutic interventions.

Relatedly, **environmental enrichment is crucial in interventional and experimental studies of CF.** This is not standard practice in animal experiments and there is concern that less stimulating environments may mean our animal models of ageing might be unnaturally prone to CF (with cognitive decline and frailty seemingly co-occurring very frequently in ageing lab animals).

Another critical gap in experimental studies in model organisms is the **lack of consistency applied to studying biological sexes**. Sex differences in decline of cognition and locomotor functions are seen in model organisms, as in humans, but the mechanisms underlying these differences are not understood. This is partly because studies on model organisms tend to focus on a single sex, often for convenience: female-like hermaphrodite in *C. elegans* is easier to handle; fruit fly males and females handle dietary interventions differently so one sex may be more suitable to a type of study; sex determination is timeconsuming or deemed less relevant (zebrafish studies under-report subject sex); handling multiple sexes increases costs and ethical concerns (need to double cohort sizes), or to reduce another source of variability in small samples (studies in mammals typically). Unfortunately, it curtails our mechanistic understanding of the sexual dimorphism observed in frailty and age-related cognitive decline in humans and other animals.

A further important gap highlighted is the need to **improve the separation of patterns of deficits that may be related to neurodegeneration or early dementia from patterns associated with CF**. It is recommended that studies examining CF distinguish between these profiles (through careful methodological considerations) to ensure that interventions that may work for each group can be more clearly identified. Interestingly, animal models of neurodegenerative diseases (NDs) tend to be genetically modified or subjected to drugs to elicit a human disease that is not natural to them (true in rodents, fish, fruit fly and worm models). Typical control animal models that do not naturally develop NDs provide a way to easily experimentally separate cognitive decline due to NDs from that due to CF.

Surprisingly, **SASP/tissue level impact of senescent cells received little attention** despite being a critical contributor to mammalian tissue ageing that underpins not only cancer progression but also inflammaging, with coinciding negative consequences on both muscle/bone and brain systems. Studying how various senescent cells impact CF, both clinically and experimentally in model organisms where senescence can be induced in a tissue/cell type specific manner, might reveal that specific cell types are significantly responsible for development and progression of CF.

As CF is a systemic syndrome engaging system level biological factors (muscle-brain, bone/blood-brain, and gut-brain axes, inflammaging, SASP, inter-organ signalling pathways such as IGF1/insulin signalling), **the ability to experimentally study ageing organ systems in parallel or in isolation** when exploring cellular and molecular causes of CF would allow the network of biological influences that underpin CF to be unpicked. While some of this could be achieved *in vivo* using carefully designed transgenic animal models, it raises 3Rs concerns. Alternatively, or as part of a reduction strategy, body/organ-on-chip approaches could be leveraged, not only applicable to animal cells but to human cells too, making such *in vitro* studies more directly relevant to human physiology.

Amongst questions not addressed by the reviewed literature, it is essential to refine the definition of CF. In particular, it is unclear **whether there are different types of CF**: is CF that has developed as a result of earlier life inequalities different from that developed as a result of (1) a later-life event, (2) changes such as depression, reduction in mobility or change in social networks, (3) late onset disease or accumulation of diseases?

Understanding the direction in which CF develops (frailty then cognitive decline or vice versa, or both in parallel) is crucial for the development of interventions. Although some studies examined the trajectory from CI to concomitant PF and *vice versa*, the lack of differentiation between developing CF and early dementia in many studies makes understanding the trajectory difficult.

There was strong evidence for depression as a major CF-promoting factor. While interventions at an individual level are a clear priority, **models of depression in relation to CF are not yet available**, which could also be modelled in model organisms to understand biological mechanisms and to identify druggable pathways.

Finally, while epigenetics was identified as a major integrator of the cumulated effects of environmental and endogenous factors across the lifespan, it remains poorly understood. Given the multiplicity of contributing factors to CF, specific epigenetic signatures of CF may drive a CF-specific altered gene expression profile. Identifying either, or both, would provide diagnostic tools and a roadmap for developing interventions. **Epigenomics and transcriptomics profiling of CF would be critical** in achieving this.

Limitations

The literature review was necessarily limited by the focus on English language papers, and by the limited literature in some areas in relation to cognitive frailty. There were some areas with single papers identified by our searches, notably anti-cholinergic burden in medication (Sargent, Nalls, Amella, Mueller, et al., 2020), polypharmacy (Moon et al., 2019), association of loss of teeth with CF (X. M. Zhang et al., 2022), and role of owning a pet in CF development (S. Zhang et al., 2022) limiting the ability to do any scoping. Given the broad interdisciplinary scope of the review, interventions were excluded, but their inclusion may have given further insights.

4.5 Conclusions

The distinction of CF as a separate syndrome from 'natural ageing' or early dementia is key to determining interventions and factors that may be associated with reversibility. Differentiation of biomarker pathways or triggers for associated biological ageing pathways is not yet clear. Improvement of diagnostic tools and models for use in biological research are important, as is refinement of clinical criteria and identification of subtypes, which will likely happen in parallel to defining mechanisms and designing interventions.

Acknowledgments:

The authors are grateful to Amanda Ellison who provided final proof reading.

Funding:

This work was supported by interdisciplinary funding from the UKRI BBSRC and MRC, grant number: BB/W018322/1

Declarations of Interest:

Carol Holland reports financial support was provided by UKRI BBSRC & MRC BB/W018322/1, which support was relevant for all authors. Carol Holland reports a relationship with Brocher Foundation that includes: travel reimbursement. Carol Holland reports a relationship with CONGRESO INTERNACIONAL DE PSICOLOGIA Y EDUCACIÓN, Spain that includes: speaking and lecture fees and. travel reimbursement. Alexandre Benedetto reports further financial support from the UKRI BBSRC BB/S017127/1. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- Adachi, Y., Ono, N., Imaizumi, A., Muramatsu, T., Andou, T., Shimodaira, Y., . . . Nukada, H. 2018. Plasma Amino Acid Profile in Severely Frail Elderly Patients in Japan. International Journal of Gerontology, 12(4), 290-293. https://doi.org/https://doi.org/10.1016/j.ijge.2018.03.003
- Aguilar-Navarro, S. G., Mimenza-Alvarado, A. J., Anaya-Escamilla, A., Gutiérrez-Robledo, L.M. 2016. Frailty and Vascular Cognitive Impairment: Mechanisms Behind the Link. Rev Invest Clin, 68 (1): 25-32. PMID: 27028174
- Aguilar-Navarro, S. G., Mimenza-Alvarado, A. J., Corona-Sevilla, I., Jiménez-Castillo, G. A., Juárez-Cedillo, T., Ávila-Funes, J. A., & Román, G. C. 2019. Cerebral Vascular Reactivity in Frail Older Adults with Vascular Cognitive Impairment. Brain Sci, 9(9). https://doi.org/10.3390/brainsci9090214
- Alexiou, A., Nizami, B., Khan, F. I., Soursou, G., Vairaktarakis, C., Chatzichronis, S., . . . Md Ashraf, G. 2018. Mitochondrial Dynamics and Proteins Related to Neurodegenerative Diseases. Curr Protein Pept Sci, 19(9), 850-857. https://doi.org/10.2174/1389203718666170810150151
- Alvarado, J. C., Fuentes-Santamaría, V., & Juiz, J. M. 2021. Frailty Syndrome and Oxidative Stress as Possible Links Between Age-Related Hearing Loss and Alzheimer's Disease. Front Neurosci, 15, 816300. https://doi.org/10.3389/fnins.2021.816300
- Amanzio, M., Canessa, N., Bartoli, M., Cipriani, G. E., Palermo, S., & Cappa, S. F. 2021. Lockdown Effects on Healthy Cognitive Aging During the COVID-19 Pandemic: A Longitudinal Study. Front Psychol, 12, 685180. https://doi.org/10.3389/fpsyg.2021.685180
- Ambrosi, T. H., Marecic, O., McArdle, A., Sinha, R., Gulati, G. S., Tong, X., . . . Chan, C. K. F. 2021. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature, 597(7875), 256-262. https://doi.org/10.1038/s41586-021-03795-7
- Anderson, D., Seib, C., & Rasmussen, L. 2014. Can physical activity prevent physical and cognitive decline in postmenopausal women? A systematic review of the literature. Maturitas, 79(1), 14-33. https://doi.org/10.1016/j.maturitas.2014.06.010
- Angoorani, P., Ejtahed, H. S., Siadat, S. D., Sharifi, F., & Larijani, B. 2022. Is There Any Link between Cognitive Impairment and Gut Microbiota? A Systematic Review. Gerontology, 68(11), 1201-1213. https://doi.org/10.1159/000522381
- Apostolo, J., Cooke, R., Bobrowicz-Campos, E., Santana, S., Marcucci, M., Cano, A., ... Holland, C. 2018. Effectiveness of interventions to prevent pre-frailty and frailty progression in older adults: a systematic review. JBI Database System Rev Implement Rep, 16(1), 140-232. https://doi.org/10.11124/JBISRIR-2017-003382
- Arey, R. N., & Murphy, C. T. 2017. Conserved regulators of cognitive aging: From worms to humans. Behav Brain Res, 322(Pt B), 299-310. https://doi.org/10.1016/j.bbr.2016.06.035
- Arey, R. N., Stein, G. M., Kaletsky, R., Kauffman, A., & Murphy, C. T. 2018. Activation of Gαq signaling enhances memory consolidation and slows cognitive decline. Neuron, 98(3), 562-574.e565. https://doi.org/10.1016/j.neuron.2018.03.039
- Arksey, H., & O'Malley, L. 2005. Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19-32. https://doi.org/10.1080/1364557032000119616
- Arnoriaga-Rodríguez, M., & Fernández-Real, J. M. 2019. Microbiota impacts on chronic inflammation and metabolic syndrome related cognitive dysfunction. Rev Endocr Metab Disord, 20(4), 473-480. https://doi.org/10.1007/s11154-019-09537-5
- Arosio, B., Calvani, R., Ferri, E., Coelho-Junior, H. J., Carandina, A., Campanelli, F., . . . Picca, A. 2023. Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle-Brain Axis. Nutrients, 15(8). https://doi.org/10.3390/nu15081853
- Arrieta, H., Rezola-Pardo, C., Sanz, B., Virgala, J., Lacunza-Zumeta, M., Rodriguez-Larrad, A., & Irazusta, J. 2022. Improving the Identification of Frailty in Long-Term Care

> Residents: A Cross-Sectional Study. Biol Res Nurs, 24(4), 530-540. https://doi.org/10.1177/10998004221100797

- Atienza, M., Ziontz, J., & Cantero, J. L. 2018. Low-grade inflammation in the relationship between sleep disruption, dysfunctional adiposity, and cognitive decline in aging. Sleep Med Rev, 42, 171-183. https://doi.org/10.1016/j.smrv.2018.08.002
- Augustin, H., McGourty, K., Allen, M. J., Adcott, J., Wong, C. T., Boucrot, E., & Partridge, L. 2018. Impact of insulin signaling and proteasomal activity on physiological output of a neuronal circuit in aging Drosophila melanogaster. Neurobiol Aging, 66, 149-157. https://doi.org/10.1016/j.neurobiolaging.2018.02.027
- Augustin, H., McGourty, K., Allen, M. J., Madem, S. K., Adcott, J., Kerr, F., . . . Partridge, L. 2017. Reduced insulin signaling maintains electrical transmission in a neural circuit in aging flies. PLoS Biol, 15(9), e2001655. https://doi.org/10.1371/journal.pbio.2001655
- Azpurua, J., & Eaton, B. A. 2015. Neuronal epigenetics and the aging synapse. Front Cell Neurosci, 9, 208. https://doi.org/10.3389/fncel.2015.00208
- Bachmann, M. C., Bellalta, S., Basoalto, R., Gómez-Valenzuela, F., Jalil, Y., Lépez, M., . . . von Bernhardi, R. 2020. The Challenge by Multiple Environmental and Biological Factors Induce Inflammation in Aging: Their Role in the Promotion of Chronic Disease. Front Immunol, 11, 570083. https://doi.org/10.3389/fimmu.2020.570083
- Baptista, L. C., Sun, Y., Carter, C. S., & Buford, T. W. 2020. Crosstalk Between the Gut Microbiome and Bioactive Lipids: Therapeutic Targets in Cognitive Frailty. Front Nutr, 7, 17. https://doi.org/10.3389/fnut.2020.00017
- Bekić, S., Babič, F., Filipčić, I., & Trtica Majnarić, L. 2019. Clustering of Mental and Physical Comorbidity and the Risk of Frailty in Patients Aged 60 Years or More in Primary Care. Med Sci Monit, 25, 6820-6835. https://doi.org/10.12659/MSM.915063
- Bektas, A., Schurman, S. H., Sen, R., & Ferrucci, L. 2018. Aging, inflammation and the environment. Exp Gerontol, 105, 10-18. https://doi.org/10.1016/j.exger.2017.12.015
- Belblidia, H., Leger, M., Abdelmalek, A., Quiedeville, A., Calocer, F., Boulouard, M., . . . Schumann-Bard, P. 2018. Characterizing age-related decline of recognition memory and brain activation profile in mice. Exp Gerontol, 106, 222-231. https://doi.org/10.1016/j.exger.2018.03.006
- Blalock, E. M., Chen, K. C., Sharrow, K., Herman, J. P., Porter, N. M., Foster, T. C., & Landfield, P. W. (2003). Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci, 23(9), 3807-3819. https://doi.org/10.1523/JNEUROSCI.23-09-03807.2003
- Bongue, B., Colvez, A., Amsallem, E., Gerbaud, L., & Sass, C. 2016. Assessment of Health Inequalities Among Older People Using the EPICES Score: A Composite Index of Social Deprivation. J Frailty Aging, 5(3), 168-173.
- Bortone, I., Griseta, C., Battista, P., Castellana, F., Lampignano, L., Zupo, R., . . . Panza, F. 2021. Physical and cognitive profiles in motoric cognitive risk syndrome in an older population from Southern Italy. Eur J Neurol, 28(8), 2565-2573. https://doi.org/10.1111/ene.14882
- Bowl, M. R., & Dawson, S. J. 2019. Age-Related Hearing Loss. Cold Spring Harb Perspect Med, 9(8). https://doi.org/10.1101/cshperspect.a033217
- Breitling, L. P., Saum, K. U., Perna, L., Schöttker, B., Holleczek, B., & Brenner, H. 2016. Frailty is associated with the epigenetic clock but not with telomere length in a German cohort. Clin Epigenetics, 8, 21. https://doi.org/10.1186/s13148-016-0186-5
- Brigola, A. G., Luchesi, B. M., Alexandre, T. D. S., Inouye, K., Mioshi, E., & Pavarini, S. C. I. (2017). High burden and frailty: association with poor cognitive performance in older caregivers living in rural areas. Trends Psychiatry Psychother, 39(4), 257-263. https://doi.org/10.1590/2237-6089-2016-0085
- Bunce, D., Batterham, P. J., & Mackinnon, A. J. 2019. Long-term Associations Between Physical Frailty and Performance in Specific Cognitive Domains. J Gerontol B Psychol Sci Soc Sci, 74(6), 919-926. https://doi.org/10.1093/geronb/gbx177

Canevelli, M., & Cesari, M. 2015. Cognitive frailty: what is still missing? J Nutr Health Aging, 19(3), 273-275. https://doi.org/10.1007/s12603-015-0464-5

Carini, G., Musazzi, L., Bolzetta, F., Cester, A., Fiorentini, C., Ieraci, A., . . . Barbon, A. 2021. The Potential Role of miRNAs in Cognitive Frailty. Front Aging Neurosci, 13, 763110. https://doi.org/10.3389/fnagi.2021.763110

- Chapko, D., Staff, R. T., McNeil, C. J., Whalley, L. J., Black, C., & Murray, A. D. 2016. Latelife deficits in cognitive, physical and emotional functions, childhood intelligence and occupational profile: a life-course examination of the Aberdeen 1936 Birth Cohort (ABC1936). Age Ageing, 45(4), 486-493. https://doi.org/10.1093/ageing/afw061
- Chhetri, J. K., de Souto Barreto, P., Soriano, G., Gennero, I., Cantet, C., & Vellas, B. 2018. Vitamin D, homocysteine and n-3PUFA status according to physical and cognitive functions in older adults with subjective memory complaint: Results from crosssectional study of the MAPT trial. Exp Gerontol, 111, 71-77. https://doi.org/10.1016/j.exger.2018.07.006
- Choi, J. Y., Chun, S., Kim, H., Jung, Y. I., Yoo, S., & Kim, K. I. 2022. Analysis of blood pressure and blood pressure variability pattern among older patients in long-term care hospitals: an observational study analysing the Health-RESPECT (integrated caRE Systems for elderly PatiEnts using iCT) dataset. Age Ageing, 51(3). https://doi.org/10.1093/ageing/afac018
- Choi, K., & Ko, Y. 2023. Cross sectional association between cognitive frailty and disability among community-dwelling older adults: Focus on the role of social factors. Front Public Health, 11, 1048103. https://doi.org/10.3389/fpubh.2023.1048103
- Chou, M. Y., Nishita, Y., Nakagawa, T., Tange, C., Tomida, M., Shimokata, H., . . . Arai, H. 2019. Role of gait speed and grip strength in predicting 10-year cognitive decline among community-dwelling older people. BMC Geriatr, 19(1), 186. https://doi.org/10.1186/s12877-019-1199-7
- Christian, C. J., & Benian, G. M. 2020. Animal models of sarcopenia. Aging Cell, 19(10), e13223. https://doi.org/10.1111/acel.13223
- Chu, N. M., Bandeen-Roche, K., Tian, J., Kasper, J. D., Gross, A. L., Carlson, M. C., & Xue, Q. L. 2019. Hierarchical Development of Frailty and Cognitive Impairment: Clues Into Etiological Pathways. J Gerontol A Biol Sci Med Sci, 74(11), 1761-1770. https://doi.org/10.1093/gerona/glz134
- Chu, N. M., Bandeen-Roche, K., Xue, Q. L., Carlson, M. C., Sharrett, A. R., & Gross, A. L. 2021. Physical Frailty Phenotype Criteria and Their Synergistic Association on Cognitive Functioning. J Gerontol A Biol Sci Med Sci, 76(9), 1633-1642. https://doi.org/10.1093/gerona/glaa267
- Chu, N. M., Xue, Q. L., McAdams-DeMarco, M. A., Carlson, M. C., Bandeen-Roche, K., & Gross, A. L. 2021. Frailty-a risk factor of global and domain-specific cognitive decline among a nationally representative sample of community-dwelling older adult U.S. Medicare beneficiaries. Age Ageing, 50(5), 1569-1577. https://doi.org/10.1093/ageing/afab102
- Chung C.-P., Lee, W-J., Peng, L-N., Shimada, H., Tsai T-F., Lin C-P., Arai H., Chen, L-K., 2021 Physio-Cognitive Decline Syndrome as the Phenotype and Treatment Target of Unhealthy Aging. J Nutr Health Aging. 25(10) :1179-1189 http://dx.doi.org/10.1007/s12603-021-1693-4
- Chye, L., Wei, K., Nyunt, M. S. Z., Gao, Q., Wee, S. L., & Ng, T. P. 2018. Strong Relationship between Malnutrition and Cognitive Frailty in the Singapore Longitudinal Ageing Studies (SLAS-1 and SLAS-2). J Prev Alzheimers Dis, 5(2), 142-148. https://doi.org/10.14283/jpad.2017.46
- Cipolli, G. C., de Assumpção, D., Borim, F. S. A., Aprahamian, I., da Silva Falcão, D. V., Cachioni, M., . . . Yassuda, M. S. 2023. Cognitive Impairment Predicts Sarcopenia 9 Years Later among Older Adults. J Am Med Dir Assoc, 24(8), 1207-1212. https://doi.org/10.1016/j.jamda.2023.05.008

Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O'Connor, E. M., Cusack, S., . . . O'Toole, P. W. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature, 488(7410), 178-184. https://doi.org/10.1038/nature11319

Clegg, A., Young, J., Iliffe, S., Rikkert, M. O., & Rockwood, K. 2013. Frailty in elderly people. Lancet, 381(9868), 752-762. https://doi.org/10.1016/S0140-6736(12)62167-9

Cohen, G., & Gerber, Y. 2017. Air Pollution and Successful Aging: Recent Evidence and New Perspectives. Curr Environ Health Rep, 4(1), 1-11. https://doi.org/10.1007/s40572-017-0127-2

Confortin, S. C., & Barbosa, A. R. 2015. Factors Associated With Muscle Strength Among Rural Community-Dwelling Older Women in Southern Brazil. J Geriatr Phys Ther, 38(4), 162-168. https://doi.org/10.1519/JPT.00000000000027

Corpas, R., Revilla, S., Ursulet, S., Castro-Freire, M., Kaliman, P., Petegnief, V., . . . Sanfeliu, C. 2017. SIRT1 Overexpression in Mouse Hippocampus Induces Cognitive Enhancement Through Proteostatic and Neurotrophic Mechanisms. Mol Neurobiol, 54(7), 5604-5619. https://doi.org/10.1007/s12035-016-0087-9

Cosarderelioglu, C., Nidadavolu, L. S., George, C. J., Oh, E. S., Bennett, D. A., Walston, J. D., & Abadir, P. M. 2020. Brain Renin-Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front Neurosci, 14, 586314. https://doi.org/10.3389/fnins.2020.586314

Covarrubias, A. J., Perrone, R., Grozio, A., & Verdin, E. 2021. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol, 22(2), 119-141. https://doi.org/10.1038/s41580-020-00313-x

Csiszar, A., Tarantini, S., Yabluchanskiy, A., Balasubramanian, P., Kiss, T., Farkas, E., . . . Ungvari, Z. 2019. Role of endothelial NAD(+) deficiency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol, 316(6), H1253-H1266. https://doi.org/10.1152/ajpheart.00039.2019

Das, S. 2022. Cognitive frailty among community-dwelling rural elderly population of West Bengal in India. Asian J Psychiatr, 70, 103025. https://doi.org/10.1016/j.ajp.2022.103025

De Nobrega, A. K., & Lyons, L. C. 2020. Aging and the clock: Perspective from flies to humans. Eur J Neurosci, 51(1), 454-481. https://doi.org/10.1111/ejn.14176

Delrieu, J., Andrieu, S., Pahor, M., Cantet, C., Cesari, M., Ousset, P. J., ... Vellas, B. 2016. Neuropsychological Profile of "Cognitive Frailty" Subjects in MAPT Study. J Prev Alzheimers Dis, 3(3), 151-159. https://doi.org/10.14283/jpad.2016.94

Derevyanko, A., Whittemore, K., Schneider, R. P., Jiménez, V., Bosch, F., & Blasco, M. A. 2017. Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels with aging and prolongs mouse health span. Aging Cell, 16(6), 1353-1368. https://doi.org/10.1111/acel.12677

Desdín-Micó, G., Soto-Heredero, G., Aranda, J. F., Oller, J., Carrasco, E., Gabandé-Rodríguez, E., . . . Mittelbrunn, M. 2020. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science, 368(6497), 1371-1376. https://doi.org/10.1126/science.aax0860

Diniz, B. S., Lima-Costa, M. F., Peixoto, S. V., Firmo, J. O. A., Torres, K. C. L., Martins-Filho, O. A., . . . Castro-Costa, E. 2022. Cognitive Frailty is Associated With Elevated Proinflammatory Markers and a Higher Risk of Mortality. Am J Geriatr Psychiatry, 30(7), 825-833. https://doi.org/10.1016/j.jagp.2022.01.012

Dravecz, N., Shaw, T., Davies, I., Brown, C., Ormerod, L., Vu, G., . . . Broughton, S. J. 2022. Reduced Insulin Signaling Targeted to Serotonergic Neurons but Not Other Neuronal Subtypes Extends Lifespan in. Front Aging Neurosci, 14, 893444. https://doi.org/10.3389/fnagi.2022.893444

Dulken, B. W., Buckley, M. T., Navarro Negredo, P., Saligrama, N., Cayrol, R., Leeman, D. S., . . . Brunet, A. 2019. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature, 571(7764), 205-210. https://doi.org/10.1038/s41586-019-1362-5

- Fabrício, D. M., Chagas, M. H. N., & Diniz, B. S. 2020. Frailty and cognitive decline. Transl Res, 221, 58-64. https://doi.org/10.1016/j.trsl.2020.01.002
- Facal, D., Maseda, A., Pereiro, A. X., Gandoy-Crego, M., Lorenzo-López, L., Yanguas, J., & Millán-Calenti, J. C. 2019. Cognitive frailty: A conceptual systematic review and an operational proposal for future research. Maturitas, 121, 48-56. https://doi.org/10.1016/j.maturitas.2018.12.006
- Fang, F., Hughes, T. F., Weinstein, A., Dodge, H. H., Jacobsen, E. P., Chang, C. H., . . . Ganguli, M. 2023. Social Isolation and Loneliness in a Population Study of Cognitive Impairment: The MYHAT Study. J Appl Gerontol, 7334648231192053. https://doi.org/10.1177/07334648231192053
- Faulkner, M. E., Laporte, J. P., Gong, Z., Akhonda, M. A. B. S., Triebswetter, C., Kiely, M., . . Bouhrara, M. 2023. Lower Myelin Content Is Associated With Lower Gait Speed in Cognitively Unimpaired Adults. J Gerontol A Biol Sci Med Sci, 78(8), 1339-1347. https://doi.org/10.1093/gerona/glad080
- Ferrucci, L., & Fabbri, E. 2018. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol, 15(9), 505-522. https://doi.org/10.1038/s41569-018-0064-2
- Fielder, E., Tweedy, C., Wilson, C., Oakley, F., LeBeau, F. E. N., Passos, J. F., . . . Jurk, D. 2020. Anti-inflammatory treatment rescues memory deficits during aging in nfkb1. Aging Cell, 19(10), e13188. https://doi.org/10.1111/acel.13188
- Flowers, A., Lee, J. Y., Acosta, S., Hudson, C., Small, B., Sanberg, C. D., & Bickford, P. C. 2015. NT-020 treatment reduces inflammation and augments Nrf-2 and Wnt signaling in aged rats. J Neuroinflammation, 12, 174. https://doi.org/10.1186/s12974-015-0395-4
- Fontana, L., Partridge, L., & Longo, V. D. (2010). Extending healthy life span--from yeast to humans. Science, 328(5976), 321-326. https://doi.org/10.1126/science.1172539
- Foong, H. F., Ibrahim, R., Hamid, T. A., & Haron, S. A. 2021. Social networks moderate the association between physical fitness and cognitive function among community-dwelling older adults: a population-based study. BMC Geriatr, 21(1), 679. https://doi.org/10.1186/s12877-021-02617-9
- Fostinelli, S., Ferrari, C., De Amicis, R., Giustizieri, V., Leone, A., Bertoli, S., . . . Cappa, S. F. 2023. The Impact of Nutrition on Cognitive Performance in a Frail Elderly Population Living in Northern Italy. J Am Nutr Assoc, 42(5), 484-494. https://doi.org/10.1080/27697061.2022.2084180
- Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener, J., . . . Group, C. H. S. C. R. (2001). Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci, 56(3), M146-156. https://doi.org/10.1093/gerona/56.3.m146
- Furtado, G. E., Caldo, A., Vieira-Pedrosa, A., Letieri, R. V., Hogervorst, E., Teixeira, A. M., & Ferreira, J. P. 2020. Emotional Well-Being and Cognitive Function Have Robust Relationship With Physical Frailty in Institutionalized Older Women. Front Psychol, 11, 1568. https://doi.org/10.3389/fpsyg.2020.01568
- Gabelle, A., Gutierrez, L. A., Jaussent, I., Navucet, S., Grasselli, C., Bennys, K., . . . Dauvilliers, Y. 2017. Excessive Sleepiness and Longer Nighttime in Bed Increase the Risk of Cognitive Decline in Frail Elderly Subjects: The MAPT-Sleep Study. Front Aging Neurosci, 9, 312. https://doi.org/10.3389/fnagi.2017.00312
- Gaffney, C. J., Pollard, A., Barratt, T. F., Constantin-Teodosiu, D., Greenhaff, P. L., & Szewczyk, N. J. 2018. Greater loss of mitochondrial function with ageing is associated with earlier onset of sarcopenia in. Aging (Albany NY), 10(11), 3382-3396. https://doi.org/10.18632/aging.101654
- Gale, C. R., Marioni, R. E., Harris, S. E., Starr, J. M., & Deary, I. J. 2018. DNA methylation and the epigenetic clock in relation to physical frailty in older people: the Lothian Birth Cohort 1936. Clin Epigenetics, 10(1), 101. https://doi.org/10.1186/s13148-018-0538-4

- Gale, C. R., Westbury, L., & Cooper, C. 2018. Social isolation and loneliness as risk factors for the progression of frailty: the English Longitudinal Study of Ageing. Age Ageing, 47(3), 392-397. https://doi.org/10.1093/ageing/afx188
- Garcia, T. F. M., Vallero, C. N. A., Assumpção, D., Aprahamian, I., Mônica Sanches, Y., Borim, F. S. A., & Neri, A. L. 2022. Number of ideas in spontaneous speech predicts cognitive impairment and frailty in community-dwelling older adults nine years later. Aging Ment Health, 26(10), 2022-2030. https://doi.org/10.1080/13607863.2021.1998347
- García-Mesa, Y., Pareja-Galeano, H., Bonet-Costa, V., Revilla, S., Gómez-Cabrera, M. C., Gambini, J., . . . Sanfeliu, C. 2014. Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms. Psychoneuroendocrinology, 45, 154-166. https://doi.org/10.1016/j.psyneuen.2014.03.021
- Garner, I. W., Varey, S., Navarro-Pardo, E., Marr, C., & Holland, C. A. 2022. An observational cohort study of longitudinal impacts on frailty and well-being of COVID-19 lockdowns in older adults in England and Spain. Health Soc Care Community, 30(5), e2905-e2916. https://doi.org/10.1111/hsc.13735
- Ge, M., Zhang, Y., Zhao, W., Yue, J., Hou, L., Xia, X., . . . Ge, N. 2020. Prevalence and Its Associated Factors of Physical Frailty and Cognitive Impairment: Findings from the West China Health and Aging Trend Study (WCHAT). J Nutr Health Aging, 24(5), 525-533. https://doi.org/10.1007/s12603-020-1363-y
- Gelfo, F., Mandolesi, L., Serra, L., Sorrentino, G., & Caltagirone, C. 2018. The Neuroprotective Effects of Experience on Cognitive Functions: Evidence from Animal Studies on the Neurobiological Bases of Brain Reserve. Neuroscience, 370, 218-235. https://doi.org/10.1016/j.neuroscience.2017.07.065
- Gifford, K. A., Bell, S. P., Liu, D., Neal, J. E., Turchan, M., Shah, A. S., & Jefferson, A. L. 2019. Frailty Is Related to Subjective Cognitive Decline in Older Women without Dementia. J Am Geriatr Soc, 67(9), 1803-1811. https://doi.org/10.1111/jgs.15972
- Giné-Garriga, M., Jerez-Roig, J., Coll-Planas, L., Skelton, D. A., Inzitari, M., Booth, J., & Souza, D. L. B. 2021. Is Ioneliness a predictor of the modern geriatric giants? Analysis from the survey of health, ageing, and retirement in Europe. Maturitas, 144, 93-101. https://doi.org/10.1016/j.maturitas.2020.11.010
- Giorgetti, E., Panesar, M., Zhang, Y., Joller, S., Ronco, M., Obrecht, M., . . . Nash, M. 2019. Modulation of Microglia by Voluntary Exercise or CSF1R Inhibition Prevents Age-Related Loss of Functional Motor Units. Cell Rep, 29(6), 1539-1554.e1537. https://doi.org/10.1016/j.celrep.2019.10.003
- Giudici, K. V., Guyonnet, S., Rolland, Y., Vellas, B., de Souto Barreto, P., Nourhashemi, F., & Group, M. D. 2019. Body Weight Variation Patterns as Predictors of Cognitive Decline over a 5 Year Follow-Up among Community-Dwelling Elderly (MAPT Study). Nutrients, 11(6). https://doi.org/10.3390/nu11061371
- Gontier, G., Iyer, M., Shea, J. M., Bieri, G., Wheatley, E. G., Ramalho-Santos, M., & Villeda, S. A. 2018. Tet2 Rescues Age-Related Regenerative Decline and Enhances Cognitive Function in the Adult Mouse Brain. Cell Rep, 22(8), 1974-1981. https://doi.org/10.1016/j.celrep.2018.02.001
- Grande, G., Haaksma, M. L., Rizzuto, D., Melis, R. J. F., Marengoni, A., Onder, G., . . . Vetrano, D. L. 2019. Co-occurrence of cognitive impairment and physical frailty, and incidence of dementia: Systematic review and meta-analysis. Neurosci Biobehav Rev, 107, 96-103. https://doi.org/10.1016/j.neubiorev.2019.09.001
- Gross, A. L., Xue, Q. L., Bandeen-Roche, K., Fried, L. P., Varadhan, R., McAdams-DeMarco, M. A., . . . Carlson, M. C. 2016. Declines and Impairment in Executive Function Predict Onset of Physical Frailty. J Gerontol A Biol Sci Med Sci, 71(12), 1624-1630. https://doi.org/10.1093/gerona/glw067
- Gu, Y. H., Bai, J. B., Chen, X. L., Wu, W. W., Liu, X. X., & Tan, X. D. 2019. Healthy aging: A bibliometric analysis of the literature. Exp Gerontol, 116, 93-105. https://doi.org/10.1016/j.exger.2018.11.014

- Gómez-Gómez, M. E., & Zapico, S. C. 2019. Frailty, Cognitive Decline, Neurodegenerative Diseases and Nutrition Interventions. Int J Mol Sci, 20(11). https://doi.org/10.3390/ijms20112842
- Hahn, A., Pensold, D., Bayer, C., Tittelmeier, J., González-Bermúdez, L., Marx-Blümel, L., . .
 Zimmer-Bensch, G. 2020. DNA Methyltransferase 1 (DNMT1) Function Is Implicated in the Age-Related Loss of Cortical Interneurons. Front Cell Dev Biol, 8, 639. https://doi.org/10.3389/fcell.2020.00639
- Halil, M., Cemal Kizilarslanoglu, M., Emin Kuyumcu, M., Yesil, Y., & Cruz Jentoft, A. J. 2015. Cognitive aspects of frailty: mechanisms behind the link between frailty and cognitive impairment. J Nutr Health Aging, 19(3), 276-283. https://doi.org/10.1007/s12603-014-0535-z
- Hou, P., Xue, H., Zhang, Y., Ping, Y., Zheng, Y., Wang, Y., . . . Liu, Y. 2022. Mediating Effect of Loneliness in the Relationship between Depressive Symptoms and Cognitive Frailty in Community-Dwelling Older Adults. Brain Sci, 12(10). https://doi.org/10.3390/brainsci12101341
- Howrey, B. T., Al Snih, S., Middleton, J. A., & Ottenbacher, K. J. 2020. Trajectories of Frailty and Cognitive Decline Among Older Mexican Americans. The Journals of Gerontology: Series A, 75(8), 1551-1557. https://doi.org/10.1093/gerona/glz295
- Hu, F., Liu, H., Liu, X., Jia, S., Zhao, W., Zhou, L., . . . Dong, B. 2021. Nutritional status mediates the relationship between sarcopenia and cognitive impairment: findings from the WCHAT study. Aging Clin Exp Res, 33(12), 3215-3222. https://doi.org/10.1007/s40520-021-01883-2
- Huang, J., Zeng, X., Hu, M., Ning, H., Wu, S., Peng, R., & Feng, H. 2023. Prediction model for cognitive frailty in older adults: A systematic review and critical appraisal. Front Aging Neurosci, 15, 1119194. https://doi.org/10.3389/fnagi.2023.1119194
- Huang, W. C., Huang, Y. C., Lee, M. S., Chang, H. Y., & Doong, J. Y. 2021. Frailty Severity and Cognitive Impairment Associated with Dietary Diversity in Older Adults in Taiwan. Nutrients, 13(2). https://doi.org/10.3390/nu13020418
- Hui, Z., Wang, X., Zhou, Y., Li, Y., Ren, X., & Wang, M. 2022. Global Research on Cognitive Frailty: A Bibliometric and Visual Analysis of Papers Published during 2013-2021. Int J Environ Res Public Health, 19(13). https://doi.org/10.3390/ijerph19138170
- Hwang, H. F., Suprawesta, L., Chen, S. J., Yu, W. Y., & Lin, M. R. 2023. Predictors of incident reversible and potentially reversible cognitive frailty among Taiwanese older adults. BMC Geriatr, 23(1), 24. https://doi.org/10.1186/s12877-023-03741-4
- Inoue, T., Shimizu, A., Satake, S., Matsui, Y., Ueshima, J., Murotani, K., . . . Maeda, K. 2022. Association between osteosarcopenia and cognitive frailty in older outpatients visiting a frailty clinic. Arch Gerontol Geriatr, 98, 104530. https://doi.org/10.1016/j.archger.2021.104530
- Ismael, S., Nasoohi, S., Li, L., Aslam, K. S., Khan, M. M., El-Remessy, A. B., . . . Ishrat, T. 2021. Thioredoxin interacting protein regulates age-associated neuroinflammation. Neurobiol Dis, 156, 105399. https://doi.org/10.1016/j.nbd.2021.105399
- Ismail, M. Z., Hodges, M. D., Boylan, M., Achall, R., Shirras, A., & Broughton, S. J. 2015. The Drosophila insulin receptor independently modulates lifespan and locomotor senescence. PLoS One, 10(5), e0125312. https://doi.org/10.1371/journal.pone.0125312
- Itokazu, M., Ishizaka, M., Uchikawa, Y., Takahashi, Y., Niida, T., Hirose, T., . . . Urano, T. 2022. Relationship between Eye Frailty and Physical, Social, and Psychological/Cognitive Weaknesses among Community-Dwelling Older Adults in Japan. Int J Environ Res Public Health, 19(20). https://doi.org/10.3390/ijerph192013011
- Izquierdo, M., Merchant, R. A., Morley, J. E., Anker, S. D., Aprahamian, I., Arai, H., . . . Fiatarone Singh, M. 2021. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J Nutr Health Aging, 25(7), 824-853. https://doi.org/10.1007/s12603-021-1665-8

- Jenkins, N. L., James, S. A., Salim, A., Sumardy, F., Speed, T. P., Conrad, M., . . . McColl, G. 2020. Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging Caenorhabditis elegans. Elife, 9. https://doi.org/10.7554/eLife.56580
- Ji, L., Pearlson, G. D., Hawkins, K. A., Steffens, D. C., Guo, H., & Wang, L. 2018. A New Measure for Neural Compensation Is Positively Correlated With Working Memory and Gait Speed. Front Aging Neurosci, 10, 71. https://doi.org/10.3389/fnagi.2018.00071
- Jia, F., Liu, H., Xu, K., Sun, J., Zhu, Z., Shan, J., & Cao, F. 2022. Mediating effects of cognitive reserve on the relationship between frailty and cognition in older people without dementia. Eur Geriatr Med, 13(6), 1317-1325. https://doi.org/10.1007/s41999-022-00703-8
- Jiang, S., Cui, J., Zhang, L. Q., Liu, Z., Zhang, Y., Shi, Y., & Cai, J. P. 2022. Role of a Urinary Biomarker in the Common Mechanism of Physical Performance and Cognitive Function. Front Med (Lausanne), 9, 816822. https://doi.org/10.3389/fmed.2022.816822
- Jing, Z., Li, J., Wang, Y., Ding, L., Tang, X., Feng, Y., & Zhou, C. 2020. The mediating effect of psychological distress on cognitive function and physical frailty among the elderly: Evidence from rural Shandong, China. J Affect Disord, 268, 88-94. https://doi.org/10.1016/j.jad.2020.03.012
- Kanishka, & Jha, S. K. 2023. Compensatory cognition in neurological diseases and aging: A review of animal and human studies. Aging Brain, 3, 100061. https://doi.org/10.1016/j.nbas.2022.100061
- Karoglu-Eravsar, E. T., Tuz-Sasik, M. U., & Adams, M. M. 2021. Environmental enrichment applied with sensory components prevents age-related decline in synaptic dynamics: Evidence from the zebrafish model organism. Exp Gerontol, 149, 111346. https://doi.org/10.1016/j.exger.2021.111346
- Kase, Y., Otsu, K., Shimazaki, T., & Okano, H. 2019. Involvement of p38 in Age-Related Decline in Adult Neurogenesis via Modulation of Wnt Signaling. Stem Cell Reports, 12(6), 1313-1328. https://doi.org/10.1016/j.stemcr.2019.04.010
- Kaur, S., Banerjee, N., Miranda, M., Slugh, M., Sun-Suslow, N., McInerney, K. F., . . . Levin, B. E. 2019. Sleep quality mediates the relationship between frailty and cognitive dysfunction in non-demented middle aged to older adults. Int Psychogeriatr, 31(6), 779-788. https://doi.org/10.1017/S1041610219000292
- Kelaiditi, E., Cesari, M., Canevelli, M., van Kan, G. A., Ousset, P. J., Gillette-Guyonnet, S., . . . IANA/IAGG. 2013. Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J Nutr Health Aging, 17(9), 726-734. https://doi.org/10.1007/s12603-013-0367-2
- Khezrian, M., McNeil, C. J., Myint, P. K., & Murray, A. D. 2019. The association between polypharmacy and late life deficits in cognitive, physical and emotional capability: a cohort study. International Journal of Clinical Pharmacy, 41(1), 251-257. https://doi.org/10.1007/s11096-018-0761-2
- Kim, M., & Won, C. W. 2019. Sarcopenia Is Associated with Cognitive Impairment Mainly Due to Slow Gait Speed: Results from the Korean Frailty and Aging Cohort Study (KFACS). Int J Environ Res Public Health, 16(9). <u>https://doi.org/10.3390/ijerph16091491</u>
- Kim, E., Sok, S. R., Won Won, C. 2021 Factors affecting frailty among community-dwelling older adults: A multi-group path analysis according to nutritional status. International Journal of Nursing Studies, 115, https://doi.org/10.1016/j.ijnurstu.2020.103850
- Kohara, K., Okada, Y., Ochi, M., Ohara, M., Nagai, T., Tabara, Y., & Igase, M. 2017. Muscle mass decline, arterial stiffness, white matter hyperintensity, and cognitive impairment: Japan Shimanami Health Promoting Program study. J Cachexia Sarcopenia Muscle, 8(4), 557-566. https://doi.org/10.1002/jcsm.12195
- Kritchevsky, S. B., Forman, D. E., Callahan, K. E., Ely, E. W., High, K. P., McFarland, F., . . . Guralnik, J. M. 2019. Pathways, Contributors, and Correlates of Functional Limitation

> Across Specialties: Workshop Summary. J Gerontol A Biol Sci Med Sci, 74(4), 534-543. https://doi.org/10.1093/gerona/gly093

- Kwan, R. Y. C., Leung, A. Y. M., Yee, A., Lau, L. T., Xu, X. Y., & Dai, D. L. K. 2019. Cognitive Frailty and Its Association with Nutrition and Depression in Community-Dwelling Older People. J Nutr Health Aging, 23(10), 943-948. https://doi.org/10.1007/s12603-019-1258-y
- Lalo, U., Bogdanov, A., & Pankratov, Y. 2018. Diversity of Astroglial Effects on Aging- and Experience-Related Cortical Metaplasticity. Front Mol Neurosci, 11, 239. https://doi.org/10.3389/fnmol.2018.00239
- Laranjeiro, R., Harinath, G., Hewitt, J. E., Hartman, J. H., Royal, M. A., Meyer, J. N., . . . Driscoll, M. 2019. Swim exercise in Caenorhabditis elegans extends neuromuscular and gut healthspan, enhances learning ability, and protects against neurodegeneration. Proc Natl Acad Sci U S A, 116(47), 23829-23839. https://doi.org/10.1073/pnas.1909210116
- Lauretani, F., Maggio, M., Ticinesi, A., Tana, C., Prati, B., Gionti, L., . . . Meschi, T. 2018. Muscle weakness, cognitive impairment and their interaction on altered balance in elderly outpatients: results from the TRIP observational study. Clin Interv Aging, 13, 1437-1443. https://doi.org/10.2147/CIA.S165085
- Lauretani, F., Meschi, T., Ticinesi, A., & Maggio, M. 2017. "Brain-muscle loop" in the fragility of older persons: from pathophysiology to new organizing models. Aging Clin Exp Res, 29(6), 1305-1311. https://doi.org/10.1007/s40520-017-0729-4
- Lee, S. Y., Nyunt, M. S. Z., Gao, Q., Gwee, X., Chua, D. Q. L., Yap, K. B., ... Ng, T. P. 2023. Risk Factors of Progression to Cognitive Frailty: Singapore Longitudinal Ageing Study 2. Gerontology. https://doi.org/10.1159/000531421
- Li, G., Gong, J., Liu, J., Liu, J., Li, H., Hsu, A. L., . . . Xu, X. Z. S. 2019. Genetic and pharmacological interventions in the aging motor nervous system slow motor aging and extend life span in C. elegans. Sci Adv, 5(1), eaau5041. https://doi.org/10.1126/sciadv.aau5041
- Li, H., Ni, J., & Qing, H. 2021. Gut Microbiota: Critical Controller and Intervention Target in Brain Aging and Cognitive Impairment. Front Aging Neurosci, 13, 671142. https://doi.org/10.3389/fnagi.2021.671142
- Li, Q., Marcu, D. C., Palazzo, O., Turner, F., King, D., Spires-Jones, T. L., . . . Busch, K. E. 2020. High neural activity accelerates the decline of cognitive plasticity with age in. Elife, 9. https://doi.org/10.7554/eLife.59711
- Li, H., Ni, J., Qing, H. 2021 Gut Microbiota: Critical Controller and Intervention Target in Brain Aging and Cognitive Impairment, Front. Aging Neurosci., 13. <u>https://doi.org/10.3389/fnagi.2021.671142</u>
- Liang, Y., Piao, C., Beuschel, C. B., Toppe, D., Kollipara, L., Bogdanow, B., . . . Sigrist, S. J. 2021. eIF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction. Cell Rep, 35(2), 108941. https://doi.org/10.1016/j.celrep.2021.108941
- Liao, S., Broughton, S., & Nässel, D. R. 2017. Behavioral Senescence and Aging-Related Changes in Motor Neurons and Brain Neuromodulator Levels Are Ameliorated by Lifespan-Extending Reproductive Dormancy in. Front Cell Neurosci, 11, 111. https://doi.org/10.3389/fncel.2017.00111
- Lin, S. M., Apolinário, D., Vieira Gomes, G. C., Cassales Tosi, F., Magaldi, R. M., Busse, A. L., . . . Suemoto, C. K. 2022. Association of Cognitive Performance with Frailty in Older Individuals with Cognitive Complaints. J Nutr Health Aging, 26(1), 89-95. https://doi.org/10.1007/s12603-021-1712-5
- Lin, Y. C., Chung, C. P., Lee, P. L., Chou, K. H., Chang, L. H., Lin, S. Y., ... Wang, P. N. 2022. The Flexibility of Physio-Cognitive Decline Syndrome: A Longitudinal Cohort Study. Front Public Health, 10, 820383. https://doi.org/10.3389/fpubh.2022.820383
- Liu, L. K., Chou, K. H., Hsu, C. H., Peng, L. N., Lee, W. J., Chen, W. T., . . . Chen, L. K. 2020. Cerebellar-limbic neurocircuit is the novel biosignature of physio-cognitive

> decline syndrome. Aging (Albany NY), 12(24), 25319-25336. https://doi.org/10.18632/aging.104135

- Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., . . . Mukadam, N. 2020. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, 396(10248), 413-446. https://doi.org/10.1016/S0140-6736(20)30367-6
- Lupo, G., Gioia, R., Nisi, P. S., Biagioni, S., & Cacci, E. 2019. Molecular Mechanisms of Neurogenic Aging in the Adult Mouse Subventricular Zone. J Exp Neurosci, 13, 1179069519829040. https://doi.org/10.1177/1179069519829040
- Lv, Y. B., Mao, C., Gao, X., Yin, Z. X., Kraus, V. B., Yuan, J. Q., . . . Shi, X. M. 2019. Triglycerides Paradox Among the Oldest Old: "The Lower the Better?". J Am Geriatr Soc, 67(4), 741-748. https://doi.org/10.1111/jgs.15733
- Ma, L., & Chan, P. 2020. Understanding the Physiological Links Between Physical Frailty and Cognitive Decline. Aging Dis, 11(2), 405-418. https://doi.org/10.14336/AD.2019.0521
- Ma, L., Zhang, L., Zhang, Y., Li, Y., Tang, Z., & Chan, P. 2017. Cognitive Frailty in China: Results from China Comprehensive Geriatric Assessment Study [Original Research]. Frontiers in Medicine, 4. https://doi.org/10.3389/fmed.2017.00174
- Ma, W., Wu, B., Gao, X., & Zhong, R. 2022. Association between frailty and cognitive function in older Chinese people: A moderated mediation of social relationships and depressive symptoms. J Affect Disord, 316, 223-232. https://doi.org/10.1016/j.jad.2022.08.032
- Mack, T. G., Kreis, P., & Eickholt, B. J. 2016. Defective actin dynamics in dendritic spines: cause or consequence of age-induced cognitive decline? Biol Chem, 397(3), 223-229. https://doi.org/10.1515/hsz-2015-0185
- Maruya, K., Arai, T., & Fujita, H. 2021. Brain Activity in the Prefrontal Cortex during Cognitive Tasks and Dual Tasks in Community-Dwelling Elderly People with Pre-Frailty: A Pilot Study for Early Detection of Cognitive Decline. Healthcare (Basel), 9(10). https://doi.org/10.3390/healthcare9101250
- Melnattur, K., Kirszenblat, L., Morgan, E., Militchin, V., Sakran, B., English, D., . . . Shaw, P. J. 2021. A conserved role for sleep in supporting Spatial Learning in Drosophila. Sleep, 44(3). https://doi.org/10.1093/sleep/zsaa197
- Metaxakis, A., Tain, L. S., Grönke, S., Hendrich, O., Hinze, Y., Birras, U., & Partridge, L. 2014. Lowered insulin signalling ameliorates age-related sleep fragmentation in Drosophila. PLoS Biol, 12(4), e1001824. https://doi.org/10.1371/journal.pbio.1001824
- Minhas, P. S., Latif-Hernandez, A., McReynolds, M. R., Durairaj, A. S., Wang, Q., Rubin, A., ... Andreasson, K. I. 2021. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature, 590(7844), 122-128. https://doi.org/10.1038/s41586-020-03160-0
- Moon, J. H., Huh, J. S., Won, C. W., & Kim, H. J. 2019. Is Polypharmacy Associated with Cognitive Frailty in the Elderly? Results from the Korean Frailty and Aging Cohort Study. J Nutr Health Aging, 23(10), 958-965. https://doi.org/10.1007/s12603-019-1274-y
- Morsci, N. S., Hall, D. H., Driscoll, M., & Sheng, Z. H. 2016. Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons. J Neurosci, 36(4), 1373-1385. https://doi.org/10.1523/JNEUROSCI.2799-15.2016
- Moulin, T. C., Ferro, F., Hoyer, A., Cheung, P., Williams, M. J., & Schlöth, H. B. 2021. The. Front Neurosci, 15, 653470. https://doi.org/10.3389/fnins.2021.653470
- Moyon, S., Frawley, R., Marechal, D., Huang, D., Marshall-Phelps, K. L. H., Kegel, L., ... Casaccia, P. 2021. TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice. Nat Commun, 12(1), 3359. https://doi.org/10.1038/s41467-021-23735-3
- Mu, L., Jiang, L., Chen, J., Xiao, M., Wang, W., Liu, P., & Wu, J. 2021. Serum Inflammatory Factors and Oxidative Stress Factors Are Associated With Increased Risk of Frailty

and Cognitive Frailty in Patients With Cerebral Small Vessel Disease. Front Neurol, 12, 786277. https://doi.org/10.3389/fneur.2021.786277

- Munkácsy, E., Chocron, E. S., Quintanilla, L., Gendron, C. M., Pletcher, S. D., & Pickering, A. M. 2019. Neuronal-specific proteasome augmentation via Prosβ5 overexpression extends lifespan and reduces age-related cognitive decline. Aging Cell, 18(5), e13005. https://doi.org/10.1111/acel.13005
- Mustafa Khalid, N., Haron, H., Shahar, S., & Fenech, M. 2022. Current Evidence on the Association of Micronutrient Malnutrition with Mild Cognitive Impairment, Frailty, and Cognitive Frailty among Older Adults: A Scoping Review. Int J Environ Res Public Health, 19(23). https://doi.org/10.3390/ijerph192315722
- Musumeci, G., Castrogiovanni, P., Castorina, S., Imbesi, R., Szychlinska, M. A., Scuderi, S., ... Giunta, S. 2015. Changes in serotonin (5-HT) and brain-derived neurotrophic factor (BDFN) expression in frontal cortex and hippocampus of aged rat treated with high tryptophan diet. Brain Res Bull, 119(Pt A), 12-18. https://doi.org/10.1016/j.brainresbull.2015.09.010
- Nagy, P. M., & Aubert, I. 2015. Overexpression of the vesicular acetylcholine transporter enhances dendritic complexity of adult-born hippocampal neurons and improves acquisition of spatial memory during aging. Neurobiol Aging, 36(5), 1881-1889. https://doi.org/10.1016/j.neurobiolaging.2015.02.021
- Natrajan, M. S., de la Fuente, A. G., Crawford, A. H., Linehan, E., Nuñez, V., Johnson, K. R., ... Franklin, R. J. 2015. Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain, 138(Pt 12), 3581-3597. https://doi.org/10.1093/brain/awv289
- Navarro-Pardo, E., Facal, D., Campos-Magdaleno, M., Pereiro, A. X., & Juncos-Rabadán, O. 2020. Prevalence of Cognitive Frailty, Do Psychosocial-Related Factors Matter? Brain Sciences, 10(12).
- Nowson, C. A., Service, C., Appleton, J., & Grieger, J. A. 2018. The Impact of Dietary Factors on Indices of Chronic Disease in Older People: A Systematic Review. J Nutr Health Aging, 22(2), 282-296. https://doi.org/10.1007/s12603-017-0920-5
- O'Connor, D., Molloy, A. M., Laird, E., Kenny, R. A., & O'Halloran, A. M. 2023. Sustaining an ageing population: the role of micronutrients in frailty and cognitive impairment. Proc Nutr Soc, 82(3), 315-328. https://doi.org/10.1017/S0029665123002707
- Oyston, L. J., Lin, Y. Q., Khuong, T. M., Wang, Q. P., Lau, M. T., Clark, T., & Neely, G. G. 2018. Neuronal. Cell Stress, 2(9), 225-232. https://doi.org/10.15698/cst2018.09.152
- Panza, F., Lozupone, M., Solfrizzi, V., Sardone, R., Dibello, V., Di Lena, L., . . . Logroscino, G. 2018. Different Cognitive Frailty Models and Health- and Cognitive-related Outcomes in Older Age: From Epidemiology to Prevention. J Alzheimers Dis, 62(3), 993-1012. https://doi.org/10.3233/JAD-170963
- Panza, F., Seripa, D., Solfrizzi, V., Tortelli, R., Greco, A., Pilotto, A., & Logroscino, G. 2015. Targeting Cognitive Frailty: Clinical and Neurobiological Roadmap for a Single Complex Phenotype. J Alzheimers Dis, 47(4), 793-813. https://doi.org/10.3233/JAD-150358
- Panza, F., Solfrizzi, V., Barulli, M. R., Santamato, A., Seripa, D., Pilotto, A., & Logroscino, G. 2015. Cognitive Frailty: A Systematic Review of Epidemiological and Neurobiological Evidence of an Age-Related Clinical Condition. Rejuvenation Res, 18(5), 389-412. https://doi.org/10.1089/rej.2014.1637
- Panza, F., Solfrizzi, V., Sardone, R., Dibello, V., Castellana, F., Zupo, R., . . . Lozupone, M. 2023. Depressive and Biopsychosocial Frailty Phenotypes: Impact on Late-life Cognitive Disorders. J Alzheimers Dis, 94(3), 879-898. https://doi.org/10.3233/JAD-230312
- Papi, S., Salimi, M. M., Behboodi, L., Dianat, I., Jafarabadi, M. A., & Allahverdipour, H. 2022. Cognitive and balance performance of older adult women during COVID-19 pandemic quarantine: an ex post facto study. Prz Menopauzalny, 21(2), 117-123. https://doi.org/10.5114/pm.2022.116976

- Park, J. H., Glass, Z., Sayed, K., Michurina, T. V., Lazutkin, A., Mineyeva, O., . . . Enikolopov, G. 2013. Calorie restriction alleviates the age-related decrease in neural progenitor cell division in the aging brain. Eur J Neurosci, 37(12), 1987-1993. https://doi.org/10.1111/ejn.12249
- Parks, E. E., Logan, S., Yeganeh, A., Farley, J. A., Owen, D. B., & Sonntag, W. E. 2020. Interleukin 6 reduces allopregnanolone synthesis in the brain and contributes to agerelated cognitive decline in mice. J Lipid Res, 61(10), 1308-1319. https://doi.org/10.1194/jlr.RA119000479
- Pedersen, B. K. 2019. Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol, 15(7), 383-392. https://doi.org/10.1038/s41574-019-0174-x
- Peng, S., Zhou, J., Xiong, S., Liu, X., Pei, M., Wang, Y., . . . Zhang, P. 2023. Construction and validation of cognitive frailty risk prediction model for elderly patients with multimorbidity in Chinese community based on non-traditional factors. BMC Psychiatry, 23(1), 266. https://doi.org/10.1186/s12888-023-04736-6
- Perluigi, M., Di Domenico, F., & Butterfield, D. A. 2015. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis, 84, 39-49. https://doi.org/10.1016/j.nbd.2015.03.014
- Peters, M. D., Godfrey, C. M., Khalil, H., McInerney, P., Parker, D., & Soares, C. B. 2015. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc, 13(3), 141-146. https://doi.org/10.1097/XEB.000000000000050
- Pharaoh, G., Owen, D., Yeganeh, A., Premkumar, P., Farley, J., Bhaskaran, S., ... Logan, S. 2020. Disparate Central and Peripheral Effects of Circulating IGF-1 Deficiency on Tissue Mitochondrial Function. Mol Neurobiol, 57(3), 1317-1331. https://doi.org/10.1007/s12035-019-01821-4
- Piccin, D., Tufford, A., & Morshead, C. M. 2014. Neural stem and progenitor cells in the aged subependyma are activated by the young niche. Neurobiol Aging, 35(7), 1669-1679. https://doi.org/10.1016/j.neurobiolaging.2014.01.026
- Quattropani, M. C., Sardella, A., Morgante, F., Ricciardi, L., Alibrandi, A., Lenzo, V., . . . Basile, G. 2021. Impact of Cognitive Reserve and Premorbid IQ on Cognitive and Functional Status in Older Outpatients. Brain Sci, 11(7). https://doi.org/10.3390/brainsci11070824
- Raihan, O., Brishti, A., Li, Q., Zhang, Q., Li, D., Li, X., . . . Liu, Q. 2019. SFRS11 Loss Leads to Aging-Associated Cognitive Decline by Modulating LRP8 and ApoE. Cell Rep, 28(1), 78-90.e76. https://doi.org/10.1016/j.celrep.2019.06.002
- Ravache, T. T., Batistuzzo, A., Nunes, G. G., Gomez, T. G. B., Lorena, F. B., Do Nascimento, B. P. P., . . . Ribeiro, M. O. 2023. Multisensory Stimulation Reverses Memory Impairment in Adrβ. Int J Mol Sci, 24(13). https://doi.org/10.3390/ijms241310522
- Reichel, J. M., Bedenk, B. T., Czisch, M., & Wotjak, C. T. 2017. Age-related cognitive decline coincides with accelerated volume loss of the dorsal but not ventral hippocampus in mice. Hippocampus, 27(1), 28-35. https://doi.org/10.1002/hipo.22668
- Resciniti, N. V., Farina, M. P., Merchant, A. T., & Lohman, M. C. 2023. Depressive Symptoms Partially Mediate the Association of Frailty Phenotype Symptoms and Cognition for Females but Not Males. J Aging Health, 35(1-2), 42-49. https://doi.org/10.1177/08982643221100688
- Reutzel, M., Grewal, R., Dilberger, B., Silaidos, C., Joppe, A., & Eckert, G. P. 2020. Cerebral Mitochondrial Function and Cognitive Performance during Aging: A Longitudinal Study in NMRI Mice. Oxid Med Cell Longev, 2020, 4060769. https://doi.org/10.1155/2020/4060769
- Ries, A. S., Hermanns, T., Poeck, B., & Strauss, R. 2017. Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment. Nat Commun, 8, 15738. https://doi.org/10.1038/ncomms15738

- Rietman, M. L., Hulsegge, G., Nooyens, A. C. J., Dollé, M. E. T., Picavet, H. S. J., Bakker, S. J. L., . . . Verschuren, W. M. M. 2019. Trajectories of (Bio)markers During the Development of Cognitive Frailty in the Doetinchem Cohort Study. Front Neurol, 10, 497. https://doi.org/10.3389/fneur.2019.00497
- Rietman, M. L., Spijkerman, A. M. W., Wong, A., van Steeg, H., Bürkle, A., Moreno-Villanueva, M., . . . Dollé, M. E. T. 2019. Antioxidants linked with physical, cognitive and psychological frailty: Analysis of candidate biomarkers and markers derived from the MARK-AGE study. Mechanisms of Ageing and Development, 177, 135-143. https://doi.org/https://doi.org/10.1016/j.mad.2018.04.007
- Rivan, M. N. F., Shahar, S., Rajab, N. F., Singh, D. K. A., Din, N. C., Hazlina, M., & Hamid, T. A. T. A. 2019. Cognitive frailty among Malaysian older adults: baseline findings from the LRGS TUA cohort study. Clin Interv Aging, 14, 1343-1352. https://doi.org/10.2147/CIA.S211027
- Robertson, D. A., Savva, G. M., & Kenny, R. A. 2013. Frailty and cognitive impairment--a review of the evidence and causal mechanisms. Ageing Res Rev, 12(4), 840-851. https://doi.org/10.1016/j.arr.2013.06.004
- Rockwood, K., & Mitnitski, A. (2007). Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci, 62(7), 722-727. https://doi.org/10.1093/gerona/62.7.722
- Roda, E., Priori, E. C., Ratto, D., De Luca, F., Di Iorio, C., Angelone, P., . . . Rossi, P. 2021. Neuroprotective Metabolites of. Int J Mol Sci, 22(12). https://doi.org/10.3390/ijms22126379
- Rogans-Watson, R., Shulman, C., Lewer, D., Armstrong, M., & Hudson, B. 2020. Premature frailty, geriatric conditions and multimorbidity among people experiencing homelessness: a cross-sectional observational study in a London hostel. Housing, Care and Support, 23(3/4), 77-91. https://doi.org/10.1108/HCS-05-2020-0007
- Romine, J., Gao, X., Xu, X. M., So, K. F., & Chen, J. 2015. The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation. Neurobiol Aging, 36(4), 1716-1726. https://doi.org/10.1016/j.neurobiolaging.2015.01.003
- Ruan, Q., D'Onofrio, G., Sancarlo, D., Greco, A., Lozupone, M., Seripa, D., ... Yu, Z. 2017. Emerging biomarkers and screening for cognitive frailty. Aging Clin Exp Res, 29(6), 1075-1086. https://doi.org/10.1007/s40520-017-0741-8
- Ruan, Q., D'onofrio, G., Wu, T., Greco, A., Sancarlo, D., & Yu, Z. 2017. Sexual dimorphism of frailty and cognitive impairment: Potential underlying mechanisms (Review). Mol Med Rep, 16(3), 3023-3033. https://doi.org/10.3892/mmr.2017.6988
- Ruan, Q., Ruan, J., Zhang, W., Qian, F., & Yu, Z. 2018. Targeting NAD(+) degradation: The therapeutic potential of flavonoids for Alzheimer's disease and cognitive frailty. Pharmacol Res, 128, 345-358. https://doi.org/10.1016/j.phrs.2017.08.010
- Ruan, Q., Xiao, F., Gong, K., Zhang, W., Zhang, M., Ruan, J., . . . Yu, Z. 2020. Prevalence of Cognitive Frailty Phenotypes and Associated Factors in a Community-Dwelling Elderly Population. J Nutr Health Aging, 24(2), 172-180. https://doi.org/10.1007/s12603-019-1286-7
- Ruan, Q., Yu, Z., Chen, M., Bao, Z., Li, J., & He, W. 2015. Cognitive frailty, a novel target for the prevention of elderly dependency. Ageing Res Rev, 20, 1-10. https://doi.org/10.1016/j.arr.2014.12.004
- Salas-Venegas, V., Santín-Márquez, R., Ramírez-Carreto, R. J., Rodríguez-Cortés, Y. M., Cano-Martínez, A., Luna-López, A., . . . López-Díazguerrero, N. E. 2023. Chronic consumption of a hypercaloric diet increases neuroinflammation and brain senescence, promoting cognitive decline in middle-aged female Wistar rats. Front Aging Neurosci, 15, 1162747. https://doi.org/10.3389/fnagi.2023.1162747
- Sargent, L., Nalls, M., Amella, E. J., Mueller, M., Lageman, S. K., Bandinelli, S., . . . Ferrucci, L. 2020. Anticholinergic Drug Induced Cognitive and Physical Impairment: Results from the InCHIANTI Study. J Gerontol A Biol Sci Med Sci, 75(5), 995-1002. https://doi.org/10.1093/gerona/gly289

- Sargent, L., Nalls, M., Amella, E. J., Slattum, P. W., Mueller, M., Bandinelli, S., . . . Singleton, A. 2020. Shared mechanisms for cognitive impairment and physical frailty: A model for complex systems. Alzheimers Dement (N Y), 6(1), e12027. https://doi.org/10.1002/trc2.12027
- Sargent, L., Nalls, M., Starkweather, A., Hobgood, S., Thompson, H., Amella, E. J., & Singleton, A. 2018. Shared biological pathways for frailty and cognitive impairment: A systematic review. Ageing Research Reviews, 47, 149-158. https://doi.org/https://doi.org/10.1016/j.arr.2018.08.001
- Scassellati, C., Ciani, M., Galoforo, A. C., Zanardini, R., Bonvicini, C., & Geroldi, C. 2020. Molecular mechanisms in cognitive frailty: potential therapeutic targets for oxygenozone treatment. Mech Ageing Dev, 186, 111210. https://doi.org/10.1016/j.mad.2020.111210
- Scisciola, L., Fontanella, R. A., Surina, Cataldo, V., Paolisso, G., & Barbieri, M. 2021. Sarcopenia and Cognitive Function: Role of Myokines in Muscle Brain Cross-Talk. Life (Basel), 11(2). https://doi.org/10.3390/life11020173
- Seib, D. R., Corsini, N. S., Ellwanger, K., Plaas, C., Mateos, A., Pitzer, C., . . . Martin-Villalba, A. 2013. Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell, 12(2), 204-214. https://doi.org/10.1016/j.stem.2012.11.010
- Sharifi, F., Khoiee, M. A., Aminroaya, R., Ebrahimpur, M., Shafiee, G., Heshmat, R., ... Larijani, B. 2021. Studying the relationship between cognitive impairment and frailty phenotype: a cross-sectional analysis of the Bushehr Elderly Health (BEH) program. J Diabetes Metab Disord, 20(2), 1229-1237. https://doi.org/10.1007/s40200-021-00847-7
- Shim, H., Kim, M., & Won, C. W. 2020. Motoric cognitive risk syndrome is associated with processing speed and executive function, but not delayed free recall memory: The Korean frailty and aging cohort study (KFACS). Arch Gerontol Geriatr, 87, 103990. https://doi.org/10.1016/j.archger.2019.103990
- Shin, H. E., Kwak, S. E., Lee, J. H., Zhang, D., Bae, J. H., & Song, W. 2019. Exercise, the Gut Microbiome, and Frailty. Ann Geriatr Med Res, 23(3), 105-114. https://doi.org/10.4235/agmr.19.0014
- Siejka, T. P., Srikanth, V. K., Hubbard, R. E., Moran, C., Beare, R., Wood, A. G., . . . Callisaya, M. L. 2022. Frailty Is Associated With Cognitive Decline Independent of Cerebral Small Vessel Disease and Brain Atrophy. J Gerontol A Biol Sci Med Sci, 77(9), 1819-1826. https://doi.org/10.1093/gerona/glac078
- Spehar, K., Pan, A., & Beerman, I. 2020. Restoring aged stem cell functionality: Current progress and future directions. Stem Cells, 38(9), 1060-1077. https://doi.org/10.1002/stem.3234
- Stern, Y. (2012) Cognitive reserve in ageing and Alzheimer's disease, Lancet Neurol (11):1006-12. doi: 10.1016/S1474-4422(12)70191-6.
- Su, W., Foster, S. C., Xing, R., Feistel, K., Olsen, R. H., Acevedo, S. F., . . . Sherman, L. S. 2017. CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation. J Biol Chem, 292(11), 4434-4445. https://doi.org/10.1074/jbc.M116.774109
- Sugimoto, T., Arai, H., & Sakurai, T. 2022. An update on cognitive frailty: Its definition, impact, associated factors and underlying mechanisms, and interventions. Geriatr Gerontol Int, 22(2), 99-109. https://doi.org/10.1111/ggi.14322
- Sugimoto, T., Ono, R., Kimura, A., Saji, N., Niida, S., Toba, K., & Sakurai, T. 2019. Cross-Sectional Association Between Cognitive Frailty and White Matter Hyperintensity Among Memory Clinic Patients. J Alzheimers Dis, 72(2), 605-612. https://doi.org/10.3233/JAD-190622
- Sugimoto, T., Sakurai, T., Ono, R., Kimura, A., Saji, N., Niida, S., . . . Arai, H. 2018. Epidemiological and clinical significance of cognitive frailty: A mini review. Ageing Res Rev, 44, 1-7. https://doi.org/10.1016/j.arr.2018.03.002

- Sui, S. X., Balanta-Melo, J., Pasco, J. A., & Plotkin, L. I. 2022. Musculoskeletal Deficits and Cognitive Impairment: Epidemiological Evidence and Biological Mechanisms. Curr Osteoporos Rep, 20(5), 260-272. https://doi.org/10.1007/s11914-022-00736-9
- Tamura, Y., Omura, T., Toyoshima, K., & Araki, A. 2020. Nutrition Management in Older Adults with Diabetes: A Review on the Importance of Shifting Prevention Strategies from Metabolic Syndrome to Frailty. Nutrients, 12(11). https://doi.org/10.3390/nu12113367
- Tarantini, S., Valcarcel-Ares, N. M., Yabluchanskiy, A., Fulop, G. A., Hertelendy, P., Gautam, T., . . . Ungvari, Z. 2018. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell, 17(2). https://doi.org/10.1111/acel.12731
- Tarantini, S., Yabluchanskiy, A., Csipo, T., Fulop, G., Kiss, T., Balasubramanian, P., . . . Ungvari, Z. 2019. Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. Geroscience, 41(5), 533-542. https://doi.org/10.1007/s11357-019-00101-2
- Ticinesi, A., Tana, C., Nouvenne, A., Prati, B., Lauretani, F., & Meschi, T. 2018. Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clin Interv Aging, 13, 1497-1511. https://doi.org/10.2147/CIA.S139163
- Toth, M. L., Melentijevic, I., Shah, L., Bhatia, A., Lu, K., Talwar, A., . . . Driscoll, M. (2012). Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system. J Neurosci, 32(26), 8778-8790. https://doi.org/10.1523/JNEUROSCI.1494-11.2012
- Toth, P., Tucsek, Z., Tarantini, S., Sosnowska, D., Gautam, T., Mitschelen, M., . . . Ungvari, Z. 2014. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab, 34(12), 1887-1897. https://doi.org/10.1038/jcbfm.2014.156
- Tou, N. X., Wee, S. L., Pang, B. W. J., Lau, L. K., Jabbar, K. A., Seah, W. T., ... Ng, T. P. 2021. Associations of fat mass and muscle function but not lean mass with cognitive impairment: The Yishun Study. PLoS One, 16(8), e0256702. https://doi.org/10.1371/journal.pone.0256702
- Uryash, A., Flores, V., Adams, J. A., Allen, P. D., & Lopez, J. R. 2020. Memory and Learning Deficits Are Associated With Ca(2+) Dyshomeostasis in Normal Aging. Front Aging Neurosci, 12, 224. https://doi.org/10.3389/fnagi.2020.00224
- Vatanabe, I. P., Pedroso, R. V., Teles, R. H. G., Ribeiro, J. C., Manzine, P. R., Pott-Junior, H., & Cominetti, M. R. 2022. A systematic review and meta-analysis on cognitive frailty in community-dwelling older adults: risk and associated factors. Aging Ment Health, 26(3), 464-476. https://doi.org/10.1080/13607863.2021.1884844
- Vicente, B. M., Lucio Dos Santos Quaresma, M. V., Maria de Melo, C., & Lima Ribeiro, S. M. 2020. The dietary inflammatory index (DII®) and its association with cognition, frailty, and risk of disabilities in older adults: A systematic review. Clin Nutr ESPEN, 40, 7-16. https://doi.org/10.1016/j.clnesp.2020.10.003
- Visconte, C., Golia, M. T., Fenoglio, C., Serpente, M., Gabrielli, M., Arcaro, M., . . . Galimberti, D. 2023. Plasma microglial-derived extracellular vesicles are increased in frail patients with Mild Cognitive Impairment and exert a neurotoxic effect. Geroscience, 45(3), 1557-1571. https://doi.org/10.1007/s11357-023-00746-0
- Wan, M., Ye, Y., Lin, H., Xu, Y., Liang, S., Xia, R., . . . Zheng, G. 2020. Deviations in Hippocampal Subregion in Older Adults With Cognitive Frailty. Front Aging Neurosci, 12, 615852. https://doi.org/10.3389/fnagi.2020.615852
- Wang, J., Zhang, T., Liu, X., Fan, H., & Wei, C. 2019. Aqueous extracts of se-enriched Auricularia auricular attenuates D-galactose-induced cognitive deficits, oxidative

stress and neuroinflammation via suppressing RAGE/MAPK/NF-κB pathway. Neurosci Lett, 704, 106-111. https://doi.org/10.1016/j.neulet.2019.04.002

- Wang, Q., Timberlake, M. A., Prall, K., & Dwivedi, Y. 2017. The recent progress in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry, 77, 99-109. https://doi.org/10.1016/j.pnpbp.2017.04.008
- Wang, Y., Li, J., Fu, P., Jing, Z., Zhao, D., & Zhou, C. 2022. Social support and subsequent cognitive frailty during a 1-year follow-up of older people: the mediating role of psychological distress. BMC Geriatr, 22(1), 162. https://doi.org/10.1186/s12877-022-02839-5
- Waters, D. L., Vlietstra, L., Qualls, C., Morley, J. E., & Vellas, B. 2020. Sex-specific muscle and metabolic biomarkers associated with gait speed and cognitive transitions in older adults: a 9-year follow-up. Geroscience, 42(2), 585-593. https://doi.org/10.1007/s11357-020-00163-7
- Weinrich, T. W., Coyne, A., Salt, T. E., Hogg, C., & Jeffery, G. 2017. Improving mitochondrial function significantly reduces metabolic, visual, motor and cognitive decline in aged Drosophila melanogaster. Neurobiol Aging, 60, 34-43. https://doi.org/10.1016/j.neurobiolaging.2017.08.016
- Wilhelm, T., Byrne, J., Medina, R., Kolundžić, E., Geisinger, J., Hajduskova, M., . . . Richly, H. 2017. Neuronal inhibition of the autophagy nucleation complex extends life span in post-reproductive. Genes Dev, 31(15), 1561-1572. https://doi.org/10.1101/gad.301648.117
- Wong, L. W., Chong, Y. S., Lin, W., Kisiswa, L., Sim, E., Ibáñez, C. F., & Sajikumar, S. 2021. Age-related changes in hippocampal-dependent synaptic plasticity and memory mediated by p75 neurotrophin receptor. Aging Cell, 20(2), e13305. https://doi.org/10.1111/acel.13305
- Wrigley, S., Arafa, D., & Tropea, D. 2017. Insulin-Like Growth Factor 1: At the Crossroads of Brain Development and Aging. Front Cell Neurosci, 11, 14. https://doi.org/10.3389/fncel.2017.00014
- Wu, Y. H., Liu, L. K., Chen, W. T., Lee, W. J., Peng, L. N., Wang, P. N., & Chen, L. K. 2015. Cognitive Function in Individuals With Physical Frailty but Without Dementia or Cognitive Complaints: Results From the I-Lan Longitudinal Aging Study. J Am Med Dir Assoc, 16(10), 899.e899-816. https://doi.org/10.1016/j.jamda.2015.07.013
- Xie, B., Ma, C., Chen, Y., & Wang, J. 2021. Prevalence and risk factors of the co-occurrence of physical frailty and cognitive impairment in Chinese community-dwelling older adults. Health Soc Care Community, 29(1), 294-303. https://doi.org/10.1111/hsc.13092
- Xue, Q.-L., Buta, B., Ma, L., Ge, M., & Carlson, M. 2019. Integrating Frailty and Cognitive Phenotypes: Why, How, Now What? Current Geriatrics Reports, 8(2), 97-106. https://doi.org/10.1007/s13670-019-0279-z
- Yamazaki, D., Horiuchi, J., Ueno, K., Ueno, T., Saeki, S., Matsuno, M., . . . Saitoe, M. 2014. Glial dysfunction causes age-related memory impairment in Drosophila. Neuron, 84(4), 753-763. https://doi.org/10.1016/j.neuron.2014.09.039
- Yang, Z., Jun, H., Choi, C. I., Yoo, K. H., Cho, C. H., Hussaini, S. M. Q., . . . Jang, M. H. 2017. Age-related decline in BubR1 impairs adult hippocampal neurogenesis. Aging Cell, 16(3), 598-601. https://doi.org/10.1111/acel.12594
- Yin, J. A., Gao, G., Liu, X. J., Hao, Z. Q., Li, K., Kang, X. L., . . . Cai, S. Q. 2017. Genetic variation in glia-neuron signalling modulates ageing rate. Nature, 551(7679), 198-203. https://doi.org/10.1038/nature24463
- Yin, J. A., Liu, X. J., Yuan, J., Jiang, J., & Cai, S. Q. 2014. Longevity manipulations differentially affect serotonin/dopamine level and behavioral deterioration in aging Caenorhabditis elegans. J Neurosci, 34(11), 3947-3958. https://doi.org/10.1523/JNEUROSCI.4013-13.2014
- Yoshiura, K., Fukuhara, R., Ishikawa, T., Tsunoda, N., Koyama, A., Miyagawa, Y., . . . Shimodozono, M. 2022. Brain structural alterations and clinical features of cognitive

frailty in Japanese community-dwelling older adults: the Arao study (JPSC-AD). Sci Rep, 12(1), 8202. https://doi.org/10.1038/s41598-022-12195-4

- Yousef, H., Morgenthaler, A., Schlesinger, C., Bugaj, L., Conboy, I. M., & Schaffer, D. V. 2015. Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis. Stem Cells, 33(5), 1577-1588. https://doi.org/10.1002/stem.1943
- Yuan, J., Chang, S. Y., Yin, S. G., Liu, Z. Y., Cheng, X., Liu, X. J., . . . Cai, S. Q. 2020. Two conserved epigenetic regulators prevent healthy ageing. Nature, 579(7797), 118-122. https://doi.org/10.1038/s41586-020-2037-y
- Yuan, M., Xu, C., & Fang, Y. 2022. The transitions and predictors of cognitive frailty with multi-state Markov model: a cohort study. BMC Geriatr, 22(1), 550. https://doi.org/10.1186/s12877-022-03220-2
- Zhang, S., Wang, Q., Wang, X., Qi, K., Zhou, Y., & Zhou, C. 2022. Pet ownership and cognitive frailty among Chinese rural older adults who experienced a social loss: Is there a sex difference? Soc Sci Med, 305, 115100. https://doi.org/10.1016/j.socscimed.2022.115100
- Zhang, T., Ren, Y., Shen, P., Jiang, S., Yang, Y., Wang, Y., & Li, Z. 2021. Prevalence and Associated Risk Factors of Cognitive Frailty: A Systematic Review and Meta-Analysis. Front Aging Neurosci, 13, 755926. https://doi.org/10.3389/fnagi.2021.755926
- Zhang, X. M., Wu, X., & Chen, W. 2022. The Association between Number of Teeth and Cognitive Frailty in Older Adults: A Cross-Sectional Study. J Nutr Health Aging, 26(5), 430-438. https://doi.org/10.1007/s12603-022-1783-y
- Zhao, X., Chen, Q., Zheng, L., Ren, L., Zhai, Y., Li, J., & He, J. 2022. Longitudinal Relationship Between Frailty and Cognitive Impairment in Chinese Older Adults: A Prospective Study. J Appl Gerontol, 41(12), 2490-2498. https://doi.org/10.1177/07334648221118352
- Zhou, L., Shi, H., Cheng, R., Ge, M., Hu, F., Hou, L., . . . Dong, B. 2022. Potential association between frailty and pTau in community-dwelling older adults. BMC Geriatr, 22(1), 770. https://doi.org/10.1186/s12877-022-03454-0
- Zhou, Y., Chawla, M. K., Rios-Monterrosa, J. L., Wang, L., Zempare, M. A., Hruby, V. J., ... Cai, M. 2021. Aged Brains Express Less Melanocortin Receptors, Which Correlates with Age-Related Decline of Cognitive Functions. Molecules, 26(20). https://doi.org/10.3390/molecules26206266
- Zhuang, H., Yang, J., Huang, Z., Liu, H., Li, X., Zhang, H., . . . Liu, L. (2020). Accelerated age-related decline in hippocampal neurogenesis in mice with noise-induced hearing loss is associated with hippocampal microglial degeneration. Aging (Albany NY), 12(19), 19493-19519. https://doi.org/10.18632/aging.103898

Table 1: Extracted data from	papers included in the scoping review
------------------------------	---------------------------------------

Authors (Date)	Title	DOI/source	Research question/ Aims	Study population description: Organism, age, gender, N, other characteristi cs	Keyword s	Methodology /design	Mechanism(s) /predictors /biomarkers	Concept	Outcome measures	Key findings in relation to mechanisms of CF
Adachi, et al. (2018)	Plasma Amino Acid Profile in Severely Frail Elderly Patients in Japan	https://doi.or g/10.1016/j.ij ge.2018.03.0 03	To describe the plasma free amino acid (PFAA) profile of severely frail elderly patients	Older patients (>65) in Japan, non- frail group (n = 31) and severely frail group (n = 28)	amino acid profile	PFAA profile and clinical characterist- ics of the patients were analysed	plasma free amino acid profile	Severely frail patients had multiple health impairments. BMI and nutritional status were most significantly associated with low essential amino acid levels.	BMI, amino acid concentration in plasma	In the severely frail group, patients had lower BMI, serum albumin, serum prealbumin, haemoglobin, and blood pressure, and higher C-reactive protein levels. They also exhibited significantly lower essential amino acid (EAA) plasma concentrations compared to non-frail patients. 79% of severely frail patients had cognitive impairment. Amino acid valine was strongly associated with BMI, while valine, leucine, tryptophan, lysine, and total EAA levels were associated with serum prealbumin levels.
Aguilar- Navarro, et al. (2019)	Cerebral vascular reactivity in frail older adults with vascular cognit ive impairment	https://doi.or g/10.3390/br ainsci90902 14	To describe changes in cerebrovasc ular reactivity of older adults with frailty and vascular- type mild cognitive impairment (MClv).	Human, n=180 (75% female), ≥60, Mexico Excluded: dementia, cancer, major depressive syndrome, neurological disorders, AIDS.	Cerebrov asc-ular reactivity.	Cross- sectional study	Changes in cerebrovasc- ular reactivity and other contributing factors in adults with frailty and vascular-type mild cognitive impairment (MCIv)	vMCI and frailty were associated with lower cerebrovascula r reactivity in addition to depression, age and diabetes	MMSE, Fried frailty phenotype, clinical dementia rating scale, ADL, NEUROPSI, breath-holding test, transcranial doppler ultrasound	Participants with frailty and vMCI were older, had higher prevalence of diabetes, higher scores on the 15-item Geriatric Depression Scale (GDS), and reduced cerebrovascular reactivity in the left medial cerebral artery. Overall, frailty in older adults was linked to poorer cognitive performance, diabetes, and decreased cerebral blood flow
Aguilar- Navarro,	Frailty and Vascular	https://pubm ed.ncbi.nlm.	To examine the link	Human	Inflammat -ion,	non- systematic	CVD: endothelial	Factors causing	N/A	The increased permeability of th blood brain barrier in people with

et al. (2016)	Cognitive Impairment: Mechanisms Behind the Link	nih.gov/2702 8174/	between frailty and vascular and cognitive decline and explore role of vascular changes in the genesis of both conditions		oxidative stress, vascular health	Review	dysfunction within a pro- inflammatory environment with increased oxidative stress; genetics, inflammation	vascular disease are associated with the development of CF		WMH plays a causal role in the development of lacunar infarcts. Vascular CI and frailty are closely inter-related.
Alexiou, et al, (2018)	Mitochondr-ial Dynamics and Proteins Related to Neurodegener ative Diseases	https://doi.or g/10.2174/13 8920371866 6170810150 151	To explore correlations between misfolding proteins and neurodegen era-tion. Computation al analysis of several proteins, including Amyloid Beta, Tau, α- Synuclein, Parkin, Pink1, MFN1, OPA1, and DNM1L.	Human/lab	Neurodeg en- eration, mitochon dria, protein misfolding	Review and computational analysis of proteins	Problems with controlling mitochondrial dynamics and protein misfolding contribute to neuronal cell death, linked to both age- related dementia, neurodegenera tive diseases and frailty.	Deficits in brain energy metabolism	Misfolding of Amyloid Beta, Tau, α- Synuclein, Parkin, Pink1, MFN1, MFN1, OPA1, and DNM1L	Complex links not fully understood.
Alvarado, et al. (2021)	Frailty Syndro me and Oxidative Stress as Possible Links Between Age- Related Hearing Loss and Alzheimer's Disease	https://doi.or g/10.3389/fni ns.2021.816 300	To examine the possibility that the oxidative stress linked to frailty, could be involved in the interplay between	Human and rodent	Age- related hearing loss, neurodeg ener- ative, presbycus is, reactive oxygen	Non- systematic review	Shared underlying pathologies e.g, vascular origin or oxidative stress. Diminished auditory input directly triggers brain atrophy	Common pathways that relate physical frailty to the neurodegenera t-ion involved in both hearing loss and dementia, (midlife hearing loss related to	N/A	ARHL is linked to physical and cognitive impairments, including cognitive frailty, through various mechanisms. It can lead to social isolation and decreased physical activity, reducing cognitive resources and attention. Neural degeneration affects both the cochlea and vestibular organ, impacting balance control. Reduced physical activity can

			Age-related hearing loss (ARHL) and cognitive decline/AD.		species		as an expression of the complex chain of cellular events leading to dementia	9% of later life dementias).		contribute to the onset of physical frailty. Oxidative imbalance, plays a critical role in development of ARHL, Alzheimer's disease (AD), and frailty syndrome.
Amanzio, et al. (2021)	Lockdown Effects on Healthy Cognitive Aging During the COVID-19 Pandemic: A Longitudinal Study	https://doi.or g/10.3389/fp syg.2021.68 5180	To examine associations among lockdown fatigue, physical conditions, cognitive functions, and mood deflections in cognitively normal older adults during home confinement (Covid pandemic).	Human, N=81, age 60-84 years Italian, (79% female), all with at least two chronic diseases for which they received pharmacothe rapy. MMSE >27 (i.e. no MCI at baseline)	Covid-19 lockdown; polymorbi dity/multi morbidity, mood, depressio n, lockdown fatigue, resilience.	Longitudinal study (April 2020-January 2021)	Cognitive function, frailty (gait speed and grip strength)	Mood deflection may be influenced by cognitive dysfunction (e.g., attention deficit, and physical frailty particularly gait speed). Decreased psychomotor and gait speed may interact to produce a depressive state that mediates their effect on lockdown fatigue.	ACE-R and MOCA; detailed evaluation: episodic long term memory, short-term memory (Digit Span and Corsi Test); attention; language and fluencies; visuo- constructive abilities; problem- solving; executive functions (TMT); Psychiatric rating, Lockdown Fatigue Scale	Around 62.5% of pre-frail individuals experienced moderate to severe fatigue during lockdown. There was notable interaction between low psychomotor speed and low gait speed, leading to increased mood disturbances. Depressive states may mediate the connection between low psychomotor speed and lockdown-related fatigue, particularly when gait speed was also low. CF indicators may predict decreased resilience in such situations.
Ambrosi, et al, (2021)	Aged skeletal stem cells generate an inflammatory degenerative niche	https://doi.or g/10.1038/s4 1586-021- 03795-7	To show that aging in mice affects signalling in the bone marrow niche and alters differentiatio n of bone and blood lineages,	Mice	Frailty, skeletal stem cells, inflamma ge-ing	In vivo and vitro, RNA- seq, exposure to a youthful circulation, treatment of BMP2 and a CSF1 antagonist.	Older SSCs show reduced ability to form bone and cartilage but produce more stromal lineages expressing high levels of inflammatory and resorptive	Gain insights into complex mechanisms of skeletal aging and explore potential ways to rejuvenate the aged skeletal system.	Bone restoration	To restore bone regeneration in older mice, a combined treatment of BMP2 and a CSF1 antagonist applied to fractures reactivated aged SSCs and reduced the inflammatory and pro-osteoclastic environment.

Anderson, et al. (2014)	Can physical activity prevent physical and cognitive decline in postmenopaus al women? A systematic review of the literature	https://doi.or g/10.1016/j. maturitas.20 14.06.010	resulting in fragile bones with poor regenerative abilities. To review research on impact of leisure-time and physical activity levels on physical and cognitive decline in postmenopa usal women	Human	physical activity, exercise, postmeno -pausal women	Systematic review	factors. Effect of physical activity on cognitive decline	Participation in regular physical activity is among the most promising and cost- effective strategies to reduce physical and cognitive decline.		Engaging in physical activity is linked to reduced rates of cognitive and physical decline, and significant reduction in overall mortality. Cardiovascular exercise interventions and lifestyle activities had the most positive effects on physical health.
Angoorani et al. (2022)	Is There Any Link between Cogni tive Impairmen t and Gut Microbiota? A systematic review	https://doi.or g/10.1159/00 0522381	To review primary results from recent human and animal studies regarding alteration of gut microbiota composition in cognitive disorders	Human; animal	Gut microbiot a; brain- gut microbiot a axis	Systematic review	Brain-gut microbiota axis influence neuroactive compounds e.g. serotonin, dopamine, GABA, ACh; also affects levels of stress hormones. Gut microbiota creates neurotoxic substances (D- lactic acid, homocysteine, proinflammat- ory cytokines, and ammonia) which can pass the blood-brain barrier.	Decreased gut microbiota species richness and increased interindividual variability in cognitive frailty, especially in older frail people living in nursing homes (diet, changes, reduced physical activity)	Gut bacteria types and association with cognitive impairment	Reduced gut microbiota composition in frail older people is due to reduced GI movement which in turn leads to constipation. Lower bacterial excretion leads to pancreatic enzymes dysfunction which in turn adversely affects gut function.
Arey &	Conserved	https://doi.or	To review	C.elegans,	Genetics,	Review	The role of	Many pathways	N/A	Zebrafish: reduction in
Murphy	regulators of	<u>q/10.1016/j.b</u>	studies on	drosophila,	insulin,		genes involved	play a role in		expression of plasticity-

(2017)	cognitive aging: From Worms to Humans	<u>br.2016.06.0</u> <u>35</u>	cognitive decline in model organisms and demonstrate that simple model systems can aid the discovery of conserved molecular mechanisms	zebrafish	nutrition		in insulin signalling, plasticity and dietary restriction in cognitive function throughout ageing.	cognitive function in aged model organisms, including insulin signalling, plasticity and dietary restriction		associated genes in telencephalon, such as bdnf, cart4, and pcna Worms: daf-2 (defective insulin signalling) display extended short- and long-term associative memory on first day of adulthood Drosophila: insulin receptor substrate knock down (chico) in brain results in defects in negative olfactory associative learning and protein synthesis- dependent memory. Long-term associative memory performance correlates with levels of active CREB
Arey, et al. (2018)	Activation of Gaq signall-ing enhances memory consolidat-ion and slows cognitive decline	https://doi.or g/10.1016/j.n euron.2018. 03.039	To evaluate the role of Gαq in long- term memory in <i>C. elegan</i> s	C.elegans	Signalling pathway	Conditioned stimulus- unconditioned stimulus pairing to determine associative memory	The Gαq signalling pathway (regulating synaptic transmission and olfactory adaptation) and its role in associative learning and memory	The Gαq signalling pathway plays a role in associative learning in c. elegans and is dependent on CREB.	Associative memory	Gaq mutant worms have mild learning defects and cannot form short-term memory. Increasing Gaq levels extends memory tenfold, even with age. However, when CREB (a transcription factor) is knocked out alongside increased Gaq, memory extension disappears: CREB is essential for this memory improvement.
Arnoriaga- Rodríguez & Fernández -Real (2019)	Microbiota impacts on chronic inflammation and metabolic syndrome - related cognitive dysfunction	https://doi.or g/10.1007/s1 1154-019- 09537-5	To review identification of unique gut microbiota patterns linked to cognitive function via mouse models.	Mice	microbiot a, inflamma ge-ing, cognitive dysfunctio n	Review	Microbiota interactions with inflammatory pathways	Gut microbiota is associated with inflammageing, metaflammat- ion, obesity, type 2 diabetes, and the metabolic syndrome.	N/A	Diet, exercise, and prebiotics can significantly impact cognition and alter gut microbiota. However, human studies on the link between gut microbiota and cognitive function are limited.
Arosio, et al, (2023)	Sarcopenia and Cognitive Decline in Older Adults: Targeting the	https://doi.or g/10.3390/nu 15081853	The study explores the molecular mechanisms and factors	Human	Sarcopeni a, myokines	Non- systematic review/essay	Molecular mechanisms related to sarcopenia and cognitive	Sarcopenia and cognitive decline in older adults might be connected;		Highlights factors involved in muscle aging, including mitochondrial dysfunction, inflammation, metabolic changes, and declines in cellular

	Muscle-Brain Axis		related to the muscle-brain axis and their potential role in cognitive decline among older adults. It also discusses behavioural strategies being investigated in this context.				decline	muscle-derived myokines could be the messengers facilitating communication between the muscles and the brain.		stemness. Neurological factors, such as neuromuscular junctions (NMJs) are considered as contributors to age-related musculoskeletal issues. Patterns of circulating metabolic and neurotrophic factors have been linked to physical frailty and sarcopenia.
Arrieta, et, al. (2022)	Improving the Identification of Frailty in Long- Term Care Residents: A Cross- Sectional Study	https://doi.or g/10.1177/10 9980042211 00797	To compare the capacity of blood myostatin concentratio n and physical, cognitive, and affective function tests to predict frailty among long- term care (LTC) residents.	Human, N= 260, all in LTC, 69.2% women; aged ≥70 years, mean age 84.9; ≥50 on the Barthel Index; ≥20 on the (MEC- 35) test; capable of standing up and walking independentl y for at least 10m.	Myostatin; biomarker s; long term care (LTC)	Secondary analysis of baseline data from 3 multicentre randomized controlled trials	Low myostatin concentration could also be a biomarker of sarcopenia	Blood biomarkers make a useful addition to measures of physical, cognitive, and affective function tests to diagnose frailty in the LTC setting.	Serum myostatin concentration (fasting blood samples); Fried Frailty, Tilburg and Clinical frail scale; Physical fitness: hand grip, arm-curl, 30-second chair-stand, 6- minute walk test (6mWT), TUG, gait speed; Berg Balance Scale; Cognition: MOCA; Affective function: Quality of Life in Alzheimer's Disease (QoL- AD) Goldberg	Myostatin was associated with frailty but was less able to discriminate frailty in LTC residents than single physical fitness tests. Myostatin quantification could be helpful to identify frailty, when physical tests cannot be performed due to the patient's status or for logistical reasons.

									Anxiety and Depression Scale and De Jong-Gierveld Loneliness Scale.	
Atienza, et al, (2018)	Low-grade inflammation in the relationship between sleep disruption, dysfunctional adiposity, and cognitive decline in aging	https://doi.or g/10.1016/j.s mrv.2018.08. 002	To show that chronic low- grade inflammation may play a mediating role between poor sleep, unhealthy body fat, and cognitive decline, affecting brain health.	Various	Inflamma ge-ing, sleep	Review	The relationship between sleep pattern, adiposity and inflammageing	As individuals age, changes in sleep patterns and body fat composition become prominent, and these factors have been linked to both cognitive decline and inflammaging.	N/A	The model highlights sleep and adiposity as lifestyle factors that can be targeted to enhance cognitive function and overall quality of life in older people.
Augustin, et al. (2017)	Reduced insulin signalling maintains electrical transmission in a neural circuit in aging flies	https://doi.or g/10.1371/jo urnal.pbio.20 01655	To investigate the role of insulin/IGF- like signalling (IIS) and gap junctions in neuronal ageing of a specific neuronal circuit in Drosophila.	Drosophila model, whole lifespan	Drosophil a, giant fibre system, insulin signalling, gap junctions, endosom al recycling	Survival and behavioural analysis, electrophysiol ogy	Role of insulin/IGF like signalling in ageing	The role of IIS in ageing and function of a specific neuronal circuit	Endosomal recycling of GJs in neurons and other cell types	The paper does not address cognition, but does address the role of IIS in ageing and function of a specific neuronal circuit (giant fibre) which is involved in a locomotor escape response. Reduced IIS improves the decline in electrical transmission in this circuit via modulation of endosomal recycling in gap junctions.
Augustin, et al., (2018)	Impact of insulin signaling and proteasomal activity on physiological output of a neuronal circuit in aging	https://doi.or g/10.1016/j.n eurobiolagin g.2018.02.02 7	To investigate the role of insulin/IGF- like signalling and the proteasome in neuronal	Drosophila model, whole lifespan	Drosophil a, giant fibre system, insulin signalling, proteoso mal activity	Survival and behavioural analysis, electrophys- iology	Role of insulin/IGF like signalling in ageing	The role of IIS in ageing and function of a specific neuronal circuit	Lifespan, proteosomal activity, neurotransmiss ion	The paper addresses the role of IIS in ageing and function of a specific neuronal circuit (giant fibre) which is involved in a locomotor escape response. Reduced IIS improves the decline in function of this motor behaviour via increased proteosomal activity.

	Drosophila melanogaster		ageing of a specific neuronal circuit in Drosophila.							
Azpurua & Eaton (2015)	Neuronal epigenetics and the aging synapse	https://doi.or g/10.3389/fn cel.2015.002 08	How does normal physiological ageing disrupt central and peripheral synapse function (degradation of structure and/or control of neurotransmi ss-ion)	Various	Epigeneti cs, synapse	Review	Neuronal epigenetics, synapse function	Defects at the synapse are proximally caused by epigenetic dysregulation of key synaptic genes.	Various	Central synapse structure and neuromuscular junction synapse structure are altered by aging, so is synaptic plasticity Epigenetic Factors can Directly Modify Synaptic Proteins
Bachmann et al., (2020)	The Challenge by Multiple Environmental and Biological Factors Induce Inflammation in Aging: Their Role in the Promotion of Chronic Disease	https://doi.or g/10.3389/fi mmu.2020.5 70083	To review processes and mechanisms of inflammation associated with environment al factors and behaviour, their links to sex, and overall impact on ageing.	Human	Inflammat ion; inflamma ge-ing; gender; n3- PUFAs; cytokinine s; psychoso cial stress; oxidative stress	Non- systematic review	Changes in energy production, oxidative stress, homeostatic dysregulation chronic inflammation	Inflammation is involved in the molecular, phenotypic, and functional consequences of ageing. Tackling pathological ageing could be done by intervening with inflammatory ageing states.	N/A	Unhealthy diet, stress, use of drugs, exposure to pollution and sedentariness may lead to obesity, defects in immunoregulation, and increase production of inflammatory cytokines. Pollutants, especially those stored in adipose tissue, affect genes related to inflammation and metabolic pathways. Psychosocial stress and poor sleep contributes to increased inflammation
Baptista, et al., (2020)	Crosstalk Between the Gut Microbiome and Bioactive Lipids:	<u>https://doi.or</u> g/10.3389/fn ut.2020.0001 <u>7</u>	To review the evidence in the literature regarding the link	Human, mice	Microbio me, inflammati on, biolipids	Non- systematic review	The link between the gut microbiome, brain and bioactive lipids	The gut microbiome is linked to the brain and bioactive lipids, which can	N/A	Evidence presented for the relationship between the onset of CF and the crosstalk between the gut–brain axis, microbiome, and bioactive lipids. Four bioactive lipid families have

56

	Therapeutic Targets in Cognitive Fr ailty		between the gut microbiome, brain, and several families of bioactive lipids.				and how they may be linked to cognitive frailty.	regulate inflammatory processes that may link to CF and therefore be a potential treatment strategy.		roles in immunity and inflammation: the eicosanoids; the phospholipids and sphingolipids; the specialized pro-resolving lipid mediators (the acute immunoresolvents) and the endocannabinoid system.
Bekic, et al., (2019)	Clustering of Mental and Physical Comorbidity and the Risk of Frailty in Patients Aged 60 Years or More in Primary Care	https://doi.or g/10.12659/ msm.915063	To identify the clustering of comorbiditie s, cognitive, and mental factors associated with increased risk of pre- frailty and frailty in patients over the age of 60 years in primary healthcare in Croatia.	Human, aged >60, N=184 (127 female), primary care, community dwelling, Croatia; excluded dementia	Anxiety, depressio n, sleep disorders	Cross- sectional retrospective, cluster analysis, logistic regression	Clustering of co-morbidities and mental health with frailty and cognition (MMSE)	Evidence for relationship between anxiety, depression, cognitive impairment, and frailty, but effects of patterns of comorbidity remain unknown.	Frailty and pre- frailty (Fried)	In patients over 60 years in a primary healthcare setting, multimorbidity predictors of pre- frailty and frailty included a decline in cognitive function and renal function.
Bektas, et al., (2018)	Aging, inflammation and the environment	https://doi.or g/10.1016/j.e xger.2017.12 .015	To examine the confluence between inflammation and the environment, especially related to metabolism, and their effects on ageing/frailty / cognitive frailty	Human, animal	Inflammat ion, environm ent, metabolis m	Review and theoretical model, longitudinal studies	Inflammation, inflammageing affected by, e.g.: genomic instability, epigenetic alterations, telomere attrition, mitochondrial dysfunction, loss of proteostasis, cellular senescence, stem cell	Four major domains of ageing mechanisms: 1) changes in body composition; 2) imbalance between energy availability and demand; 3) dysregulated signalling networks that maintain	Increased blood levels of inflammatory biomarkers: CRP, IL-6, IL- 18 and tumor necrosis factor- a (TNF-a). IL-6 serum levels predict incident disability and frailty, lower gait speed	Higher inflammation has been associated with reduced cognition and neuronal plasticity, expressed as a reduced capacity of adaptation and compensation.

Belblidia, et al., (2018)	Characterizing age-related decline of recognition memory and brain activation profile in mice	https://doi.or g/10.1016/j.e xger.2018.03 .006	To assess the time- course of object- and object location recognition memory decline in mice aged 3 to 19∟months, along with associated neuronal activation	Mice (118 NMRI mice)	Mice, learning memory	Behavioural study in mice, immunohistoc hemical detection of c- Fos (neuronal activation marker)	exhaustion, dysregulated nutrient sensing. Environmental impacts: diet, metabolic syndrome including high blood pressure, elevated cholesterol levels, abnormally high fasting glucose, insulin resistance. overweight or obesity. Novel-object (NOR) and object-location (OLR) recognition tests, assessing identity and spatial features of object memory, were examined at different ages.	homeostasis; 4) neurodegen- eration with impaired neuroplasticity Differential alterations of object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks.	Performance at novel-object (NOR) and object-location (OLR) recognition tests. Immunohistoch emical detection of c- Fos (neuronal activation marker)	Memory performance was altered by ageing as early as 15∟months: NOR memory was partially impaired whereas OLR memory was fully disrupted at 15∟months. Memory disruption may be explained by a deficit of neuronal activation in the hippocampus. Recognition memory for object is less sensitive to the deleterious effects of ageing.
Bongue, et al., (2016)	Assessment of Health Inequalities Among Older People Using	https://pubm ed.ncbi.nlm. nih.gov/2924 0316/	neuronal activation profiles. To assess the utility of an Evaluation of Deprivation	Human; N=2754 participants from the 2008 ESPS Survey	Inequalitie s; deprivatio n, healthcar	Cross- sectional study	Health inequalities and healthcare involvement (e.g.	Challenging views of older people as a homogeneous social group	Frailty (asked if can walk 500m without aids, asked what time of day it	A higher EPICES score is linked to the decline of health markers - physical disability, cognitive regression, lifestyle, and healthcare access. These

	the EPICES Score: A Composite Index of Social Deprivation		and Inequalities measure in older people (EPICES). To assess relationships between health indicators and the EPICES score in older people	(Health, HealthCare and Insurance Survey). Aged >60 years, mean age 70.7. France. 52.8% women.	e renunciati on; health inequalitie s; measure ment.		participation in screening).	and old age as a time of universal and inevitable biological decline resulting in universal ill health as opposed to still influenced by inequalities.	was). EPICES for health inequalities	relationships increase with the level of social deprivation.
Bortone, et, al. (2021)	Physical and cognitive p rofiles in motoric cogniti ve risk syndrome in an older population from Southern Italy	https://doi.or g/10.1111/en e.14882	To estimate prevalence of Motoric cognitive risk syndrome (MCR) in a large cohort of older people, and to examine associations between physical status, global cognitive dysfunction, and impairment in specific cognitive domains	Human, n=1041 (52% women), Southern Italy, 103 with MCR, dementia excluded.	Inflammat ion, depressio n, education	Longitudinal study, 10-year follow up	Factors associated with MCR syndrome	Several factors are associated with MCR including inflammatory markers and education level	5m walking test, MMSE, RAVLT, MAC- Q, TMT-A	The MCR cohort were older, had lower educational level, and higher prevalence of depressive symptoms compared with non- MCR group. Elevated levels of CRP and IL-6 were evident in those with MCR compared to those without
Bowl & Dawson, (2019)	Age related hearing loss	https://doi.or g/10.1101/cs hperspect.a0 33217	To review research on age-related hearing loss and its associates, including	Human, mouse	Age related hearing loss, presbyac usis	Review	Social isolation, cognitive function, hearing loss. Pathways possibly linked	Age related hearing loss is associated with cognitive decline and dementia, frailty and falls	N/A	There is need for therapeutic interventions to ameliorate age- related auditory decline, however, the underlying molecular mechanism is still unknown and currently, understanding of age related

						r				
			cognition and frailty.				to hearing loss and cognitive decline are oxidative damage, inflammation, vascular function, mitochondrial dysfunction, glutamate excitotoxicity, and RNA granule dysregulation.			hearing loss is limited.
Breitling, et al, (2016)	Frailty is associated with the epigenetic clock but not with telomere length in a German cohort	https://doi.or g/10.1186/s1 <u>3148-016-</u> 0186-5	To examine the association between epigenetic age acceleration, telomere length (TL), and frailty in two substantial subsets of community- dwelling older adults in Germany.	Human (ESTHER epidemiologi cal cohort study)	Epigeneti cs, telomere length	Cross- sectional observational study	DNA methylation age using a predictor developed from 353 loci. Epigenetic age acceleration determined by subtracting chronological age from predicted methylation age.	The study explores the correlation between the epigenetic clock, specifically DNA methylation age acceleration, and various disease phenotypes.	Association between DNA methylation age acceleration and frailty and accumulated deficits with age	Epigenetic age acceleration is linked to clinically relevant ageing-related traits, independent of cellular senescence measured by telomere length.
Brigola, et al., (2017)	High burden and frailty: association with poor cognitive performance in older caregivers living in rural areas	https://doi.or g/10.1590/22 <u>37-6089-</u> 2016-0085	To examine the correlation between burden and frailty with cognitive decline in older individuals responsible	Human; N=85; aged >60; 76.7% female; mean age 69. Older caregivers who cared at home for a dependent elder; Brazil,	Carer burden; chronic stress; subjective wellbeing; anxiety; depressio n; older carers	Cross sectional study	Carer burden and chronic stress as predictor of cognitive impairment and frailty	Factors associated with cognitive performance of carers, such as carer burden and frailty, may compromise quality of care delivered to the recipient, as	ACE-R and education adjusted MMSE for cognition; Fried Frailty; Zarit carer burden.	62.3% were frail or prefrail, 15.3% cognitively impaired. Cognitive performance related to frailty level. Carer burden was related to all domains except Executive function (Verbal fluency). Mean cognitive scores were worse in caregivers with moderate and severe burden, but no difference between these

			for the daily care of other seniors within a rural setting.	rural. Care recipient had to be dependent in at least one ADL/IADL. Mean of 12 years of care				well as caregiver's self-care.		levels, and was higher among caregivers with mild burden.
Bunce, et, al. (2019)	Long-term Associations Between Physical Frailty and Performance in Specific Cognitive Domains	https://doi.or g/10.1093/ge ronb/gbx177	To distinguish cognitive impairments related to neurodegen era-tive conditions (e.g. dementia) from those directly linked to frailty. To determine if mechanisms linking frailty to cognition are independent of age- related neurodegen era-tive disorders and originate from direct link between physical condition and cognitive function	Human. N=896, 49% female; 12 year longitudinal study (Australia), N=213 at 12 years	Executive function, processin g speed, Intra- individual variability	Longitudinal study	Frailty (Fried) as a predictor of cognitive function in different domains	Relationship between cognition and frailty may be more specific than a simple association with global cognition and pre-clinical dementia. While individuals with neurodegener- ative disorders can also be frail, the mechanism by which frailty affects cognition may be independent.	Cognitive functions in different domains	Frailty significantly impacted cognitive abilities in processing speed, verbal fluency, reaction time, and its variability within individuals. Frailty did not show significant effects on face and word recognition, or episodic memory. Cognitive decline over time was not accelerated in frail individuals. Even after excluding those with possible dementia, the pattern remained unchanged, indicating that the connection between frailty and cognition is distinct from that related to potential dementia.
Carini, et	The Potential	https://doi.or	To explore	Human	miRNA,	Review	Some miRNAs	Two miRNAs	N/A	Eight miRNAs were more

61

al, (2021)	Role of miRNAs in Cognitive Frailty	<u>g/10.3389/fn</u> agi.2021.763 <u>110</u>	the connection between specific miRNA changes and frailty and cognitive impairment.		biomarker		have been associated with both frailty and cognitive decline and may therefore be potential biomarkers of CF	have been linked to both frailty and cognitive decline and may be useful as biomarkers for CF		common in frail individuals: miR- 10a-3p, miR-92a-3p, miR-185- 3p, miR-194-5p, miR-326, miR- 532-5p, miR-576-5p, and miR- 760. Another study found higher miR-21 levels in frail participants than in controls. Low serum levels of miR-20a, miR-27a, and miR-103a were linked to cognitive deficits although there were others too. Two miRNAs were both differentially expressed in frail individuals and associated with cognitive deficits: miR-92a-3p and miR-532-5p.
Chapko, et al. (2016)	Late-life deficits in cognitive, physical and emotional functions, childhood intelligence and occupational profile: a life- course examination of the Aberdeen 1936 Birth Cohort (A BC1936)	https://doi.or g/10.1093/ag eing/afw061	To investigate roles of occupational background and childhood intelligence in influencing the age related impairment.	Human, n=346, Aberdeen, anxiety and depression excluded	Intelligenc e, occupatio n	Longitudinal study	Whether childhood intelligence and lifetime occupation influence cognitive decline, and physical and emotional wellbeing in later life.	Concept of underlying intelligence as well as cognitive reserve affected by lifetime intellectual activity both affecting later life cognitive, physical and emotional impairment.	Childhood intelligence data from the Scottish Mental Survey, MMSE, 6m walking pace, SF-36 Health Survey	Childhood IQ had the most substantial impact on cognitive, emotional, and physical impairments in later life. However, mid-life occupations involving data or people, higher social status, and work-related stress also independently contributed to the triad of impairments, although to a lesser extent than childhood IQ.
Chhetri, et, al. (2018)	/	https://doi.or g/10.1016/j.e xger.2018.07 .006	To study the nutritional marker (Vitamin D, homocyst eine, n–3PUFA) status of older people with subjective	Human, n=1680, aged >70, dementia and severe depression excluded	Vitamin D, nutrition, omega-3, homocyst eine	Secondary analysis of a longitudinal study followed for three years, four groups: CI only, physical limitation (PL) only, CI and PL (PLCI),	Effect of the nutritional markers (Vitamin D, homocysteine, n–3PUFA) on physical and cognitive function in later-life	Nutritional markers are associated with physical and cognitive impairment.	Fried's frailty phenotype, CDR scale, Vitamin D, Omega-3 polyunsaturate d fatty acid (n–3PUFA) and plasma total homocysteine (tHcy) status,	Older individuals with both physical limitation and cognitive impairment (PLCI) had the lowest average Vitamin D levels and the highest average tHcy levels. There was a strong connection between high Vitamin D level and reduced likelihood of PLCI. Low levels of n–3PUFA were linked to higher likelihood of physical limitation (PL) only.

										
Choi, et. al, (2022)	complaint: Results from cross-sectional study of the MAPT trial Analysis of blood pressure and blood pressure variability pattern among older patients in long-term care hospitals:	https://doi.or g/10.1093/ag eing/afac018	memory complaint, according to their physical and cognitive function. To assess any differences in blood pressure (BP) characteristi cs and variability	Human. Older people living in long term care hospitals in Korea; aged >65 years; 71% female; included	BP; BP variability; long-term care	neither. Observational study	BP variability has been linked to cognitive decline due to impact on arterial stiffening, vascular	Physical frailty and cognitive impairment are associated with increased BP variability	Assessed BP multiple times per day, median of 346.5 measurements per person. Individual BP variability was	Systolic and diastolic BPs were lower in patients with physical frailty compared with robust/pre- frail patients, but variability as measured by CV was higher in those with frailty compared to those without. No significant difference in n of prescribed antihypertensive medications
	an observational study analysing the Health- RESPECT (integrated caRE Systems for elderly PatiEnts using iCT) dataset.		among older adults based on their physical or cognitive frailty status and antihyperten sive medication use.	some with dementia/wit hout mental capacity. 78% were hypertensive.			remodelling, hemodynamic stress, and inflammation, all of which can negatively affect cognitive function. This is particularly significant in frail older individuals because their altered homeostatic mechanisms contribute to more pronounced		calculated using the coefficient of variation (CV), a measure of Korean version of the FRAIL scale used to evaluate frailty and Cognitive Performance Scale (CPS) from the interRAI Long- term Care Facilities tool to assess cognitive performance.	between frail and pre-frail/robust patients; (i.e. effects associated with frailty itself, not medications). No significant difference in hypertension status or antihypertensive regimen between patients with normal and impaired cognition, but patients with cognitive impairment had lower systolic BP, but higher CV of systolic and diastolic BPs.
Choi & Ko, (2023)	Cross sectional association between cognitive frailty and disability among	https://doi.or g/10.3389/fp ubh.2023.10 48103	Prevalence of CF and influence of social factors on association between CF	Human, n=9894, nationally representativ e sample. Community- dwelling	Social factors, disability	Cross- sectional survey, secondary data	BP variability. Social factors (contact)	CF progresses to disability but social factors may influence likelihood of progression	Disability	Suggests social factors (contact) as intervention to slow CF progression to disability.

Chou, et al., (2019)	community- dwelling older adults: Focus on the role of social factors. Role of gait speed and grip strength in predicting 10- year cognitive decline among community- dwelling older people	https://doi.or g/10.1186/s1 2877-019- 1199-7	and disability To assess how distinct physical frailty markers, such as gait speed and grip strength, impact longitudinal cognitive changes. Compared higher-level cognitive changes with overall global cognitive decline.	Korean older people aged ≥65 years Human, N=1096, aged >60, 49.1% female, excluded MMSE<24	Global cognition, processin g speed, executive function, gait speed, grip strength, longitudin al	Population- based prospective cohort study - 10 years	Frailty markers gait speed and grip strength may predict different cognitive functions and may also be associated with rate of decline over time	Common brain changes contribute to both physical frailty indices and certain cognitive functions, with potential distinctions between global and higher- level cognition. Cerebellum, basal ganglia, hippocampus, parietal cortex, and frontal cortex are implicated due to relevance to both gait and executive functions.	Digit symbol substitution task (processing speed, executive function, working memory) and MMSE scores (basic global cognition)	Gait speed related to DSST and rate of decline, but not to MMSE. Grip strength associated with both. Differential pathways proposed.
Christian & Benian, (2020)	Animal models of sarcopenia	https://doi.or g/10.1111/ac el.13223	To summarise work in model organisms to investigate mechanisms of	Various animal models	Animal models, sarcopeni a	Non- systematic review				Although not related to cognition, this review summarises work in models on muscle loss with age which may be useful when we are bringing together work in models on cognition and locomotor function.
Chu, et al., (2019)	Hierarchical Development of Frailty and Cognitive Impairment:	https://doi.or g/10.1093/ge rona/glz134	sarcopenia. To describe patterns of the onset of frailty and cognitive	Human, n=3848 (55.5% female), community-	Socio- demograp hic factors	Longitudinal study, followed annually for 5 years.	Sex, race, education, income, co- morbidity, smoking, ADL,	Several factors influence development of CF and also whether CI or	Physical frailty phenotype, cognitive performance testing or by	Black participants were at higher risk of cognitive frailty than white participants. Higher education lowered the risk of cognitive frailty, so did higher income

Chu, et al., (2021)	Clues into Etiological Pathways	https://doi.or g/10.1093/ge rona/glaa267	impairment; and investigate whether patterns of are related to different baseline socio- demographic factors, disease characteristi cs, and health events. To determine if the overall physical frailty phenotype (PFP) is linked to cognitive performance levels and changes more than its individual components.	dwelling adults aged > 65. Human (National Health and Aging Trends Study)	Physical frailty; cognition	Observational cohort study	gait speed, hospitalisation	PF is developed first. Frailty's impact on cognition goes beyond what is expected from its individual components.	proxy-reports Frailty and cognitive performance (memory, executive function, and orientation)	The physical frailty phenotype (PFP) is linked to lower cognitive performance in cross-sectional analysis but does not predict subsequent cognitive decline beyond the contributions of its criteria. Additional research is required to explore frailty as a "syndrome" associated with cognition and other adverse outcomes.	
Chu, et al., (2021)	Frailty - a risk factor of global and domain- specific cognitive decline among a nationally representative sample of community- dwelling older	https://doi.or g/10.1093/ag eing/afab102	Frail older adults may be more vulnerable to stressors, resulting in steeper declines in cognitive function. Does the	Human, N=7439, community dwelling aged >65, 56.4% female, 20% possible dementia.	Executive function, immediat e and delayed recall, orientatio n, longitudin al, Fried Frailty,	Population- based prospective cohort study - 5 years	Frailty could have varying impacts on overall cognitive trajectories and specific cognitive domains. These effects might be	Physical frailty may increase vulnerability to factors that cause cognitive decline, cognitive reserve may impact this. Work may contribute to	Executive function (CDT), immediate and delayed recall, orientation,	Frail individuals experienced greater decline in global cognition, especially in CDT. Education played a moderating role between frailty and cognitive decline across all functions over time. Due to reduced physical resilience and diminished stress response, frail older adults are more susceptible to cognitive impairment and steeper cognitive	

	adult U.S. Medicare beneficiaries		frailty– cognition link differ by cognitive domain? Does education moderate the frailty- cognition link/trajector v?		education al attainmen t, cognitive reserve		influenced by cognitive reserve or educational attainment.	understanding of aetiologies for cognitive decline.		declines compared to non-frail counterparts, potentially elevating risk of cognitive impairment and dementia
Chung et, al., (2021)	Physio- Cognitive Decli ne Syndrome as the Phenotype and Treatment Target of Unhealthy Aging	http://doi.org/ 10.1007/s12 603-021- 1693-4	To define physio- cognitive decline syndrome (PCDS) and explore aetiology and potential reversibility.	Human	Physio- cognitive decline syndrome , cognitive frailty; hippocam pus/amyg dala - cerebellar pathways; microRNA s	Non- systematic review /theory presentation	Physical frailty subtypes: mobility subtype (slowness and weakness), and non- mobility subtype (exhaustion and weight loss). Mobility subtype linked to older age, lower muscle mass, higher mortality, and declining cognitive function. Non- mobility subtype associated with younger age, poorer bone health, metabolic issues, and increased depressive symptoms.	Co-occurrence of slowness and weakness suggests a shared underlying cause, strongly linked to cognitive decline. The term PCDS encompasses both Mobility Impairment No Disability (MIND) and Cognitive Impairment No Dementia (CIND).	People with cognitive frailty performed significantly worse in executive and attention tests compared to others with cognitive impairment but who were physically robust	Important to separate people with PCDS into different groupings of deficits in both frailty and cognitive domains, including separation of aetiology.

Chye, et, al. (2018)	Strong Relationship between Malnutrition and Cognitive Frailty in the Singapore Longitudinal Ageing Studies (SLAS-1 and SLAS-2)	https://doi.or g/10.14283/j pad.2017.46	To assess how the interaction between physical frailty and cognitive impairment (cognitive frailty) affects malnutrition in older people without dementia.	Human. Community- dwelling older Singaporean s aged ≥55y (n=5414) without dementia in the Singapore Longitudinal Ageing Study	Malnutriti on, malnutriti on risk	Cross- sectional cohort study.	Bi-directional relationship between nutrition and CF proposed.	Nutrition plays a significant role in influencing both PF and Cl. Poor nutrition contributes to PF, which elevates the risk of Cl and dementia. Conversely, individuals with PF or Cl face a greater likelihood of deteriorating nutritional health due to declining physical function and self-care neglect.	MNA and Nutrition Screening Initiative (NSI, also called DETERMINE Your Nutritional Health (doesn't conflate with neuropsycholo gical markers, unlike MNA)	The prevalence of at-risk malnutrition and malnutrition varied across groups. It was lowest in cognitively normal and robust individuals (16.6%). The presence of cognitive impairment increased it to 41.1% among cognitively impaired but robust individuals. Prevalence rose to 37.6% among those with pre-frailty and cognitively normal status, and to 58.5% among those with frailty and cognitively normal status. The highest prevalence (72.3%) was observed in frail and cognitively impaired individuals (those with CF).
Cipolli, et al., (2023)	Cognitive Impairment Predicts Sarcopenia 9 Years Later among Older Adults	https://doi.or g/10.1016/j.j amda.2023.0 5.008	Does cognitive impairment predict sarcopenia 9 years later?	Human, 521, 70.1% female,	Sarcopeni a, cognitive impairme nt, Longitudi nal, inflamma geing; nutrition	9 year repeated measure longitudinal study	Longitudinal association	Previous studies have identified cross sectional associations between sarcopenia and cognitive impairment, and longitudinal associations between sarcopenia at baseline and eventual CI. This study examined the	Sarcopenia as indicated by grip strength and muscle mass. CI as indicated by - 1SD on MMSE accounting for education. Covariates were age, sex, physical activity, nutritional status, multimorbidity	Trajectory can go in either direction suggesting joint underlying mechanisms. Inflammatory pathway and nutrition were discussed (nutrition-inflammation complex syndrome)

								reverse		
								trajectory.		
Cohen & Gerber, (2017)	Air Pollution and Successful Aging: Recent Evidence and New Perspectives	https://doi.or g/10.1007/s4 0572-017- 0127-2	To assess existing epidemiologi cal evidence linking prolonged exposure to outdoor air pollution with factors contributing to unsuccessful ageing. To pinpoint groups experiencing unsuccessful ageing who might be particularly susceptible to the health impacts of air pollution.	Human	Chronic exposure to air pollution; Successf ul ageing; Susceptib le populatio ns	Non- systematic Review	Air pollution is linked to higher risk of significant chronic diseases, cognitive decline, frailty, reduced lifespan, and may have greater impact on frail individuals. Cardiovascular impacts suggested as mechanism.	trajectory. Air pollution might contribute to ageing and potentially shift individuals from successful ageing	N/A	Air pollution in older populations affect cardiovascular indicators (heart rate variability, BP, vascular function, lipid profile). These cardiovascular effects are linked to oxidative stress and inflammation. Additionally, air pollution is connected to MCI especially related to the frontal lobe and hippocampus. Impacts of pollution involve biological mechanisms, e.g. inflammation, oxidative stress, epigenetics, balance regulation, which relate to frailty. This study did not assess frailty but suggests that physical frailty could heighten vulnerability to pollution's effects.
Confortin & Barbosa (2015)	Factors Associated with Muscle Strength Among Rural Community- Dwelling Older Women in Southern Brazil	https://doi.or g/10.1519/jpt .0000000000 000027	To confirm associates of muscle strength including age, lifestyle, and health conditions in older women living in a rural area in Southern Brazil.	Human, N=270, aged >60, 100% female, rural Brazil	Grip strength, muscle strength, work status, lifestyle, sociodem ographic, sedentary	Observational, cross- sectional study	Role of lifestyle factors in link between muscle strength and cognitive function.	Older individuals who continue working, particularly in rural agricultural settings, often exhibit better health and higher levels of physical activity.	Hand grip and chair stand test (lower limb strength), MMSE.	Reduced muscle strength could suggest a decline in overall nervous system function. Elevated inflammatory markers and low anabolic hormone levels are connected to the decrease in both muscle strength and cognition. Older individuals with cognitive impairments engage in fewer physical activities, leading to muscle mass and strength loss.
Corpas, et al., (2017)	SIRT1 Overexpressio n in Mouse	<u>https://doi.or</u> g/10.1007/s1 2035-016-	To study the advantages of increasing	Male 3xTg- AD mice and control NoTg	Sirtuins	Overexpressio n of SIRT1 in hippocampus	AD pathology in neurons	SIRT1 promotes cell survival and	Analysed animals for cognitive and	Increasing SIRT1 levels in the hippocampus of 3xTg-AD mice completely protected against

Hippocampus Induces Cognitive Enhancement Through Proteostatic and Neurotrophic Mechanisms	SIRT1 levels mice in the hippocampu s of both the Alzheimer's disease (AD) mouse model 3xTg- AD and non- transgenic mice.		provides neuropa neuroprotection against amyloid and tau overexp pathologies in Alzheimer's cultures disease (AD). both mo strains du analyse simultar	s after 6 pathology. of gene pression n 5 from buse were ced and d
Cosarderel ioglu, et al., (2020) Brain Renin– Angiotensin System at the Intersect of Physical and Cognitive Frailty https://doi. g/10.3389 ns.2020.5 314	ni connections	RAS, renin- angiotensi n system, brain	such as inflammation, oxidative	Mitochondrial dysfunction, chronic inflammation, and oxidative stress are central theories of ageing and implicated in both frailty and Alzheimer's disease. The RAS plays a role in these processes, contributing to inflammation and mitochondrial dysfunction.

			drugs to treat these conditions and associated brain RAS changes.						
Covarrubia s, et al., (2021)	NAD+ metabolism and its roles in cellular processes during ageing	https://doi.or g/10.1038/s4 1580-020- 00313-x	To investigate how NAD+ precursors and their impact on NAD+ levels influence physiology and the duration of good health in the context of ageing and various disease conditions.	Various	NAD+, energy metabolis m	Review	Role of NAD+ during ageing	Reduced NAD+ levels are directly connected to various age- related conditions including cognitive decline, metabolic issues, sarcopenia, and frailty. Restoring NAD+ levels may slow down or even reverse these conditions.	NAD+ levels decrease during ageing and reduced levels are linked to an increase in proinflammatory M1-like macrophages in the liver and fat, characterized by higher CD38 expression and NADase activity. NAD+ is vital for a healthy nervous system and various brain cell types. Addressing the age-related decline in NAD+ levels could be a treatment for neurodegenerative diseases.
Csiszar, et al., 2019	Role of endothelial NAD+ deficiency in age-related vascular dysfunction	https://doi.or g/10.1152/aj pheart.0003 9.2019	To provide a comprehensi ve overview of NAD+- dependent pathways, which include enzymes such as silent information regulator-2- like enzymes and poly(ADP-	various	NAD+, vascular cognitive impairme nt, energy metabolis m, oxidative stress	Review	NAD+ during vascular ageing	The study discusses the various ways treatments that increase cellular NAD+ levels can protect blood vessels. It also mentions some limitations of these treatments.	NAD+ levels decline with age and affect various tissues, including endothelial cells. Treating aged mice with NAD+ precursors shows promise in reversing age-related issues in multiple organs.

Das, (2022)	Cognitive frailt y among community- dwelling rural elderly population of West Bengal in India	https://doi.or g/10.1016/j.a jp.2022.1030 25	ribose) polymerase enzymes. To explore potential consequenc es of NAD+ deficiency in endothelial cells on vascular ageing. To examine how common cognitive frailty is among older individuals living in rural communities in West Bengal, India, and identify factors connected to it.	Human, N=510, 54.9% women; no dementia at baseline, aged ≥60, mean age 71.4 years, living in specific villages for at least 10 years.	Sociodem ographic predictors ; socio- economic status, gender.	Cross- sectional survey in specific villages	Combined effects of physical, psychological and sociodemogra phic predictors.	India has the highest number of frailty cases amongst six low- and middle-income countries. West Bengal has the highest average frailty score. Rural residents there are more likely to be frail than urban residents. India has the highest prevalence of MCI compared to other countries in the study.	Nutritional status: Mini Nutritional Assessment (SF-MNA); falls; ADLs; Bengali Short Form-36 (Health- Related Quality of Life, HRQoL); perceived social support; depression, anxiety and stress scale; Fried phenotype, MMSE. CF and pre-CF (either cognitive impairment OR frailty).	Cognitive frailty is more prevalent among older individuals, particularly women, those who are single/divorced/widowed, have lower education, are non- working, and belong to lower socioeconomic groups. Malnutrition, low social support, anxiety, depression, and stress are associated with CF. Logistic regression: almost all independent variables, except for social support, anxiety and stress significantly influenced CF. The likelihood of CF was higher among older participants, women, those not currently married, with less education, not working, malnourished, or experiencing depression.
Delrieu, e al., (2016)		https://doi.or g/10.14283/j pad.2016.94	To compare neuropsycho logical profiles in older adults in relation to their frailty	Human, 1,627 people aged > 70 years with at least one of Memory complaint;	Executive function, attention. subcortico -frontal cognitive pattern	Cross sectional observational cohort: Analysis of baseline data from a larger	Differentiation of cognitive profile between older people with CF and those with cognitive	People with CF have a different pattern of cognitive impairment to early Alzheimer's. It	Fried frailty phenotype, ADLs, SPPB; inclusive battery of cognitive tests including	People with CF had poorer executive function, attention and processing speed than people with CI only. Participants with more severe frailty had poorer cognitive, particularly Executive function.

			and cognitive status in order to characterise CF.	limitation in one IADL, or slow gait speed. Excluded people with dementia. 356 with CF.		trial (MAPT)	impairment and no frailty; association of severity of frailty with cognitive function within the CF group	is important to distinguish this.	memory, executive function, processing speed and overall MMSE: verbal episodic memory/recall), verbal fluency, DSST for attention and executive function, TMT	
De Nobrega & Lyons, (2020)	Aging and the Clock: Perspective from Flies to Humans	<u>https://doi.or</u> g/10.1111/ejn .14176	Review to summarise the work in Drosophila and humans on the role of the circadian clock in healthy ageing.	Drosophila, human	Drosophil a, circadian clock, healthy ageing	Non- systematic review	Circadian clock during ageing	Influences of circadian dysfunction on ageing and vice versa, emphasising conserved nature from Drosophila to humans. Potential of enhancing the	(task switching), CDR. N/A	Summarises work in flies and humans on the role of the circadian clock on health and function with age. Thus, encompassing cognition and locomotor function.
Derevyank o, et, al. (2017)	Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels with aging and prolongs mous e health span	https://doi.or g/10.1111/ac el.12677	To determine if TRF1 levels change with age in mice and human tissues. To investigate how increasing	Wild-type mice of a > 95% C57BL/6 background	Telomere	Cognitive and neuromuscula r tests with mRNA and protein expression analysis	Effect of TRF1 levels on cognition and neuromuscular function	circadian system as intervention to support healthy ageing. Lower levels of TRF1 are linked to ageing characteristics. Introducing temporary and moderate TRF1 overexpression	Tightrope test, rotarod test, object recognition test, TRF1 levels	Mice receiving AAV9-TRF1 at age 1 exhibited enhanced neuromuscular coordination 7 months later and better recognition memory scores 5 months later. There was a similar non-significant trend for 2-year- old mice. 2-year-old mice treated with AAV9-TRF1 showed improved cognitive function two

			TRF1 expression might delay age-related health issues in living organisms					through recombinant adeno- associated viral vectors may show positive outcomes (molecular and physiological). This enhances telomere protection and extends the period of good health.		months later compared to controls.
Desdin- Mico, et. al, (2020)	T cells with dysfunctional mitochondria induce multimorbidity and premature senescence	https://doi.or g/10.1126/sc ience.aax08 60	T cells lacking functional mitochondria due to mitochondria l transcription factor A (TFAM) deficiency contribute to accelerated senescence.	Mice	Mitochon dria, inflamma geing	Generating TFAM- deficient T cells in mice.	In mice, T cells with dysfunctional mitochondria cells trigger ageing-related metabolic, cognitive, physical, and cardiovascular changes leading to early death.	Mitochondrial function in T cells declines with age.	At seven months old, mice with TFAM deficiency in CD4+ T cells showed early signs of inflammageing, with elevated levels of cytokines (IL-6, IFN-γ, and TNF-α) similar to 22-month- old wild-type mice	T cells play a crucial role in regulating health and lifespan, emphasising the significance of precise control over immune and metabolic functions during ageing and age-related diseases.
Diniz, et. al, (2022)	Cognitive Frailty is Associated with Elevated Proinflammator y Markers and a Higher Risk of Mortality	https://doi.or g/10.1016/j.j agp.2022.01. 012	To determine whether (CF) is linked to elevated levels of the proinflammat ory cytokine IL-6 when compared to robust, cognitively	Human, n=1340, aged ≥60 years. 54 with CF, 200 prefrail with CI, 70 robust with CI, 165 frail cognitively unimpaired	Inflammat ion, IL-6	10-year mortality follow-up study.	Association between IL-6 levels, cognitive frailty and mortality	Higher levels of the proinflammator y marker interleukin-6 (IL-6) are associated with cognitive frailty	IL-6 levels, frailty index, and cognitive assessment at baseline. All- cause mortality over the course of 10 years.	Participants with cognitive frailty and frailty alone had the highest serum IL-6 levels, and this association persisted even after accounting for potential confounding variables. Higher IL- 6 levels were linked to increased mortality.

			unimpaired individuals	(CU), 675 prefrail CU, 260 robust CU.						
Dravecz, et. al, (2022)	Reduced Insulin Signaling Targeted to Serotonergic Neurons but Not Other Neuronal Subtypes Extends Lifespan in Drospohila Melanogaster	https://doi.or g/10.3389/fn agi.2022.893 444	To determine whether distinct neuronal subtypes respond variably to changes in insulin/IGF- like signalling (IIS), and examine balance of positive, negative, and neutral functional outcomes in overall behaviour.	Drosophila	Insulin signalling	Locomotor and behavioural assay on Drosophila with reduced IIS in specific neuronal subtypes	The effect of insulin signalling on brain ageing (behaviour and lifespan)	Decreased insulin/IGF-like signalling (IIS) is a conserved mechanism that enhances longevity and certain aspects of health in model organisms.	Lifespan, negative geotaxis, exploratory walking.	Specific neuronal subtypes exhibited diverse responses to changes in insulin/IGF-like signalling (IIS), influencing lifespan and locomotor senescence. The insulin receptor in serotonergic neurons was identified as having a specific role in modulating lifespan.
Dulken, et al., (2019)	Single-cell analysis reveals T cell infiltration in old neurogenic niches	https://doi.or g/10.1038/s4 1586-019- 1362-5	To investigate the alterations taking place in specific regions responsible for generating new neurons (neurogenic niches) as it undergoes the ageing process To systematicall y examine	male C57BL/6 mice	Neural stem cells, neurogeni c niche, T cells	Single-cell RNA-seq	Single-cell RNA sequencing of young and old neurogenic niches in mice	Brain T cells produce interferon- γ , and various cells in the region, including NSCs, respond to interferon- γ . This T cell- induced interferon- γ response seems to harm NSC function both in laboratory settings and	N/A	Analysis of 14,685 single-cell transcriptomes indicates changes in aged neurogenic niches: fewer activated neural stem cells, alterations in endothelial cells and microglia, and an influx of T cells. These brain-resident T cells are clonally expanded and distinct from those in the blood, suggesting potential exposure to specific antigens. These brain T cells produce interferon-γ, impacting a subset of neural stem cells that exhibit a strong interferon response, leading to reduced proliferation in vivo. The study demonstrates that T cells can hinder neural

medRxiv preprint doi: https://doi.org/10.1101/2024.01.18.24301491; this version posted January 18, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

			age-related changes at the level of single cells.					within living organisms.		stem cell proliferation through interferon-γ secretion, observed in both co-cultures and in vivo.
Fabricio, et al., (2020)	Frailty and Cognitive Decline	https://doi.or g/10.1016/j.tr sl.2020.01.0 02	To assess existing evidence linking frailty and cognitive impairment, explore potential biological connections between the two conditions, and suggest therapeutic strategies that could address both issues together.	Human	Biological processes	Non- systematic Review	Frailty and cognitive impairment share similar mechanisms such as chronic inflammation, mitochondrial dysfunction, and oxidative stress. Clinical conditions that increase risk for both frailty and cognitive decline likely have common risk factors and biological mechanisms.	Shared mechanisms	N/A	List of shared mechanisms, possible evidence for hypothalamic-pituitary-adrenal (HPA) axis hormones, particularly corticosteroid metabolism and diurnal patterns. Evidence for shared epigenetics is less clear.
Fielder, et. al, (2020)	Anti- inflammatory treatment rescues memory deficits during aging in nfkb1-/- mice	https://doi.or g/10.1111/ac el.13188	To investigate the impact of inflammagei ng on cognitive decline	mice with genetically enhanced NF-κB activity	Inflamma geing	Genetically enhanced NF- κB activity	Neuroinflamma tion in hippocampus and cerebellum and early onset memory loss	Persistent inflammation and elevated systemic inflammation biomarkers characterise various neurodegenera tive diseases and are linked to age-related cognitive decline. Suggests potential association with increased	Memory loss, neuroinflammat ion, senescent cells in the hippocampus and cerebellum	Chronic inflammation is a major driver of the cognitive decline observed during ageing

<u>г</u>										
								risk of		
								dementia.		
Flowers, et	NT-020	https://doi.or	То	Rats	Neural	Gene PCR		NT-020	β-catenin	After giving NT-020 to both
al., (2015)	treatment	<u>g/10.1186/s1</u>	investigate		stem	arrays and		activates	labelling (in	young and aged rats, there was
	reduces	2974-015-	the impact of		cells,	immunohistoc		oxidative stress	nucleus, cells,	an increase in the presence of
	inflammation	0395-4	dietary		neurogeni	hemistry.		response	microglia, or	certain molecules (β-catenin,
	and augments		supplementa		c niche,	-		pathways and	astrocytes),	HO-1, and Nrf2) within cell nuclei
	Nrf-2 and Wnt		tion with NT-		inflammati			supports pro-	RT-PCR of	in the SGZ and SVZ areas.
	signaling in		020 on		on			neurogenic	genes involved	Among the cells, NeuN-positive
	aged rats		inflammation					gene	with	ones in aged rats exhibited more
	-		and					expression in	inflammation in	nuclear β-catenin, which wasn't
			oxidative					the	the	seen in doublecortin-labelled
			stress					hippocampus.	hippocampus	cells, microglia, or astrocytes.
			pathways in					This may		Genetic analysis of the
			neurons,					represent the		hippocampal tissue further
			astrocytes,					mechanism by		showed that NT-020 affected a
			and					which the NT-		significant portion of
			microglia					020 formula		inflammation-related genes.
			within the					enhances		
			neurogenic					performance in		
			niche of					learning and		
			young and					memory in		
			aged rats in					aged mice.		
			the							
			subgranular							
			zone of the							
			dentate							
			gyrus (SGZ)							
			and the							
			subventricul							
			ar zone							
			(SVZ).							
Foong, et,	Social	https://doi.or	To study how	Human,	Social	Secondary	The	Physical fitness		Older adults with reduced
al. (2021)	networks	<u>g/10.1186/s1</u>	social	n=2322	interactio	analysis of	moderating	is associated	of MMSE, 2	physical fitness showed lower
	moderate the	2877-021-	networks	(52.2%	n,	data from a	effect of social	with cognitive	min step,	cognitive function; those with
	association	<u>02617-9</u>	affect the link	female).	isolation,	cross-	networks on	function and	Lubben social	higher cognitive function and
	between		between	Community-	network	sectional	physical fitness	the size of an	network scale-	physical fitness had larger social
	physical fitness		physical	dwelling		study	and cognitive	individual's	6	networks but the link between
	and cognitive		fitness and	older adults		involving data-	function	social network		cognitive function and social
	function		cognitive	(Malaysia).		collection		moderates this		network size was not present in
	among		function to			using face-to-		interaction.		an adjusted model. However, the
	community-		develop			face				size of social networks
	dwelling older		understandin			interviews				moderated the connection

	adults: a population- based study		g of how social networks and physical fitness together influence cognitive function.							between cognitive function and physical fitness.
Fostinelli, et, al. (2022)	The Impact of Nutrition on Cognitive Performance in a Frail Elderly Population Living in Northern Italy	https://doi.or g/10.1080/27 697061.2022 .2084180	To assess the connection between nutrition and cognitive performance among frail older people.	Human: 140 participants aged from 65 to 80∟years old (106 women and 34 men)	Nutrition, executive function	Structural equation modeling, Multiple Corresponden ce Analysis	Impact of the Mediterranean diet on cognitive performance in a frail older population	Indications of a link between good nutritional status (linked to high adherence to the Mediterranean Diet) and cognitive performance among non- clinical older individuals in Northern Italy.	Verbal Fluency; Attention/execu tive function; Memory.	54% of participants displayed medium-high adherence to the Mediterranean Diet (MD), and only 4% were at risk of malnutrition. The variable "Nutrition" showed a significant connection (p∟<∟0.001) with the cognitive domain "Attention/executive function." Improved nutritional status was directly linked to better performance in the "Attention/executive function" domain.
Furtado, et, al. (2020)	Emotional Well-Being and Cognitive Function Have Robust Relationship with Physical Frailty in Institutionalize d Older Women	https://doi.or g/10.3389/fp syg.2020.01 568	To investigate the relationship between physical frailty and psychologica I well-being dimensions in older women in long term care institutions.	Human, n=358 (100% female), aged >75 years, institutionalis ed. Excluded musculoskel etal and mental disorders (inc. dementia), Portugal	Emotional well- being, self- perceptio n, happiness	Cross- sectional observation study.	Psychological well-being (cognitive function, mood states, self- perception and emotional well- being) as a predictor of physical frailty	Frailty is linked to cognitive function as well as other measures of psychological well-being.	Fried's frailty phenotype used to classify as pre-frail, frail or non-frail. Psychometric tests, sociodemograp hic profile, health profile	The study identified that self- perception (attitude towards ageing) and emotional well-being (subjective happiness) were separate negative factors linked to PF. Global cognitive performance also had an association with PF.
Gabelle et al., 2017	Excessive Sleepiness and Longer Nighttime in	https://doi.or g/10.3389/fn agi.2017.003 12	To identify self-reported sleep-wake disturbances	Human, n=479 (67.9% female),	Sleep	Longitudinal study	Association of sleepiness with cognitive decline in frail	Sleepiness and fatigue are associated with cognitive	MMSE score, cognitive composite score, sleep	Participants who experienced decline in MMSE scores reported more fatigue symptoms. Those with a reduction in their cognitive

	Bed Increase the Risk of Cognitive D ecline in Frail Elderly Subjects: The MAPT-Sleep Study		that could potentially raise the risk of cognitive decline in frail individuals over a one- year period.	aged ≥70 years, frail, community- dwelling, no dementia or MMSE <24			patients	decline in frail patients	questionnaires	composite scores over 2-3 years tended to spend more time in bed (over 8.5 hours) compared to those without such a decline. Participants who showed both MMSE score decline and excessive daytime sleepiness (EDS) reported more fatigue symptoms, longer daytime sleep, increased napping, more insomnia, and other sleep- related disorders compared to those without EDS.
Gaffney, et, al. (2018)	Greater loss of mitochondrial function with ageing is associated with earlier onset of sarcopenia in C. elegans	https://doi.or g/10.18632/a ging.101654	To examine the relationship between mitochondria I content, mitochondria I function, and sarcopenia	C.elegans	Mitochon dria, sarcopeni a	Imaging, movement assays	Mitochondrial and sarcomere structure and mitochondrial function's association with decline in movement	Mitochondrial function and structure is more associated with movement decline than sarcomere structure	Swim assays, lifespan, β- galactosidase activity	Ageing in C. elegans muscle leads to elevated protein degradation, diminished mitochondrial function, and disturbances in both mitochondrial and sarcomere structure. The decline in movement as organisms age is linked to disruptions in the mitochondrial network.
Gale, et al., (2018)	DNA methylation and the epigenetic clock in relation to physical frailty in older people: the Lothian Birth Cohort 1936	https://doi.or g/10.1186/s1 3148-018- 0538-4	The study aims to explore the connection between epigenetic status and PF in a sizable cohort of individuals aged 70.	Human, 791 people aged 70 years from the Lothian Birth Cohort 1936	Epigeneti cs	DNA methylation measurement in blood	DNA methylation- based age acceleration measures, extrinsic and intrinsic epigenetic age acceleration can be used to estimate biological age.	Biological mechanisms of frailty in older individuals are not well understood, but there is some evidence indicating potential alterations in DNA methylation patterns.	DNA methylation	Individuals with higher extrinsic epigenetic age acceleration, indicative of being biologically older, are more prone to PF. Further research is needed to explore whether epigenetic age acceleration plays a causal role in the development of physical frailty
Garcia, et. al, (2022)	Number of ideas in spontaneous speech predicts cogniti ve impairment	https://doi.or g/10.1080/13 607863.2021 .1998347	To examine how linguistic patterns in spontaneous speech at	Human, aged ≥65 years at baseline, Brazil, n=124	Speech, linguistics , ideas	Longitudinal study	The quantity of ideas expressed in spontaneous speech may be linked long	Higher baseline counts of ideas and words in spontaneous speech may be linked to a	MMSE, number of words and ideas in response to question 'what is healthy	Older adults who developed cognitive impairment or frailty at follow-up had fewer ideas (but not fewer words) in their spontaneous speech. Linguistic characteristics could be useful

Mesa, et, al. (2014) al. (2014) al. (2014)exércise syneuen.201 (al. 02017)grinestigate the waysi (403.021)(Tg) mice mice physical exercise of firs neuroprotecti on in a postmenopa usal animal model(Tg) mice neuroprotecti on in a postmenopa usal animal model(Tg) mice neuroprotection on in a postmenopa usal animal model(Tg) mice neuroprotection neuroprotection on in a postmenopa usal animal model(Tg) mice neuroprotection neuroprotection state(Tg) mice neuroprotection neuroprotection state(Tg) mice neuroprotection neuroprotection<		and frailty in community- dwelling older adults nine years later		the beginning of the study relate to cognitive impairment and frailty nine years later.				term to later cognitive impairment and frailty.	reduced risk of developing cognitive impairment and frailty.	ageing?', Fried's frailty phenotype	predictors of CI and PF.
Garner, et al, (2022)An observational cohort study of longitudinal impacts on frailty and well- being of COVID-19 lockdowns in older adults in England and SpainTo examine multidimensio aged ≥70 years in Spain. 24Frailty, physical activity, and severity and timeline of Covid-19 lockdowns in older adults in England and SpainTo examine multidimensio aged ≥70 years in Spain. 24Longitudinal studyReduced physical activity, and social mativity and well- being of COVID-19 lockdowns in older adults in England and SpainInttps://doi.or g/10.1111/hs comine intelation to severity and timeline of Covid-19Frailty, physical activity, and socialMultidimension al frailty, Age- friendly social activity, and social al ready frail.Frailty varied in relation to the severity of the lockdown contributing to a reduction or ocnsidered social relation to covid-19Frailty, physical activity, and social 	Mesa, et,	exercise neuroprotects ovariectomized 3xTg- AD mice throu gh BDNF	<u>g/10.1016/j.p</u> syneuen.201	To investigate the ways in which physical exercise offers neuroprotecti on in a postmenopa usal animal		inflammati		impacts of physical exercise in ovariectomized	exercise protects against frailty and cognitive	latency of rearing, corner test, open field test, dark-light box test, Morris	sedentary transgenic (Tg) mice. Exercise improved grip strength in both groups. Tg mice's response to certain tasks, like latency of rearing and number o rearings, improved with exercise Ovariectomized Tg mice exhibited poorer performance in the hole-board test, but exercise prevented this. Exercise increased BDNF levels across a groups, including Tg and
	,	observational cohort study of longitudinal impacts on frailty and well- being of COVID-19 lockdowns in older adults in England and	g/10.1111/hs	multidimensi onal frailty (including cognition) in relation to severity and timeline of Covid-19	aged ≥70 years in England & Spain. 24 considered high risk in relation to Covid-19 related to pre-existing co-	physical activity, covid-19 lockdown	0	physical activity and social engagement will increase measures of multidimension	at-home orders will impact frailty for older adults, some of whom may be already frail. Potential modifiers included coping resources, physical activity, and social	al frailty, Age- Friendly Environment Assessment Tool (AFEAT); Quality of Life (CASP12); social isolation & Loneliness (shortened	Frailty varied in relation to the severity of the lockdown conditions, with physical activity contributing to a reduction of this effect, and initial level of frailty

(2020)	d its Associated Factors of Physical Frailty and Cognitive Impairment: Findings from the West China Health and Aging Trend Study (WCHAT)	g/10.1007/s1 2603-020- 1363-y	associations between risk factors including demographic and medical characteristi cs and different patterns of PF and CI, which might improve understandin g of their aetiology, and potentially detect targets for intervention.	N=4103, aged ≥60 years, Mean age 67.8, 58.3% women, from West China Health and Aging Trend (WCHAT) study.	psycholog ical, gender, health predictors /isk factors; demograp hics; education , inequalitie s	sectional observational study	demographics and health as risk factors	modifiable risk factors will potentially enable identification of interventions	Short Portable Mental Status Questionnaire (SPMSQ) for cognition.	CI only and both PF and CI (i.e. CF), but men more likely to show PF only. CI and PF together (CF) had higher prevalence in those who were single, with lower education, and risk of malnutrition. Large variability amongst different Chinese ethnicities, possibly related to popular cultural activities (dance) and to education differences. CF individuals had the highest prevalence of underweight (10.3%), depression (53.9%), difficulty initiating sleep (17.1%), ADL impairment (43.6%), and risk of malnutrition (63.8%)
Gelfo, et al., (2018)	The Neuroprotectiv e Effects of Experience on Cognitive Functions: Evidence from Animal Studies on the Neurobiologica I Bases of Brain Reserve	https://doi.or g/10.1016/j.n euroscience. 2017.07.065	Review on the biological effects of environment al enrichment in animal models	Various animal models	Environm ental enrichme nt	Review	Environmental enrichment	Animal studies show that environmental enrichment induces brain rearrangement s at both cellular and molecular levels.	N/A	Environmental enrichment has positive effect on neurogenesis, gliogenesis, angiogenesis, synoptogenesis
Gifford, et al., (2019)	Frailty Is Related to Subjective Cog nitive Decline in Older Women without Dementia	https://doi.or g/10.1111/jgs .15972	To investigate how frailty relates to specific indices of frailty (walking speed, grip	Human, N=306 (42% female), community dwelling, aged >60, Normal cognition n = 174; mild	Subjectiv e cognitive decline (SCD); executive function; planning; sex	Cross- sectional study	Associations of SCD with objectively assessed cognitive impairment and frailty	SCD is recognised as a precursor to objectively measured impairment. Its role in the connection with frailty could aid	Global cognition (MOCA), SCD (eCog); grip strength, gait speed, composite frailty.	Grip strength was linked to executive function SCD, while gait speed was connected to memory-based and overall SCD. This suggests potential shared neurological processes. The connection between SCD and frailty was stronger in women, possibly due to frailty severity.

			strength), subjective cognitive decline, and objectively assessed cognitive function.	cognitive impairment (MCI) n = 132.	difference s			in identifying shared pathways between CI & PF.		Common mechanisms, possibly involving vascular changes, are proposed.
Gine- Garriga, et al., (2021)	Is loneliness a predictor of the modern geriatric giants? Analysis from the survey of health, ageing, and retirement in Europe	https://doi.or g/10.1016/j. maturitas.20 20.11.010	To analyse loneliness as a predictor of the modern Geriatric Giants in European older adults, using a longitudinal design of nationally representativ e data.	Human, age ≥65 years, n=35,196, over 10 countries in Europe (SHARE data). Sub samples for Fatigue; physical inactivity; sarcopenia; anorexia of ageing; and cognitive impairment.	Lonelines s, social interactio n	Longitudinal study	Role of loneliness in predicting cognitive impairment, sarcopenia, physical inactivity and fatigue.	Loneliness can predict cognitive impairment but not sarcopenia. Several other factors predict these two conditions.	Revised University of California at Los Angeles Loneliness scale, SHARE protocol, grip strength, frailty questions	Loneliness predicted fatigue, physical inactivity, and cognitive impairment. Cognitive decline was predicted by age, sex, education, chronic diseases, depression, and loneliness. Age, sex, education, chronic diseases, and depression were predictive factors for sarcopenia.
Giorgetti, et al., (2019)	Modulation of Microglia by Voluntary Exercise or CSF1R Inhibition Prevents Age- Related Loss of Functional Motor Units	https://doi.or g/10.1016/j.c elrep.2019.1 0.003	The ageing process leads to microglia- induced neurotoxicity in the spinal cord, which negatively affects motor neurons, causes axon retraction from skeletal muscle, and contributes to motor unit loss.	C57BL/6J wild-type male mice	Motor neuron, muscle innervatio n, exercise, neuromus cular junction	qPCR, flow cytometry, RNA seq	CSF1R inhibitor, voluntary exercise	The significance of motor neurons in age-related issues at the neuromuscular junction (NMJ). Activated microglia primarily contribute to the damage experienced by motor neurons.	Number of motor units, gene expression changes	Aged microglia display an activated state impacting motor neuron (MN) well-being. MN damage contributes to age- related issues at the neuromuscular junction. The decline in motor units (MUs) due to ageing results in muscle innervation loss. Controlling microglia through exercise or CSF1R inhibition helps maintain motor units in old mice.

Gómez & Zapico. (2019)Cognitive Decline, Neurodegener ative Diseases and Nutrition Interventionsnutritional factors that have been studied in relation to the potential development of frailty, withvitamins, diet, gut microbiot a, antioxidanvarious antioxidants (e.g. flavonoids, vitamins), mediterranean diet, fruits anddietary components are linked to CF and neurodegenera tion, suggesting the potential forcognitive function Mediterranean di frailty and CI risk. deficiency is linked to microbiot a, antioxidantvarious antioxidants (e.g. flavonoids, vitamins), mediterranean diet, fruits and potential forcognitive function Mediterranean di frailty and CI risk. deficiency is linked to microbiot a, antioxidan tion, mediterranean diet, fruits and potential forvarious distary components are linked to CF and neurodegenera tion, potential fordietary cognitive function Mediterranean discussed in relation	al., (2019) 	Body Weight Variation Patterns as Predictors of Cognitive D ecline over a 5 Year Follow- Up among Community- Dwelling Elderly (MAPT Study)	https://doi.or g/10.3390/nu 11061371	To investigate if a frailty indicator, weight loss in older individuals, is linked to cognitive decline and hippocampal atrophy (loss of hippocampal volume), regardless of BMI.	Human, N=1394, aged >70 years, community dwelling, no dementia (MMSE >24), with slow gait speed (<0.8 m/s), or limitation in at least one IADL or spontaneous memory complaints	Weight loss, hippocam pal volume, hipppoca mpal atrophy	Secondary analysis of data from intervention population followed up over 5 years, observational.	BMI changes in older age may predict CI and PF outcomes. Being underweight or experiencing weight loss in later life is linked to cognitive impairment and frailty/functiona I disability. The hypothesis suggests that weight loss might be connected to hippocampal atrophy regardless of BMI.	Weight loss is associated with brain changes associated with cognitive impairment and frailty	Free and cued recall, orientation items of the MMSE, DSST (Processing speed and executive function), and Category Naming Test; hippocampal volume at yr 1 and 36 months later	Cognitive scores decreased in groups, particularly in the wei loss group (adjusted model) groups exhibited hippocampa atrophy, but there was no pronounced increase in the weight loss group. Unintention weight loss is linked to lean m reduction, tied to immune sys changes (ageing-related decl and chronic inflammation). Th relationship between frailty, sarcopenia, and immunosenescence contribut to cognitive decline. Understanding mechanisms triggering weight loss is crucia with factors like depression, cancer, and gastrointestinal disorders being possible caus	ght All I nal nass tem ne e es
focus on cognitive decline. well as gut microbiota on frailty, cognitive decline and neurodegenera tion modifications as interventions.	Gómez & (Zapico. [2019) a a l	Cognitive Decline, Neurodegener ative Diseases and Nutrition Interventions	<u>g/10.3390/ij</u> <u>ms20112842</u>	nutritional factors that have been studied in relation to the potential development of frailty, with a specific focus on cognitive decline.		vitamins, diet, gut microbiot a, antioxidan ts	systematic Review	various antioxidants (e.g. flavonoids, carotenoids, vitamins), mediterranean diet, fruits and vegetables as well as gut microbiota on frailty, cognitive decline and neurodegenera tion	dietary components are linked to CF and neurodegenera tion, suggesting the potential for dietary modifications as interventions.	N/A Dedial.orm	Balanced diets help sustain cognitive function, while Mediterranean diets can redu frailty and CI risk. Vitamin D deficiency is linked to both cognitive deficits and frailty. Other dietary components we discussed in relation to their impact on cognition.	

al., (2018)	Age-Related Regenerative Decline and Enhances Cognitive Function in the Adult Mouse Brai	<u>g/10.1016/j.c</u> <u>elrep.2018.0</u> <u>2.001</u>	Tet2 can counteract age-related decline in neurogenesi s and improve cognitive function in the hippocampu s of adult mice.	month-old), mature (6- monthold), and aged (18-month- old) male C57BL/6 mice	cs, DNA methylatio n, neurogen esis	testing, mRNA levels, immunohistoc hemistry	molecular mediator of neurogenic rejuvenation	hydroxymethyl ation controls the decline in regenerative abilities associated with aging in the hippocampus. This has functional implications for revitalizing neurogenesis.	water maze and contextual fear- conditioning paradigms to examine mRNA levels of Tet2 and neurogenesis.	expression in the aged hippocampus. The study identified 345 lost differentially 5- hydroxymethylated regions (DhMRs) with age, while none were gained. Neurogenesis and Tet2 expression dropped sharply in mature adults by 6 months of age. Disrupting Tet2 in the DG reduced NPCs, newly born neurons, and mature differentiated neurons. Inhibiting Tet2 impaired spatial learning and memory performance in both short-term and long-term testing.
Gross, et, al. (2016)	Declines and Impairment in Executive Function Predict Onset of Physical Frailty	https://doi.or g/10.1093/ge rona/glw067	Does pre- clinical cognitive impairment contribute to the onset of physical frailty? Is a decline in executive functioning more closely linked to frailty onset than memory or overall cognitive performance ?	Human, N=331, 100% female, <24 MMSE excluded, frail excluded. aged 70-79 years.	Pre- clinical, non-frail, longitudin al, executive function, global cognition	Longitudinal observational cohort, 9 years	Specific domains of cognitive function (specifically executive function) as a precursor of both cognitive impairment and frailty	While executive function has been connected to frailty, mobility, and balance, its role in the later onset of frailty remains uncertain.	Fried frailty, Cognitive measures were TMT A&B for processing speed and EF, and Hopkins verbal learning test for immediate and delayed recall.	Cognitive impairment occurred before physical frailty onset more frequently than the reverse. Executive function (EF) impairment was the most potent predictor of frailty onset among cognitive variables, with slower decline in EF linked to a lower likelihood of frailty onset. Findings propose separate underlying issues for prodromal Alzheimer's disease and physical frailty, potentially related to vascular problems. Inflammation is one of the suggested mechanisms.
Hahn, et al., (2020)	DNA Methyltransfer ase 1 (DNMT1) Function Is Implicated in the Age- Related Loss of Cortical	https://doi.or g/10.3389/fc ell.2020.006 39	To examine whether age- related deficiencies in PV interneurons result from DNMT1- dependent	C57BL/6 wild-type mice and transgenic mice	Epigeneti cs, DNA methylatio n, DNMT1	Behavioural (ladder running test), In situ hybridisation, RNAseq	DNA methylation on parvalbumin (PV) positive interneurons	DNMT1 indirectly impacts interneuron survival in aged mice by influencing the proteostasis network over	Survival of neocortical interneurons, somatomotor performance, synapse- related gene expression, transcriptional	DNMT1 plays a role in decline of cortical inhibitory interneurons due to ageing. Mice with conditional Dnmt1 deficiency exhibit enhanced somatomotor abilities and reduced ageing- related transcriptional alterations. Decrease in the proteostasis network, responsible for

	Interneurons		transcription al control.					their lifespan.	alterations	effectively clearing malfunctioning proteins, is implicated in age- and disease- related neurodegeneration.
Halil, et al., (2015)	Cognitive aspe cts of frailty: Mechanisms behind the link between frailty and cognitive i mpairment	https://doi.or g/10.1007/s1 2603-014- 0535-z	Clarifying the connection between cognition and frailty could offer novel approaches for preventing and managing these conditions through interventions	Human	Vascular risk, Nutrition, hormonal mechanis ms.	Non- systematic Review	Vascular risk factors, Insulin resistance, vitamin D deficiency, hormonal mechanisms, inflammation, nutrition	Underlying mechanisms of the link between frailty and cognitive decline ,ay be associated with vascular changes, hormones, vitamin D, inflammation, insulin resistance.	N/A	The existing data supports a strong link between frailty and cognitive impairment, with shared mechanisms such as vascular and hormonal changes, nutrient deficiencies (like vitamin D and B12), inflammation, and insulin resistance.
Hou, et al., (2022)	Mediating Effect of Loneliness in the Relationship between Depressive Symptoms and Cognitive Frailty in Community- Dwelling Older Adults	https://doi.or g/10.3390/br ainsci12101 341	To examine the mediating role of loneliness in the effect of depression on CF	Human: 527 older adults aged ≥ 60	Depressio n, mediation	Cross- sectional observational study	Depression and loneliness are predictive of each other and affect both frailty and cognitive decline. Loneliness may be one way that depression impacts CF	Loneliness may play an important part in the impact of depression on risk of CF	FRAIL scale for frailty and MMSE for cognition. GDS-5 for depression and 8 item UCLA for loneliness.	37% of the effect of depression on CF was mediated by loneliness. The direct effect of depression was no longer significant once loneliness was in the model.
Howrey, et al., (2020)	Trajectories of Frailty and C ognitive Declin e Among Older Mexican Americans	https://doi.or g/10.1093/ge rona/glz295	To explore variations in frailty and cognitive function changes among older adults of Mexican	Human, N=1338, 60.1% female, people of Mexican origin living in US (57% born in US).	Longitudi nal, transition, trajectory, decline, education , diabetes, church	Longitudinal observational study over 18 years	Factors predicting joint high frailty and cognitive decline over time	The model of joint decline in both frailty and cognition could provide insights into the heterogeneity of decline in older age.	Modified Fried frailty (no physical activity indicator); MMSE for cognition	Factors such as low education, baseline diabetes, overweight or obesity, arthritis, and hypertension were linked to higher odds of being in the combined group of frailty and cognitive decline. Attending church was associated with reduced odds of being in this

Hu, et al. (2021)	Nutritional status mediates the relationship between sarcopenia and cognitive i mpairment: findings from the WCHAT study	https://doi.or g/10.1007/s4 0520-021- 01883-2	origin over time. Hypothesise d that distinct sub- groups will display diverse rates of frailty and cognitive decline changes and health conditions will largely account for these differences. To investigate whether nutritional status plays a mediating role in the connection between sarcopenia and cognitive impairment.	Human, N=3810 (3147 (82.6%) non- sarcopenic, 387 (10.2%) sarcopenic, and 276 (7.2%) severely sarcopenic); mean age 61.94 years Human,	attendanc e Sarcopeni a, low muscle strength; low physical performan ce.	Cross- sectional analysis of cohort baseline data	Malnutrition is linked to cognitive impairment and often with sarcopenia.	Sarcopenia (decreased muscle mass, muscle strength, and function), is often an important component of frailty. Sarcopenic patients are vulnerable to developing cognitive impairment Good	Muscle mass, grip strength and SPPB; Mini Nutritional Assessment Short Form (MNA-SF); Chinese version of the Short Portable Mental Status Questionnaire (SPMSQ) Mostly	group. Those in the non-frail group had a 30% chance of being in a moderately declining cognitive group and no chance of being in a rapidly declining cognitive group. Severe sarcopenia was associated with cognitive impairment, with malnutrition mediating this relationship.
al., (2023)	Prediction model for cognitive frailty in older adults: A systematic review and critical appraisal Frailty severity	https://doi.or g/10.3389/fn agi.2023.111 9194 https://doi.or	To review prediction models of CF (aimed at identifying people at risk for CF) To explore	Human, multiple studies Human,	Review, predictor model	Review, descriptive analysis and appraisal , Prediction models.	Range of predictors important to enable eventual intervention	Good prediction models would help identify risk of CF earlier, useful for intervention Better dietary	Mostly potentially reversible CF (MCI + Frailty)	N of predictors range in number between different models but most included age , depression, physical exercise, education and chronic disease

al. (2021)	and cognitive i mpairment associated with dietary diversity in older adults in Taiwan	<u>g/10.3390/nu</u> <u>13020418</u>	the connection between CF and dietary diversity in older adults.	n=1115, community- dwelling adults aged ≥65, dementia excluded, Taiwan. Aberrant energy intakes excluded		sectional analysis of 2014-2016 Nutrition and Health Survey in Taiwan	may be associated with risk or presence of CF	diversity May be protective against CF	FRAIL scale, MMSE, 24h dietary recall questionnaire, 79-item simplified food- frequency questionnaire (SFFQ), (SF- 36)	reduced dietary diversity scores, particularly for specific food categories: dairy products, whole grains, vegetables, fruit, meat, nuts, tea, and coffee. Among those with frailty and normal cognition, different food consumption patterns were observed. Higher BMI was associated with elevated risk of frailty.
Hwang, et al., (2023)	Predictors of incident reversible and potentially reversible cognitive frailty among Taiwanese older adults	https://doi.or g/10.1186/s1 2877-023- 03741-4	To identify predictors of CF over a two-year period, distinguishin g between reversible and potentially reversible forms, with a particular focus on gait-related factors.	Human, N= 417, 56.4% female	Gait speed variability, reversible CF, potentially reversible CF, Depressio n	Prospective cohort study (longitudinal)	Gait variability and balance may be indicators of severity of CF	Gait variability and balance may be useful predictors to differentiate between reversible and potentially reversible CF	Global cognition, DSST, CDR, depressive symptoms, Fried's frailty phenotype, balance confidence, walking speed, balance measures.	Reversible cognitive frailty is linked to older age and decreased balance confidence. Potentially reversible cognitive frailty is linked with older age, female gender, reduced balance confidence, lower overall cognitive function, depressive symptoms, slower walking speed, and increased variability in double-support time.
Inoue, et al., (2022)	Association between osteosarcopeni a and cognitive frailty in older outpatients visiting a frailty clinic	https://doi.or g/10.1016/j.a rchger.2021. 104530	To establish a connection between osteosarcop enia and CF	Human, Aged ≥ 65, n=432 (69% female), <24 MMSE.	sarcopeni a, osteosarc openia	Cross- sectional study	Osteosarcopen ia (conjunction of osteoporosis and sarcopenia) as a predictor of CF	Osteosarcopen ia and CF are both risk factors for falls but the association between the two has not yet been researched.	CF assessed with Japanese version of CHS frailty index and MMSE ≥ 24 points and Japanese MOCA ≤ 25 points. Osteoporosis & Sarcopenia diagnosed according to clinical standards	Osteosarcopenia is linked to CF more strongly than osteoporosis or sarcopenia alone. Decline in visuospatial abilities/executive functions and orientation are tied to osteosarcopenia.

Ismail et. al., (2015)	The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence	https://doi.or g/10.1371/jo urnal.pone.0 125312	To investigate the role of reduced insulin signalling on locomotor and decision- making behaviour in flies	Drosophila	Insulin signalling, Drosophil a	Behavioural assays, lifespan studies on drosophila.	Locomotor and decision making in flies in response to reduced IIS in all cells vs. neurons only	Reduced IIS extends lifespan in flies but little is known about its role in the ageing neurons	Negative geotaxis, exploratory walking and lifespan.	Findings suggest that improved negative geotaxis senescence in long-lived flies with systemic IIS reductions is attributed to age- related effects of reduced IIS outside the nervous system. Negative or neutral impacts on locomotor function with neuron- specific reduction (elavGAL4/UAS-InRDN), indicates that reduced IIS may not be beneficial to the neural circuitry despite extending
Ismael, et al., (2021)	Thioredoxin interacting protein regulates age- associated neuroinflamma tion.	https://doi.or g/10.1016/j.n bd.2021.105 399	To investigate if the TXNIP/NLR P3 inflammaso me pathway is associated with dementia.	Mice, male and female young (2 mos, 22–24 g), middle aged (12 mos, 30–32 g) and aged (18 mos, 32– 35 g)	Neuroinfla mmation	Genetic ablation of TXNIP on neuroinflamm ation in aged mice.	TXNIP upregulation and NLRP3- inflammasome over-activity	Excessive sensitivity of the immune system is thought to play a role in cognitive decline in older individuals. Evidence suggests that activation of the NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome is closely tied to age-related chronic inflammation and cognitive decline in old age.	Behavioural tests (novel object recognition, watermaze, catwalk) RT- PCR	lifespan. TXNIP deletion, aligning with the free radical theory of ageing, has been linked to extended lifespan. Aside from its pro-oxidant role, TXNIP connects age-related neuroinflammation to resistance in insulin receptors concentrated in brain regions crucial for cognition.
ltokazu, et al., (2022)	Relationship between Eye Frailty and Physical,	https://doi.or g/10.3390/ije rph19201301 1	To assess association between eye frailty and	Human (women only), n=192, Japan	Eye health	Cross- sectional	Eye health	Eye health as a marker of potential social withdrawal,	Eye frailty assessed by self-assessed questionnaire	Eye frailty was associated with social withdrawal, cognitive function and depressive mood.

	Social, and Psychological/ Cognitive Weaknesses among Community- Dwelling Older Adults in Japan		physical, social, psychologica I, cognitive frailty					cognitive decline.	covering symptoms of age-related eye diseases (e.g. cataracts, age- related macular degeneration, dry eye)	
Izquierdo, et, al. (2021)	International Exercise Recommendati ons in Older Adults (ICFSR): Expert Consensus Guidelines	https://doi.or g/10.1007/s1 2603-021- 1665-8	To fill research gaps and enhance the utilisation of exercise/phy sical activity for preventive and therapeutic purposes.	Human	Exercise	Practice guideline	The effect of exercise in older adults, including in cognition and frailty	Physical activity has the potential to mitigate cognitive decline and frailty, warranting its prescription for older individuals.	N/A	Exercise programs that combine various components and incorporate cognitive tasks can effectively enhance frailty indicators and cognitive function. Low physical activity and excessive sedentary behaviour is common in ageing and contributes to sarcopenia and frailty.
Jenkins, et al, (2020)	Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging Caenorhabditis elegans	https://doi.or g/10.7554/eL ife.56580	To show that glutathione depletion and increased ferrous iron happen in late life in C. elegans, preparing cells for ferroptosis.	C. elegans	Iron imbalance	Experimental model organism study	Age-related cell death	Replication, detoxification, and a cancer- protective type of cell death called ferroptosis relies on iron metabolism.	Lifespan, healthspan	Preventing ferroptosis, either by stopping lipid peroxidation or reducing iron retention, reduces age-related cell death and significantly extends lifespan and healthspan.
Ji, et al., (2018)	A New Measure for Neural Compensation is Positively Correlated with Working Memory and Gait Speed	https://doi.or g/10.3389/fn agi.2018.000 71	To investigate the hypothesis that a greater number of neural networks being	Human: 26 retired professors and spouses mean age 73.23 years.	Neural compens ation, cognitive reserve, working memory, gait speed	Cross sectional functional MRI observational study	Mechanisms of cognitive reserve relating to neural compensation. Underlying mechanisms of the link between	Neural compensatory activity could be a useful measure of cognitive reserve that links physical activity with cognitive	Gait speed (6 minute walking test); working memory (digit span), executive function and speed of processing (TMT A&B,	Relationships between working memory, gait speed and quantitative measure of neural compensatory activations were found.

Jia, et. al, (2022)	Mediating effects of cognitive reserve on the relationship between frailty and cognition in older people	https://doi.or g/10.1007/s4 1999-022- 00703-8	recruited in challenging tasks reflects compensator y capacity (cognitive reserve), and that this may be related to amount of damage and to performance , and be affected by physical activity and relate to gait speed. Does cognitive reserve mediate the association between frailty and cognitive	Human, N= 3122, excluded those with dementia; 53.6% female	Cognitive reserve, mediation	Cross- sectional cohort study	physical function and cognitive performance, proposing cognitive reserve (neural compensatory capacity) could be one link.	function. Frailty could weaken the effect of cognitive reserve by its biological impact on neural	DSST), memory (Rey Auditory Verbal Learning Test (RAVLT), Logical memory subtest of the Wechsler Memory scale (LMT) Cognition: Global cognition (CAMCOG), Frailty: 31 item Frailty index; cognitive reserve:	Cognitive reserve, along with social and cognitive engagement, has a significant indirect effect on global cognitive function, accounting for 20% and 13% of the relationship with frailty, respectively. However, the study couldn't determine the
	without dementia		impairment?					plasticity.	combination of education, occupational attainment, & cognitive and social engagement.	negative impact of frailty on cognitive reserve.
Jiang, et al., (2022)	Role of a Urinary Biomarker in the Common Mechanism of Physical Performance and Cognitive	https://doi.or g/10.3389/fm ed.2022.816 822	To investigate shared pathophysiol ogical mechanisms and biomarkers	1,352 healthy participants 881 women [65.2%]). Mean age 62.9 years (range: 40–	Biomarker , oxidative stress, Urine.	Cross- sectional analysis of cohort data	Brain susceptibility to oxidative imbalance, driven by high energy demand, oxygen	Oxidative stress has been related separately to both frailty and AD/MCI.	8-oxoGsn in urine (marker of oxidative stress). Used grip strength, walking speed and chair stands for	Elevated urinary 8-oxoGsn is linked to lower physical performance and poorer cognitive function, and this association remains significant after adjusting for various factors, including age. Urinary 8-oxoGsn may be valuable marker for early

	Function		for frailty and cognitive impairment; specific focus on biomarkers of oxidative stress in urine.	94 years).			consumption, and lack of antioxidant enzymes, can impact neurotransmis sion, potentially linked to Cl.		physical performance and MOCA for CI	detection of MCI in frail individuals, and it could be used to assess the effectiveness of interventions targeting oxidative stress.
Jing, et al. (2020)	The mediating effect of psychological distress on cognitive fu nction and physical frailty among the elderly: Evidence from rural Shandong, China	https://doi.or g/10.1016/j.j ad.2020.03.0 12	To investigate whether psychologica I distress (PD) acts as a mediator between cognitive function.	Human, N=3242, aged >60 years, 53.5% female, living in rural communities in China	Psycholo gical distress, depressio n, anxiety, mediation analyses	Cross- sectional observational study	PD may connect frailty and Cl, characterised by emotional suffering resulting from stressors that hinder daily activities.	PD is associated with both frailty and CI, with longitudinal /prospective evidence for relationship with CI and frailty individually	Fried frailty, MMSE, Kessler Psychological Distress Scale	PD links to frailty and cognitive impairment (CI) even after adjusting for confounding factors. PD explains part of this relationship (11%), suggesting it contributes to their co- occurrence and might respond to intervention.
Karoglu- Eravsar, et al., (2021)	Environmental enrichment applied with sensory components prevents age- related decline in synaptic dynamics: Evidence from the zebrafish model organism	https://doi.or g/10.1016/j.e xger.2021.11 1346	To understand molecular mechanisms behind successful ageing, considering factors such as environment al enrichment (EE) that affect the ageing brain's resilience and might support cognitive	Zebrafish (93 wild-type zebrafish (AB strain), including young (6 month), and old (27 month) male and female animals.	Environm ental enrichme nt, synaptic dynamics	Enrichment of the environment of individual glass aquaria by adding gravel, swimming tubes, and artificial plants. Mature zebrafish were randomly placed in either an enriched or a barren environment.	Environmental enrichment	The effect of environmental enrichment on brain weight and molecular pathways	Brain weight and molecular pathways	EE increases brain weight in old age without affecting BMIs. Levels of DCAMKL1, SYP, and GluR2/3 decline with age. EE can prevent the age-related decline in DCAMKL1, SYP, NR2B, and GEP levels. EE can alter the levels of glutamate receptor subunits differently in males and females. Aging increases oxidative stress markers, and EE does not seem to modulate these markers.

Kase, et al. (2019)	Involvement of p38 in Age- Related Decline in Adult Neurogenesis via Modulation of Wnt Signaling	https://doi.or g/10.1016/j.s temc.2019.0 4.010	function in older individuals. To examine mechanisms underlying progressive reduction in proliferation of neural stem and progenitor cells (NS/PCs) as a cause of decline in neurogenesi s with increasing age.	Mice (p38α CKO)	Neurogen ic niches, neurogen esis, NPCs	Experimental Model organisms study: Conditional Deletion of p38α	The role of p38 in neurogenesis	38 MAPK as a key factor in the proliferation of neural progenitor cells (NPCs) in adult neurogenic niches.	NPC proliferation	p38 MAPK signalling is important in sustaining neural progenitor cell (NPC) proliferation in the adult neurogenic niche influencing Wnt signalling modulation and contributing to decline in adult neurogenesis during ageing. Introducing p38α expression in NS/PCs within the subventricular zone restores NPC proliferation and prevents age-related SVZ atrophy.
Kaur, et, al. (2019)	Sleep quality mediates the relationship between frailty and cognitive d ysfunction in non-demented middle aged to older adults	https://doi.or g/10.1017/s1 0416102190 00292	Hypothesis: participants with a greater number of frailty symptoms would have poorer scores on cognitive tests and that this association would be mediated by sleep quality	Human, N=154, from a Registry of participants with subjective memory complaints and from community, aged 50-90 years (mean age 69.14). Excluded participants with history of major neurological (e.g. dementia) or psychiatric	Sleep disorders, mediation analyses; executive function	Cross- sectional analysis of cohort data	Sleep quality as a mediator in the relationship between CI and frailty, particularly in terms of exec function	Sleep quality is associated with frailty and Cl, specifically executive function. Mediation would imply that changes in cognitive function seen in frail individuals occur through poor sleep.	Fried frailty, Pittsburgh Sleep Quality Index, MMSE for global cognition, plus composite scores for tests in six cognitive domains: Learning; Delayed recall; Processing Speed; Executive Function; Language; Visuospatial Functioning	Direct relationships between frailty and Exec function. That for processing speed not sig when covariates controlled. Direct relationships between sleep and cognition for executive function and processing speed including once covariates controlled. Direct relationship between sleep and frailty. Mediation of sleep was sig for EF, processing speed delayed recall and learning. Suggests mechanism may be insulin resistance and oxidative stress that are affected by poor sleep.

Kelaiditi et al, 2013	Cognitive frailt y: rational and definition from an (I.A.N.A./I.A.G. G.) international consensus group	https://doi.or g/10.1007/s1 2603-013- 0367-2	To establish a definition of CF among older individuals, to support development of personalised preventive interventions for this condition.	disease or if MMSE <26 and/or very low education (<6 years) Human	Consensu s; definition; interventi on	Consensus workshop and systematic review	Multiple subclinical and clinical conditions seem to underlie both physical and cognitive age- related declines.	Physical impairments caused by cognitive decline, linked to known neurodegenera tive disorders, may be distinguishable from a possible new cognitive condition arising from physical frailty.	N/A	Various factors, such as depression, cardiovascular risk factors, genetic mutations (like aPOE4), and environmental factors (e.g., low education, unhealthy diet, low physical and mental activity), have been linked to both cognitive decline and physical frailty. These factors could contribute to hippocampal atrophy, MCI, and development or exacerbation of frailty. Oxidative stress plays a role.
Khezrian, et, al. (2019) Kim &	The association between polypharmacy and late life deficits in cognitive, physical and emotional capability: a cohort study	https://doi.or g/10.1007/s1 1096-018- 0761-2	Hypothesis: polypharmac y could be linked to greater impairment in physical, cognitive, and emotional functions (Trio of Impairment, TOI) in a typical ageing population, regardless of chronic health conditions. To examine	Human, 341 dementia- free members of the Aberdeen Birth Cohort, aged 63-68 years	Polyphar macy, comorbidi ties Sarcopeni	Cross- sectional analysis of cohort data	In later life, decrease in cognitive and emotional function often accompanies physical dysfunction, potentially explained by shared pathological pathways. Polypharmacy may contribute and be a valuable predictor.	Polypharmacy in older people might independently elevate risk of cognitive and physical decline, as well as frailty.	Polypharmacy, comorbidities, verbal memory, processing speed, spatial ability, non- verbal reasoning, HRQoL, walk time, levels of depression and anxiety (HADS). TIO assessed.	Polypharmacy's association with the TOI remained significant even after accounting for co- morbidity score and other variables. Polypharmacy mediated between comorbidities and TOI. Higher BMI was linked to increased impairment, while childhood IQ and educational qualification were negatively associated with TOI. The study suggests that addressing inappropriate polypharmacy could be a promising approach to mitigate impairment in older adults.

Won, (2019)	Associated with Cognitive I mpairment Mainly Due to Slow Gait Speed: Results from the Korean Frailty and Aging Cohort S tudy (KFACS)	g/10.3390/ije rph1609149 1	associations between impairment in specific cognitive domains and sarcopenia (and its defining components) in community- dwelling older adults.	N=1887; 48.2% female, aged 70-84. Excluded those with disability in ADL, dementia, severe CI, Parkinson's disease, musculoskel etal complaints, neurological disorders, or who were illiterate	a, sex difference , executive function, processin g speed, walking speed.	sectional observation study within a longitudinal cohort	between sarcopenia (and elements thereof) and domains of cognition. Sex differences in the relationship	differences in the association between frailty and cognitive decline.	low muscle strength, low muscle mass, and/or low physical performance grip strength, gait speed. Cognitive function: word list recall & recognition, TMT A, digit span forward & Backward, Frontal Assessment Battery, and MMSE.	adjusted for age-, sex-, and education-specific norms was not significantly different between the sarcopenia states. Higher cognitive dysfunction was seen in men with sarcopenia than those without but not so for women. Processing speed or executive function impairment was significantly correlated with sarcopenia, as was weakness and slow gait speed, in men but not in women. Slow gait speed was the most sensitive indicator of CI, (executive functioning and processing speed) in both sexes.
Kim, et, al. (2021)	Factors affecting frailty among community- dwelling older adults: A multi- group path analysis according to nutritional status	https://doi.or g/10.1016/j.ij nurstu.2020. 103850	To examine a comprehensi ve model of frailty, considering both direct and indirect factors, and to assess how nutritional status (well- nourished vs. malnourishe d) moderates the relationship between these factors and frailty in older adults	Human, N=1374, aged >70 (70–84) years	Malnouris hment; nutritional assessme nt	cross- sectional analysis of cohort data	Nutritional status	Nutritional status acts as a moderator on mediators between antecedents of frailty (e.g. age, chronic disease, lifestyle) and frailty. Cognitive function is one of these important mediators, along with phsyical performance and social support.	MMSE, MNA, Frail scale, SPPB	Poor nutritional status significantly accelerated physical impairment, lower cognitive function, and frail status as age increased: as age increased, physical and cognitive function were decreased two times more in the malnourished group when compared with the well- nourished group

			living in the							
Kohara, et, al. (2017)	Muscle mass decline, arterial stiffness, white matter hyperintensity, and cognitive i mpairment: Japan Shimanami Health Promoting Program study	<u>https://doi.or</u> g/10.1002/jc <u>sm.12195</u>	community. To investigate potential links between sarcopenia and Cl, while considering arterial stiffness and brain white matter hyperintensit ies (WMHs – known risk factor for cognitive decline) as potential underlying pathological mechanisms	Human, N= 1518, aged >55 (mean age, 67.9 ± 6.8 years), apparently healthy, Japan.	Sarcopeni a, WMHs, arterial stiffness	Cross- sectional observational study	Link between sarcopenia (as a component of frailty) and CI may be mediated by arterial stiffness and WMHs	Sarcopenia is linked to higher arterial stiffness, which itself is associated with CI and WMHs. The impact of sarcopenia on CI might be mediated by its influence on arterial stiffness and WMHs.	Sarcopenia: thigh muscle cross-sectional area, bioelectric impedance analysis for skeletal muscle mass, visceral fat measurement using CT. WMHs: MRI Cognitive function: Touch Panel- type Dementia Assessment Scale (TDAS). Arterial stiffness: pulse wave velocity (PWV) measurement.	Sarcopenic indices were linked to arterial stiffness, brain WMHs, and cognitive function. Middle- aged to older women with muscle mass decline in the lowest 10% of the population showed CI. In men, thigh muscle cross-sectional area was linked to WMHs, but this association was explained by arterial stiffness. In contrast, women showed a significant link between skeletal muscle mass and WMHs, even after adjusting for arterial stiffness. This suggests that additional, unidentified mechanisms may connect WMHs and sarcopenic indices in women.
Kritchevsk y, et. al, (2019)	Pathways, Contributors, and Correlates of Functional Limitation Across Specialties: Workshop Summary	https://doi.or g/10.1093/ge rona/gly093	To consider pathways, contributors, and associations of physical, cognitive, and sensory function in various health conditions, taking into account social determinants and health	Human and animal	Functiona I decline; inflammati on, senescent cell burden; mitochon dria; inequalitie s	Non- systematic review/consen sus document	Inflammation, senescent cell burden; mitochondrial mass and function; health inequalities (race, gender, SES)	Functional assessment could be used more to good effect	N/A	Knowledge gaps identified: Study of diverse populations in combination with socioeconomic measures to develop knowledge of health inequalities Functional measurements across the lifespan including sensory and psychosocial health, incorporating these into healthcare settings. Longitudinal studies to differentiate physiological impairments from age-related change.

Kwan, et al., (2019)	Cognitive Frailty and Its Association with Nutrition and Depression in Community- Dwelling Older People	https://doi.or g/10.1007/s1 2603-019- 1258-y	inequalities, pinpointing areas where our understandin g is lacking. To examine the association of nutrition and depression to cognitive frailty. How does this differ from having PF or	Human: 185 participants from the community or an "elderly hostel" mean age 86.2 years, 71.4% female. 35.7%	Nutrition, depressio n, MCI	Cross sectional observational study	Nutrition and depression	Identifying modifiable risk factors for CF is important for interventions, based on concept of reversibility	FRAIL scale for frailty and CDR for cognition (excluding those with significant impairment using the MMSE). GDS- 15 for depression and	The majority of people with MCI had CF (82.5%). 44.9% of people with PF had CF and 55.1% had PF alone. Depression was positively associated with PF (OR 1.50) and CF (OR 1.58). Better nutrition reduced the risk of CF (OR 0.66) but not PF or MCI alone.
Lalo, et. al. 2018	Diversity of Astroglial Effects on Aging- and Experience- Related Cortical Metaplasticity	https://doi.or g/10.3389/fn mol.2018.00 239	MCI alone? To investigate the involvement of astroglial Ca2+ signalling and release of gliotransmitt ers in cortical metaplasticit y related to ageing and environment al factors.	cognitively frail. Mice (dnSNARE mice)	Astroglia, environm ental enrichme nt, exercise, CR, caloric restiction	Biosensors recording ATP and D-Serine in brain tissue, Fluorescent Ca2+-Imaging in Astrocytes	Effects of CR and EE on astroglial Ca2+- signalling	Astroglial Ca2+ signalling may be increased as a result of environmental experience and enrichment and this can improve age- related decline.	MNA-SF for nutrition. Ca2+ signalling in astroglia	EE and caloric restriction (CR) can counteract the age-related decrease in astroglial Ca2+ signalling and gliotransmitter release in the neocortex. These enhancements in astroglial function were linked to changes in synaptic plasticity.
Laranjeiro, et al., (2019)	Swim exercise in Caenorhabditis elegans extends neuromuscular and gut	https://doi.or g/10.1073/pn as.19092101 16	To investigate the mechanisms by which exercise provides	C. elegans	Exercise, gut health	Long-term swim exercise on C. elegans	Health benefits of exercise	Physical exercise is a highly effective intervention for promoting healthy ageing in humans, but	Mitochondrial respiration and midlife survival, functional healthspan of the pharynx and intestine,	Swim exercise had a significant and positive effect on the healthspan of various tissues in C. elegans, emphasising the strong influence of early exercise on long-term health. This model could be used to understand the

	healthspan, enhances learning ability, and protects against neurodegener ation		health benefits to various body tissues					underlying molecular and cellular mechanisms, particularly in non-trained tissues, are not well understood.	nervous system health and neurodegenera tion (learning ability)	molecular mechanisms behind exercise-related health benefits in ageing humans.
Lauretani, et al., (2017)	"Brain-muscle loop" in the fragility of older persons: from pathophysiolog y to new organizing models	https://doi.or g/10.1007/s4 0520-017- 0729-4	To highlight the connection between memory complaints and muscle function by combining cognitive and physical assessments	Human	Exercise	Non- systematic review	The role of exercise in the association between cognition and frailty	Exercise can improve both cognitive and physical function, maybe by increasing BDNF	N/A	BDNF may serve as the link between physical activity and the preservation of cognitive performance in older individuals. Physical activity is linked to reduced cognitive decline and dementia risk, and is associated with higher levels of peripheral BDNF, even in people with Alzheimer's disease.
Lauretani, et al., (2018)	Muscle weakness, cog nitive impairme nt and their interaction on altered balance in elderly outpatients: results from the TRIP observati onal study	https://doi.or g/10.2147/CI A.S165085	To examine the relationship between muscle strength and CI in terms of the effect of any interaction on balance.	Human, n=263 (60.5% female), mean age 81.44, aged ≥65 years, balance deficit in 185 patients, Italy.	Grip strength, nutrition, balance.	Cross- sectional, observational study. Comparison of groups with and without CI and poor grip strength.	Association of grip strength and CI with balance deficits.	Muscle strength and CI may interact in their effects on balance and so potentially on falls risk. Nutrition may be part of this pattern.	MMSE, handgrip strength, ability to maintain tandem position for 10 seconds, MNA- SF. SPPB.	Grip strength was linked to MMSE score. In the group with low grip strength and Cl, nutrition status (measured by MNA-SF) was independently linked to balance deficits, showing a negative association. In other groups, grip strength was related to balance.
Lee, et al., (2023)	Risk Factors of Progression to Cognitive Frailty: Singapore Longitudinal	https://doi.or g/10.1159/00 0531421	To investigate risk factors for transition to CF over 3- 5 years.	Human, 1054 people aged >55, 63.1% female. Excluded people with	Longitudi nal, transition to CF	Prospective cohort Longitudinal study	Psychosocial, behavioural, biomarker and genetic risk factors: demographics,	CF is a flexible state but with negative outcomes. Understanding risks for	Cognitive Frailty (Using MMSE and Fried's phenotype)	Risk factors for transition to cognitive frailty were having eye problems and low HDL cholesterol. Protective factors reducing risk of transition were higher education level

	Ageing Study∟2			dementia (anytime) or CF at baseline			social support, hobbies, physical activity, nutrition, Lipids, morbidities, ApoE genetic indicators.	transition is important		and cognitively stimulating activities.
Li, et al., (2019)	Genetic and pharmacologic al interventions in the aging motor nervous system slow motor aging and extend life span in C. elegans	https://doi.or g/10.1126/sc iadv.aau504 1	Identifying a target for drugs or genetic interventions to slow motor ageing and potentially extend lifespan.	C. elegans	Motor neurons, locomotor behaviour	Observation of locomotion in C.elegans, experimental methods, pharmacologi cal intervention.	Deleting the SLO-1 gene not only slows age-related motor decline but unexpectedly extends lifespan.	Age-related declines in neuromuscular junctions (NMJs) contribute to motor ageing.	Motor function, longevity.	Slo-1 mutant worms show a slower decline in motor activity with age, have higher mid-late life motor activity, and live longer than wild-type worms. SLO-1 functions in motor neurons influence both motor ageing and lifespan.
Li, et al., (2020)	High neural activity accelerates the decline of cognitive pla sticity with age in Caenorhabditis elegans	https://doi.or g/ <u>10.7554/eL</u> <u>ife.59711</u>	To understand the impact of neuronal activity on age-related decline in neural plasticity	C. elegans	Plasticity, neural activity	Behavioural assays and imaging	The effect of neural activity on the decline in experience- dependent plasticity with age	Neuron activity influences neuronal homeostasis, which plays a role in the age- related decline of neural plasticity, shedding light on underlying mechanisms.	O2-evoked speed assay, Ca2+ imaging, aerotaxis assays, NAC treatment	Age-related decline in plasticity depends on oxygen levels. At 21% oxygen, plasticity declines and disappears within a week in adults. However, at 7% oxygen, plasticity remains, including in older worms, suggesting that the decline is more due to chronic high neuronal activity than oxygen-induced oxidative stress. Inhibiting neuronal activity restored plasticity at high oxygen levels, while stimulating O2- sensing neurons impaired plasticity at low oxygen levels. Antioxidant treatment did not reduce plasticity decline with age, despite reducing oxidative stress.
Li, et al., (2021)	Gut Microbiota: Critical Controller and	https://doi.or g/10.3389/fn agi.2021.671	To explore recent research	various	Gut microbiot a, Brain-	Review article, use of machine	Dysregulation of gut microbiota –	Older individuals often have	various	Evidence supports a contributory or causal role of gut microbiota changes in CI development,

	Intervention Target in Brain Aging and Cognitive Impairment	142	findings highlighting the role of gut microbiota in the ageing process, with specific reference to development of CI.		Gut microbiot a axis	learning	brain communication in ageing.	more pro- inflammatory microbes and fewer beneficial species in their guts.		although bi-directional influences should be considered. Probiotics and prebiotics and other dietary interventions may be indicated by further research to support healthy ageing.
Liang, et al., (2021)	elF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction	https://doi.or g/10.1016/j.c elrep.2021.1 08941	To investigate how hypusination of eIF5A affects mitochondria I respiration and the ageing process in the brain.	Drosophila	Drosophil a, mitochon drial respiratio n, spermidin e, brain ageing	Drosophila survival and behavioural senescence analysis, supplementati on with spermidine.	elF5A hypusination, brain ageing in drosophila	Mitochondrial function declines in brain ageing and is important in cognitive decline.	Spermidine improves mitochondrial respiration and may affect ageing of locomotion and memory in Drosophila	Dietary spermidine increased hypusinated eIF5A levels in the Drosophila brain. Targeting eIF5A hypusination could be a potential diagnostic and therapeutic approach for addressing aspects of brain aging related to mitochondrial decline.
Liao, et al., (2017)	Behavioral Senescence and Aging- Related Changes in Motor Neurons and Brain Neuromodulat or Levels Are Ameliorated by Lifespan- Extending Reproductive Dormancy in Drosophila	https://doi.or g/10.3389/fn cel.2017.001 11	To determine whether behavioural senescence is improved during adult dormancy in Drosophila	Drosophila	Diapause, reproducti ve dormancy	Behavioural assays on flies kept in normal vs. diapause conditions	Effect of reproductive dormancy on lifespan and behaviour in flies	Diapause affects expression levels of some neurotransmitte rs and neuropeptides that normally decrease with age. This normal age- related decline may be related to behavioural decline.	Behavioural assays (sleep, negative geotaxis, exploratory walking)	Flies in diapause for 7–8 weeks showed significantly reduced behavioural aging compared to normally ageing flies. Age-related alterations in motor neurons contribute to behavioural decline and reproductive diapause has a positive effect on mitigating this decline.
Lin et al 2022	The Flexibility of Physio- Cognitive Decli	https://doi.or g/10.3389/fp ubh.2022.82	To investigate how	Human. N= 531, aged 51–87 years.	Physio- cognitive decline;	Longitudinal cohort in the community,	Factors associated with	Pathophysiolog ical relationship between	Chinese MMSE; verbal memory:	63% of PCDS participants remained in PCDS at a follow-up and 33% reversed to non-PCDS.

medRxiv preprint doi: https://doi.org/10.1101/2024.01.18.24301491; this version posted January 18, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

	ne Syndrome: A Longitudinal Cohort Study	0383	cognitive and frailty impairments change over time, either separately or together. To understand if PCDS/CF can be reversed and to identify factors that influence transitions.	Taiwan. Four groups: Robust, CI, Mobility impairment (MI) (slowness, weakness); PCDS (similar to CF but frailty component specific to slowness and weakness).	longitudin al; transitions ; reversibilit y; flexibility	2.5 years.	phenotypic transitions	PF and related Cl, which may differ from well- recognised neurodegenera tive AD. Clinical outcomes of PCDS may differ from MCI or prodromal AD without PF, so understanding mechanisms of potential reversibility is important	delayed recall; language: Boston Naming Test and Verbal Fluency Test; Visuospatial function: Taylor Complex Figure Test; Executive function: Clock Drawing Test. All assessments culturally adapted. Frailty: Fried	Those with worse memory and language functions, were older, had lower muscle mass, or with diabetes were more likely to progress to PCDS. Within those with PCDS, stronger hand-grip, younger age, and better memory predicted reversion to non-PCDS state. Authors suggest muscle mass/function and memory function are the important factors associated with trajectories of PCDS in either direction.
Lin, et al., (2022)	Association of Cognitive Performance with Frailty in Older Individuals with Cognitive Complaints	https://doi.or g/10.1007/s1 2603-021- 1712-5	To investigate the association of performance in cognitive domains with frailty in a sample from a LMIC; to evaluate the interaction of education with frailty, grip strength, and gait speed	Human, N=160; ≥ 60 years; mean age = 80.3; 73.1% women. Brazil. All reporting memory complaints (by participants, proxies, or their physicians).	Low to middle income Country (LMIC); education ; sociodem ographic variables	Cross- sectional observational study	low socioeconomic conditions can impact frailty and cognitive decline; education, as a proxy for cognitive reserve, is an important component.	Important The influence of different cognitive domains on relationship between PF and Cl have not been assessed in a population who have experienced various inequalities, including educational.	Frailty: Fried Frailty: Fried. Cognitive domains: memory, language (including category fluency), visuospatial functions (including CDT), and executive functions (including Color Trails 2 and Matrix Reasoning from WASI) Attention: Digit Span. Used a global composite z- score.	83.7% of participants were pre- frail or frail. Pre-frailty was linked to lower memory performance. Found interactions between education and gait speed in effect on global cognitive scores and most cognitive domains. Education did not interact with frailty and muscle strength in effect on global cognition. Association of frailty with cognitive function was not maintained when controlling for age, sex, education.
Liu, et al., (2020)	Cerebellar- limbic	https://doi.or g/10.18632/a	To investigate	Human - community-	brain volume;	High resolution 3T	Neurobiology and	Any specific neuroanatomic	Grey matter volume (GMV)	Compared to participants without PCDS, those with PCDS had

	neurocircuit is the novel biosignature of physio- cognitive decline syndrome	<u>ging.104135</u>	potential neuroanato mic and neurocircuit correlates of PCDS (slowness and weakness, but not other aspects of frailty), using brain MRI data.	dwelling longitudinal ageing cohort, N= 1196 ≥ 50 years, no dementia, mean age 62 years, 52.4% women.	cognitive impairme nt, Physio- cognitive decline.	brain magnetic resonance imaging (MRI) images. PCDS defined as cognitive performance 1.5 SD below age, sex and education norms, plus slowness and weakness.	pathophysiolog y that may underlie PCDS. Brain structure.	characteristics associated with both motor and cognitive decline in older individuals may indicate potential prevention intervention targets.	in specific brain regions: amygdala, thalamus, hippocampus, temporo- occipital cortex, and cerebellum VI and V regions. Connectivity between the hippocampus, amygdala, and cerebellum.	lower GMV in the amygdala, thalamus, hippocampus, temporo-occipital cortex, and cerebellum VI and V regions. Older adults within the PCDS group had more GMV reduction. Connectivity between the hippocampus, amygdala, and cerebellum was disrupted.
Lupo, et al., (2019)	Molecular Mechanisms of Neurogenic Aging in the Adult Mouse Subventricular Zone	https://doi.or g/10.1177/11 7906951982 9040	To summarise recent advances in understandin g molecular mechanisms underlying age-related changes in neural stem/progeni tor cells in the subventricul ar zone (SVZ) of the adult mouse brain.	Mice	Neurogen ic ageing, neural stem cells	Review	Neural Stem/progenito r cells (NSPCs) within the subventricular zone (SVZ) involve intrinsic molecular networks and extrinsic signalling pathways. Age related changes influence young NSPCs, driving them towards an aged phenotype.	Continuous production of new neurons supports cognitive function in rodents and age-related declines in neurogenesis is linked to cognitive decline.	N/A	The decline in neurogenesis with increasing age is influenced by intrinsic molecular changes within the NSPCs of the SVZ and alterations in extrinsic molecular signals within the SVZ niche.
Lv, et al., (2019)	Triglycerides Paradox Among the Oldest Old: "The Lower the Better?"	<u>https://doi.or</u> g/10.1111/jgs .15733	To investigate the relationship of serum Triglycerides	Human, n = 930, 80 years and older, China.	Triglycerid es, ADLs	Longitudinal study, 5 year follow up.	The role of triglycerides on cognitive function and frailty in the oldest old	Currently most treatment guidelines suggest lowering hypertriglycerid	Serum triglyceride levels, Chinese version of MMSE, osteoporotic	Each 1mmol/L increase in triglycerides corresponded to an approximately 20% decrease in risk of cognitive decline, ADL decline, and frailty aggravation during 5 years of follow-up. i.e.

			concentratio ns with cognitive function, ADL, frailty, and mortality among oldest old.				participants	emia of any severity, even in the oldest patients. However, triglycerides are less associated with poor health in those over 80 years.	fractures frailty index, ADL	higher triglycerides associates with lower risk of frailty cognitive decline in the oldest old.
Ma & Chan, (2020)	Understanding the Physiological Links Between Physical Frailty and Cognitive Decline	https://doi.or g/10.14336/a d.2019.0521	To investigate potential links between PF and cognitive decline, chronic inflammation , impaired stress response, energy metabolism imbalance, mitochondria I dysfunction, oxidative stress, and neuroendocri ne issues, and their collective impact.	Human	Inflammat ion, oxidative stress, genetics	non- systematic Review	Inflammation, hypothalamic- pituitary axis dysfunction, energy homeostasis, endocrine dysregulation, mitochondrial dysfunction, oxidative stress, genomic markers, metabolomic markers.	Many physiological factors contribute to the link between PF and cognitive decline	N/A	CF is linked to several biological factors, including elevated inflammatory markers (IL-6, TNFalpha), increased cortisol, reduced growth hormone and testosterone, elevated IGF-1, decreased SIRT1 activity, insulin resistance, higher adiponectin levels, low mitochondrial DNA, oxidative stress, diminished BDNF, and lower LPC levels. These factors collectively contribute to CF complexity.
Ma, et al., (2017)	Cognitive Frailt y in China: Results from China Comprehensiv e Geriatric Assessment	https://doi.or g/10.3389/fm ed.2017.001 74	To explore the prevalence and associated factors of CF in China.	Human, n=5708 community- dwelling adults, no dementia, China, aged	Psychoso cial, physical function, depressio n, income	Cross- sectional analysis of cohort data	Psychosocial factors including income, literacy, and marital status, and physical	Several factors including psychosocial factors and physical function are associated with	Comprehensiv e Geriatric Assessment- Frailty Index and MMSE	The prevalence of CF was higher in women, individuals residing in rural areas, participants who were illiterate, had low incomes, were widowed, experienced depression, those with comorbidities, disabilities, slow

	Study			≥ 60 years.			function including vision impairment, walking speed, hearing impairment.	cognitive frailty.		walking speed, vision and hearing impairments, insufficient exercise, and a low body mass index. Participants who reported spontaneous fractures or falls also had a higher prevalence of CF.
Ma, et al, (2022)	Association between frailty and cognitive function in older Chinese people: A moderated mediation of social relationships and depressive symptoms	https://doi.or g/10.1016/j.j ad.2022.08.0 32	To determine whether social relationships , encompassi ng social activities, social support, and social networks, mediate the relationship between PF and CI (with moderate depression as a mediator) or if they have a direct impact on the connection.	Human, N= 7525, aged ≥65. 52.5% female.	Depressio n as a mediator, social relationshi ps, moderate d mediation		Depression as mechanism between frailty and CI.	Frailty is related to depression, which causes CI. Social relationships may have a direct effect, but may also influence the effect of depression	Cognitive impairment: MMSE; Physical Frailty: weight loss, poor sit to stand and reported exhaustion; depression: CES-D	Depression partially mediated the relationship between PF and Cl by about 9.54%. Frailty and social relationships did not interact in their effect on depression, but interactions between depression and social relationships, as well as frailty and social relationships, were significant in affecting cognitive function. Social activities and social networks influenced all these relationships, but social support only had an impact on the direct link between PF and Cl.
Mack, et al, (2015)	Defective actin dynamics in dendritic spines: cause or consequence of age-induced cognitive decline?	https://doi.or g/10.1515/hs z-2015-0185	To explore whether changes in actin filament dynamics within dendritic spines play a crucial role in early	C. elegans, monkeys, yeast	Actin, dendritic spines, cytoskelet on, synapses	Review	Whether changes in actin filament dynamics affecting dendritic spines in the brain contributes to ageing	In the ageing brain, abnormal levels of actin- binding proteins (ABPs) like drebrin and cofilin may lead to alterations in the balance between G-	N/A	In contrast to neurodegenerative diseases characterized by cell death, normal age-related cognitive decline may be linked to changes in synaptic number and function in memory-related brain regions like the hippocampus and prefrontal cortex. Some studies have found that CI with age is associated with specific changes in spine

			stages of brain ageing					actin and F- actin, causing aberrations in dendritic spine dynamics. These changes could be a factor that distinguishes between successful cognitive ageing and Cl.		subtypes, particularly a reduction in the volume of thin spines, which strongly correlates with cognitive decline. Shifts in spine subtype composition could disrupt memory processes.
Maruya, et. al, (2021)	Brain activity in the prefrontal cortex during cognitiv e tasks and dual tasks in community- dwelling elderly people with pre-frailty: A pilot study for early detection of cognitive de cline	https://doi.or g/10.3390/he althcare9101 250	To identify brain abnormalitie s in older people with pre-frailty during cognitive and motor tasks using Near- infrared spectroscop y (NIRS) to detect real- time changes in blood flow by measuring oxidised haemoglobin concentratio ns in the brain. To compare people with pre-frailty to those with motor and cognitive	Human; N=60; aged ≥65 years; community- dwelling, Japan. Frail participants excluded (55% pre- frail); mean age 76.3 years, 80% female.	Regional Cerebral Blood flow (rCBF); oxidised haemoglo bin; cerebral haemody namics.	Cross- sectional observational study	Cerebral oxygenation during tasks focussed on frontal cortex as a possible biomarker.	Abnormal cerebral haemodynamic and oxygenation parameters shown in patients with dementia or MCI, and healthy older adults exhibit reduced brain activity compared to young adults, but distinctions in brain activity between older healthy people and those with motor function decline remain unclear.	Shortened Stroop task, Rapid Dementia Screening test. Fried frailty assessment and Physical performance: grip strength, single-leg standing duration, normal and maximum gait speed, dual- task gait analysis, the two-step test. Functional NIRS to measure total haemoglobin.	Participants classified as robust or pre-frail did not show Cl, but pre-frailty group showed increased cerebral blood flow during normal gait, Stroop test, and Word Fluency Test compared to resting values. Although there were no significant interaction effects, the pre-frailty group tended to exhibit greater increases in cerebral blood flow during normal and dual-task gait compared to the healthy group on the right side. Authors suggests potential compensation mechanisms in the pre-frail group.

Melnattur, et al., (2021)	A conserved role for sleep in supporting Spatial Learning in Drosophila	https://doi.or g/10.1093/sl eep/zsaa197	decline, exploring differences between frailty and (MCI). To investigate the role of sleep in spatial learning	Drosophila, young (5 days) vs old (24 days)	Drosophil a, spatial learning, dopamine , sleep	Model organism, Visual learning, spatial learning, Drosophila, sleep.	Relationship of Sleep and neurotransmitt ers to Spatial learning	Spatial learning declines with age in model organisms and humans. Sleep and dopamine levels have an influence on the decline of cognitive function.	visual learning assay, sleep analysis	Sleep deprivation negatively affects spatial learning. Age- related decline in learning can be improved by getting better sleep. Spatial learning relies on dopamine signalling; boosting dopamine signalling can reverse age-related declines in learning abilities.
Metaxakis, et al., (2014)	Lowered Insulin Signalling Ameliorates Age-Related Sleep Fragmentation in Drosophila	https://doi.or g/10.1371/jo urnal.pbio.10 01824	To determine the role of Insulin signalling in sleep fragmentatio n with age.	Drosophila, lifespan, sleep, Insulin signalling.	Sleep fragmenta tion, drosophil a, insulin signalling	Drosophila, sleep analysis	Sleep pattern with age in Drosophila	Lower activity of insulin/ insulin-like growth factor (IIS)/TOR may reduce ageing effects. Sleep pattern changes with age; reduced IIS/TOR may improve sleep fragmentation and so affect ageing effects such as learning.	Sleep, circadian rhythm and activity monitoring.	Reducing IIS improves age- related sleep disruptions, connected to increased octopaminergic signalling. Reduced IIS influences various aspects of age-related function decline through multiple pathways, connecting metabolism and behavior, including sleep, via components like S6K and dFOXO, which impact different neuronal circuits and neurons.
Minhas, et al., (2021)	Restoring metabolism of myeloid cells r everses cogniti ve decline in ageing.	https://doi.or g/10.1038/s4 <u>1586-020-</u> 03160-0	To identify the mechanisms that trigger and maintain harmful inflammation in ageing.	Young (2–4- month-old) and aged (20–24- month-old) C57BL/6J mice, transgenic mice	Microglia, inflammati on, prostagla ndin	Behavioural tests, imaging, quantification	The role of prostaglandin E2 in ageing	In aged mice, increased prostaglandin E2 (PGE2) signalling suppresses the bioenergetics of myeloid cells. Inhibiting	Novel object location, Barnes maze, glycogen quantification kit, ROS quantification	In older individuals, there's an increase in PGE2 synthesis, which affects cell metabolism and inflammation. In aged mice, inhibiting the EP2 pathway restores youthful brain function and memory.

medRxiv preprint doi: https://doi.org/10.1101/2024.01.18.24301491; this version posted January 18, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Is polypharmacy associated with cognitive frailty in the elderly?	https://doi.or g/10.1007/s1 2603-019- 1274-y	To determine whether polypharmac y is linked to CF in older adults.	Human, N=2392 aged 70-84 years, 53% female, excluded those who were dependent on others for ADLs	Polyphar macy	Cross sectional Observational cohort study	Polypharmacy	this pathway rejuvenates aspects including cellular bioenergetics, inflammation, synaptic plasticity in the hippocampus, and spatial memory. Polypharmacy is considered a geriatric syndrome. Multiple medications can lead to inappropriate drug use and drug interactions. It can be linked to falls and other impairments/si de effects which may necessitate further prescriptions, a vicious cycle. Frailty and CI may be an outcome.	Polypharmacy defined as 5 or more medications and hyperpolyphar macy as 10 or more. Frailty: FRAIL scale. CI: Psychomotor speed & attention: TMT A. Executive function, attention & memory assessed with a Frontal Assessment Battery, Digit Span Backward test, and a Word List Recall test. CI defined as 1.5 SD on any of the tests.	OR of frailty in those taking >5 prescribed medications was 1.93, and for CI was 1.27. OR of polypharmacy given CF was 2.01 adjusting for various factors including severity of comorbidities.
Phasic Patterns of	g/10.1523/jn eurosci.2799	ageing impact	C. Ologano	dria	analysis of age-	mitochondrial morphology	linked to cognitive	morphology, density,	with older age, correlating with reduced resistance to oxidative

medRxiv preprint doi: https://doi.org/10.1101/2024.01.18.24301491; this version posted January 18, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

	Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons	<u>-15.2016</u>	various aspects of neuronal mitochondria , and can genetic interventions mitigate these age- related changes to slow down the ageing process?			associated changes in mitochondrial morphology, density, trafficking, and stress resistance in individual C. elegans neurons throughout adult life.	with age.	decline and a higher risk of neurodegenera tion, with disturbances in mitochondrial function, dynamics, and trafficking playing a role in age-related neurodegenera tive diseases.	trafficking, and stress resistance in C. elegans neurons.	stress. Understanding the mechanisms of mitochondrial ageing may provide insights into pathways and factors influencing mitochondrial maintenance in ageing and disease.
Moulin, et al., (2021)	The Drosophila melanogaster Levodopa- Induced Depression Model Exhibits Negative Geotaxis Deficits and Differential Gene Expression in Males and Females	https://doi.or g/10.3389/fni ns.2021.653 470	To investigate the behaviour and gene expression of depression- like Drosophila phenotype. Can Drosophila be a valuable model for depression?	Drosophila	Depressio n, animal model	Behavioural (negative geotaxis) and gene expression studies on Drosophila	Drosophila model for depression can also show effects on behaviour.	To better understand levodopa- induced depression, we automated the Drosophila negative geotaxis test, assessing mobility and climbing motivation under inescapable stress	Negative geotaxis, general activity, Q-PCR	Both male and female Drosophila exhibited deficits in forced climbing after levodopa administration, with distinct gene expression patterns. This suggests Drosophila models can help identify molecular mechanisms contributing to gender differences in depressive disorder prevalence.
Moyon, et al., (2021)	TET1- mediated DNA hydroxymethyl ation regulates adult remyelination in mice	https://doi.or g/10.1038/s4 1467-021- 23735-3	To investigate mechanisms involved in myelin repair in older individuals.	Mice and zebrafish	myelin repair	western blot, qPCR, RNAseq, immunohystoc hemistry	TET1 enzyme. myelin repair	DNA hydroxymethyl ation plays a crucial role in regulating gene expression during myelin repair and TET1 enzyme may catalyse this, but this process is	Myelination and remyelination in myelin impaired mice.	The enzyme TET1 plays a crucial role in myelin repair and decline with age impairs this repair process. TET1 affects genes involved in neuro-glial communication. Mutants lacking TET1 or SLC12A2 exhibit inefficient myelin repair, highlighting the importance of TET1 in regulating the axon- myelin interface during myelin repair.

								impaired with ageing.		
Mu, et al., (2022)	Serum Inflammatory Factors and Oxidative Stress Factors Are Associated with Increased Risk of Frailty and C ognitive Frailty in Patients with Cerebral Small Vessel Disease	https://doi.or g/10.3389/fn eur.2021.786 277	To examine how serum inflammatory factors and oxidative stress factors are related to frailty and CF in individuals with cerebral small vessel disease (CSVD)	Human, n=281, 37-90 years old, no dementia, CSVD, China	Inflammat ion, oxidative stress	Cross- sectional analysis	Inflammatory markers, oxidative stress, age, BMI, smoking status.	Inflammatory markers are associated with CF in patients with cerebral small vessel disease	Frailty: FRAIL scale, Cognition: MoCA and MMSE; Mood: Hamilton Depression and anxiety scales. Range of blood inflammatory markers.	Women and older participants were more likely to be frail, and frail people had lower cognition and higher depression and anxiety than pre-frail and robust groups. Serum C-Reactive protein, IL-6, TNF- α , MMP-3, and MDA levels were higher in those with PF and CF.
Munkacsy, et al., (2019)	Neuronal-speci fic proteasome augmentation via Prosβ5 overexpression extends lifespan and reduces age-related cognitive decline.	https://doi.or g/10.1111/ac el.13005	To determine the role of the proteosome in lifespan and cognitive decline	Drosophila, lifespan	Drosophil a, cognition, proteoso me	model organism research (Drosophila)	Cognitive performance in Drosophila	Increased proteosome function improves cognitive function in ageing Drosophila	learning memory, circadian rhythm	Enhancing proteasome function throughout the nervous system can alleviate age-related cognitive decline in Drosophila, particularly in learning, memory, and circadian rhythms, but boosting proteasome activity across the entire organism did not extend lifespan and may have negative effects on healthspan.
Mustafa Khalid, et. al, (2022)	Current Evidence on the Association of Micronutrient Malnutrition with Mild Cognitive Impairment, Frailty, and Cognitive Frailty among Older Adults: A Scoping Review	https://doi.or g/10.3390/ije rph1923157 22	To scope the literature on micronutrient s in frailty, MCI and CF	Human studies with older adults	Vitamins, micronutri ents, Albumin, Homocyst eine, Amino acids, Fatty acids, Minerals, Antioxida nts	Scoping review, excluding animal studies	Micronutrients: mechanisms are proposed for each associated micronutrient	Previous studies have shown associations between nutrients and dementias. This study examines associations with frailty, MCI and CF	N/A	Associations between micronutrient malnutrition (vitamin D, Folate, B vitamins, antioxidants, protein, and lipids) and CI, frailty, and CF were found. Beta-cryptoxanthin and zeaxanthin were specifically associated with CF.

Musumeci, et al., (2015)	Changes in serotonin (5- HT) and brain- derived neurotrophic factor (BDFN) expression in frontal cortex and hippocampus of aged rat treated with high tryptophan diet	https://doi.or g/10.1016/j.b rainresbull.2 015.09.010	To explore how a high tryptophan (TrP) diet influences serotonin (5- HT) levels and brain- derived neurotrophic factor (BDNF) expression in the Frontal Cortex (FC) and Hippocampu s (Hp) of aged rats.	Sprague– Dowley rats	Serotonin, brain derived neurotropi c factor (BDNF), tryptopha n	High tryptophan diet, ELISA, western blot, immunohistoc hemistry	Serotonin (5- HT) and BDNF may reduce with increasing age. Serotonergic system's protective role may mitigate memory impairments in ageing. High tryptophan diet may effect 5- HT and BDNF in aged rats.	Increased tryptophan (TrP) intake leading to higher serotonin (5- HT) neurotransmiss ion may modulate BDNF system. BDNF associated with neuronal plasticity and cognition	5-HT levels and BDNF expression in Frontal Cortex (FC) and Hippocampus (Hp)	A high tryptophan (TrP) diet leads to increased 5-HT levels and appears to protect against age-related memory deficits in rats. This diet prevented the age- related decline of 5-HT levels and increased BDNF protein levels in the frontal cortex (FC) and hippocampus (Hp) of aged rats. The effect of Tryptophan diet-induced 5-HT enhancement on BDNF levels varied by brain region.
Nagy & Aubert, (2015)	Overexpressio n of the vesicular acetylcholine transporter enhances dendritic complexity of adult-born hippocampal neurons and improves acquisition of spatial memory during aging	https://doi.or g/10.1016/j.n eurobiolagin g.2015.02.02 1	To explore the impact of increasing cholinergic neurotransmi ssion through elevated vesicular acetylcholine transporter (VAChT) expression on age- related decline in the neurogenesi s of hippocampal cells, and spatial	C57BL/6J male mice	Cholinergi c neurotran smission, neurogen esis, spatial memory.	Behavioural study (Morris water maze), cell proliferation and dendritic maturation	Role of acetylcholine transporter activity in cell proliferation in the hippocampus and on spatial memory.	VAChT expression is associated with increased dendritic complexity and better spatial memory in ageing.	Number of neurons, number of dendritic intersections, performance in Morris water maze.	Enhanced hippocampal VAChT expression improved dendritic complexity in new neurons and enhances memory, particularly in spatially precise strategies in older mice.

Natrajan, et al., (2015)	Retinoid X receptor activation reverses age- related deficiencies in myelin debris phagocytosis and remyelination	https://doi.or g/10.1093/br ain/awv289	memory. To determine functional and molecular differences between young and older adult microglia- and monocyte- derived macrophage s involved in myelin debris phagocytosis , and to identify therapeutical ly modifiable pathways.	mice (Female C57BI/6 mice), human tissues (in vitro)	Myelinatio n, myelin debris	In vitro assays	myelin debris clearance, phagocytosis, remyelination	Role of decreased CNS remyelination in older age. The retinoid X receptor pathway regulates myelin debris clearance and has an important role remyelination	Gene expression is decreased in the retinoid X receptor pathway with increasing age affecting myelin- phagocytosing human monocytes and mouse macrophages.	Retinoid X receptor antagonists reduced myelin debris uptake and slowed remyelination in young macrophages. Retinoid X receptor agonists partially restored myelin debris phagocytosis in old macrophages. This was also achieved in multiple sclerosis patient monocytes restoring them to a younger profile.
Navarro- Pardo, et al., (2020)	Prevalence of Cognitive Frailt y, Do Psychosocial- Related Factors Matter?	https://doi.or g/10.3390/br ainsci10120 968	To determine the prevalence of CF in a Spanish sample and investigate how psychosocial variables may influence this prevalence.	Human, n=285, aged ≥60 years, Spain, no dementia or mental health disorders	Psychoso cial	Cross- sectional analysis	Psychosocial factors such as income, education level, well- being	Psychosocial factors are associated with CF	MoCA, Fried's frailty phenotype	Participants aged 80 and older, those with low formal education, low-qualified professions, and low psychological well-being have an increased risk of CF compared to their respective counterparts.
Nowson, et al., (2018)	The Impact of Dietary Factors on Indices of Chronic Disease in Older People: A Systematic	https://doi.or g/10.1007/s1 2603-017- 0920-5	To review research on dietary factors in older adults focusing on key	Human, aged ≥65 years	Nutrition, Mediterra nean diet	Systematic review	Aspects of nutrition that have previously been linked to cognition and frailty	The Mediterranean diet has demonstrated benefits for both cognitive function and	N/A	Longitudinal and cross-sectional studies linked higher Mediterranean diet adherence to reduced risk of frailty, with a 70% reduction in the odds of developing frailty associated with a 4-point increase in the

	Review		functional indicators, e.g. cardiovascul ar events, cognition, mental health, falls and fractures, physical strength, and frailty. To determine if evidence supports dietary recommenda tions for this					frailty. Vegetable consumption is linked to improved cognition, while protein intake is associated with reduced frailty.		Mediterranean Diet Score. Higher protein consumption (≥1.4 g/kg/d) was linked to a 35% reduced risk of frailty, while lower protein intake (<66 g/day in men and <55 g/day in women) doubled the likelihood of frailty. Consuming vegetables daily reduced odds of cognitive decline by 34% over three years.
O'Connor, et al., (2023)	Sustaining an ageing population: the role of micronutrients in frailty and cognitive impairment	https://doi.or g/10.1017/S 0029665123 002707	age group. To examine the role of micronutrient s in development of frailty & Cl	Human studies focused on TILDA Irish longitudinal study.	Micro- nutrients, malnutriti on,	Narrative review	Multiple biological mechanisms but focused on cognition, musculoskelet al disorders, depression, chronic diseases; vitamin D Vitamin B12 and folate, carotenoids, lutein and zeaxanthin; Antioxidant and anti- inflammatory properties.	Other papers have examined macronutirents such as protein, but few examined micronutrients	N/A	Studies were focussed on PF or CI, rarely CF. Malabsorption and reduced appetite were proposed as mechanisms.
Oyston, et al., (2018)	Neuronal Lamin regulates	https://doi.or g/10.15698/c st2018.09.15	To identify mechanisms responsible	Drosophila, transgenic flies	Drosophil a, neuronal	Levels of Lamin in neurons,	Neuronal Lamin as a regulator of	Neuronal lamin, filaments that make up a	Lamin protein levels, motor function of flies.	Reduced lamin levels were associated with decreased lifespan, impaired motor function,

	motor circuit integrity and controls motor function and lifespan	2	for the decline in cognitive and motor functions associated with neuronal aging.		ageing, cognitive decline, motor function, Lamin, dopamine rgic neurons	Survival analysis, immunohistoc hemistry, electrophysiol ogy, negative geotaxis (locomotor assay).	age-related change.	network involved in structural composition of neurones, is involved in a range of human diseases and alters in older age, affecting cell health.		and loss of dopamine neurons in a specific neuronal cluster.
Panza et al., (2015)	Cognitive Frailt y: A systematic review of Epidemiologica I and Neurobiologica I Evidence of an Age- Related Clinical Condition	https://doi.or g/10.1089/rej .2014.1637	To examine the possible role of different frailty models in modulating the risk of AD, dementia, vascular dementia (VaD), MCI, and late life cognitive impairment/d ecline.	Human	Cardiovas cular diseases, inflammati on, social isolation, nutrition, sarcopeni a	Systematic review	Hearing and vision impairment, vascular risk factors, sarcopenia, metabolic, nutritional, hormonal, inflammatory and psychosocial factors	Frailty is associated with cognitive decline and dementias. The link between the two is multifactorial.	N/A	Hearing and vision impairment, cardiovascular diseases, sarcopenia, nutritional factors etc are linked to CI and PF.
Panza, et. al, (2015)	Targeting Cogn itive Frailty: Clinical and Neurobiologica I Roadmap for a Single Complex Phenotype	https://doi.or g/10.3233/ja d-150358	To explore clinical and epidemiologi cal research on various frailty models and their potential influence on the risk of Alzheimer's disease (AD),	Human	Cardiovas cular, diseases, inflammati on, social isolation, nutrition, sarcopeni a	Non- systematic Review	Vascular risk factors, sarcopenia, metabolic, nutritional, hormonal, inflammatory and psychosocial factors	Frailty is linked to cognitive decline and various forms of dementia, with multiple contributing factors connecting these conditions.	N/A	CF may be associated with APOE and ACE genes. There is a potential role for cardiovascular factors, hypertension, sarcopenia, undernutrition, Mediterranean diet, testosterone, inflammation, and social isolation in its development. Authors suggest considering PF and CI as a single complex phenotype is important for potential prevention e.g. of dementia.

Panza, et.	Different Cogni	https://doi.or	dementia, vascular dementia (VaD), mild cognitive impairment (MCI), and late-life cognitive impairment/d ecline. To review	Human	Inflammat	Non-	Vascular risk	Many factors	N/A	The study discusses common
al, (2018)	tive Frailty Mod els and Health- and Cognitive- related Outcomes in Older Age: From Epidemiology to Prevention	g/10.3233/J AD-170963	the framework for defining CF, various models, and its current epidemiology . To explore neurobiologi cal mechanisms and potential strategies for preventing the progression of CF.	numen	ion, social isolation, nutrition, sarcopeni a	systematic Review	factors, sarcopenia, metabolic, nutritional, hormonal, inflammatory and psychosocial factors	may contribute to cognitive frailty.		mechanisms shared between frailty and cognitive decline, such as poor nutritional status, elevated LDL cholesterol, increased levels of IL-6 and CRP (inflammatory markers), and social isolation. Heterogeneity in CF suggests different cognitive frailty models that may have different risks of negative outcomes including dementias.
Panza, et al., (2023)	Depressive and Biopsychosoci al Frailty Phenotypes: Impact on Late-life Cognitive Disorders	https://doi.or g/10.3233/J AD-230312	Review on the links between Late Life Depression, physical frailty and cognitive frailty.	Human	Late Life depressio n, Triad of Impairme nts	non- systematic review/essay	The proposed shared biological mechanisms between depression and CF include inflammatory and cardiometaboli c processes, multimorbidity, loneliness, dopamine	Late Life depression may be a common pattern in conjunction with CF	N/A	Depressive frailty phenotype (depression plus CF) may be one pattern within the biopsychosocial model of frailty. Underlying mechanisms related to biological pathways (inflammation, mitochondrial dysfunction etc) but also social support, physical and social activity pathways/substrate, but also multimorbidity

Papi, et al., (2022)	Cognitive and balance performance of older adult women during COVID-19 pandemic quarantine: an ex post facto study	https://doi.or g/10.5114/p m.2022.1169 76	To investigate the effects of self- quarantine on cognitive function, balance, and fall risk in older adult women.	Human; women aged >60 years; N=75; Iran; no baseline cognitive impairment (MMSE)	Longitudi nal; quarantin e; isolation; balance; isolation; restricted physical activity	Repeated measures investigation before (in 2019) and during pandemic lockdowns (June 2020), as part of a larger cohort study. Convenience sampling from older adult health centres.	pathways, lack of social support. Decreased physical activity and social interaction among could potentially contribute to a higher risk of CI, particularly in regions where this risk is already elevated, such as developing countries.	Decreased physical activity and social engagement are associated with declines in cognitive and physical function in older adults. Anxiety and depression related to isolation may contribute to negative effects.	balance; John Hopkins fall risk score; MMSE	After 7 months of COVID restrictions, women experienced declines in cognitive function, balance, and increased fall risk. Contributing factors include higher BMI, disruptions in musculoskeletal and brain balance responses, reduced sun exposure affecting mood and hormones, a weakened immune system, and decreased physical activity due to pandemic-related concerns and motivation loss.
Park, et al., (2013)	Calorie Restriction Alleviates Age- Related Decrease in Neural Progenitor Cell Division in the Aging Brain	https://doi.or g/10.1111/ejn .12249	To explore the impact of caloric restriction and rapamycin on hippocampal stem and progenitor cells in ageing animals.	Nestin-GFP homozygous transgenic mice	Neurogen esis, stem cells, calorie restriction , rapamyci n	Immunohysto chemistry	Long-term exposure to calorie restriction or rapamycin affects the proliferation of GFP-marked neural stem and progenitor cells in the ageing mouse hippocampus.	Restricted calorie intake, such as through calorie restriction, could potentially lead to increased division of neural stem and progenitor cells in the aging female brain.	Number of cell divisions in the dentate gyrus	Rapamycin increases the division of cells in the dentate gyrus of female mice, including neural stem and progenitor cells marked by Nestin-GFP expression. However, this increased proliferation doesnot significantly raise the number of doublecortin-positive newborn neurons.
Parks et al., (2020)	Interleukin 6 reduces allopregnanolo ne synthesis in the brain and contributes to age- related cognitiv e decline	<u>https://doi.or</u> g/10.1194/jlr. <u>RA11900047</u> <u>9</u>	To investigate age-related changes in neurosteroid levels in the brain; To assess the impact of	Male C57BL/6N mice (3, 12, and 24 months old)	Interleuki n-6, IL-6, inflammati on	Spatial memory and expression levels	Whether IL-6 reduces allopregnanolo ne levels and how this affects spatial memory	The reduction of the neurosteroid AlloP with age may be linked to increased levels of IL-6, and this association	Spatial memory assessment, mRNA levels	The study found that the neurosteroid allopregnanolone decreases with age in mice, but administering allopregnanolone improved spatial memory in older mice. IL-6 (an inflammatory marker) reduced AlloP levels in the cerebral cortex. Inhibiting IL- 6 in aged mice improved working

	in mice		replacing the neurosteroid AlloP on cognitive function in older mice; To examine effects of inflammatory cytokines on steroidogeni c enzymes in the CNS and understand mechanisms					could play a significant role in age-related cognitive decline.		memory These findings suggest a link between AlloP, IL-6, and age-related cognitive changes.
Pedersen, et al., (2019)	Physical activity and muscle-brain crosstalk	https://doi.or g/10.1038/s4 1574-019- 0174-x	To review the potential mechanisms by which exercise contributes to brain health.	various	Exercise, brain health	Review	Physical exercise, muscle health and brain health	Exercise has numerous positive effects on brain health, lowering risks of dementia, depression, and stress. It plays a role in preserving and enhancing cognitive function and metabolic control	N/A	Exercise influences the brain through various mechanisms. Myokines, such as adiponectin, fibroblast growth factor 21, and insulin-like growth factor 1, play a role in muscle-organ communication. Myokines induced by exercise, contribute to improved memory and neurogenesis. Exercise also boosts BDNFs. Additionally, exercise affects myokine IL-6 levels, potentially regulating mechanisms for food intake. Finally, exercise increases kynurenine aminotransferases, converting neurotoxic kynurenine to neuroprotective kynurenic acid, reducing depression-like symptoms.
Peng, et al., (2023)	Construction and validation of cognitive frailty risk prediction model for elderly patients	https://doi.or g/10.1186/s1 2888-023- 04736-6	To construct a predictive nomogram model for CF amongst older people with	Human, aged ≥65 years, 1182, 59.2% female. Exclusion of dementia	Predictive model. Education , marital status, living alone,	Cross sectional Survey; modelling	Predictors examined were those that could easily be assessed in the community	Understanding non-medical factors that may increase the risk of CF in people with multimorbidity	CF as measured by Fried Phenotype and MOCA.	Education, marital status, living alone, exercise, intellectual activity, social activity, fall history, sleep were all predictors of CF.

[]		1			-					
	with		multimorbidit		exercise,			could help in		
	multimorbidity in Chinese		y, emphasising		intellectua I activity,			identifying people for		
	community		non-		social			intervention		
	based on non-		traditional		activity,			and support.		
	traditional		potential		falls,			and support.		
	factors		predictors.		sleep					
Perluigi, et al., (2015)	mTOR signaling in aging and neurodegener ation: At the crossroad between metabolism dysfunction and impairment of	https://doi.or g/10.1016/j.n bd.2015.03.0 14	To highlight the regulatory roles of mTOR signalling in the brain, with a specific focus on its influence on	Various animal models	mTOR, autophag y, energy metabolis m, mitochon dria	non- systematic review	The role of mTOR signalling	mTOR has a role in regulation of mitochondrial function and glucose metabolism and changes may be related to development of age-related		The review emphasises the pivotal role of mTOR signalling in regulating energy metabolism and autophagy, which are closely linked with mitochondrial function. These interconnected pathways are crucial for healthy longevity. Dysregulation of the PI3-K/Akt/mTOR pathway can have widespread effects on the entire system and is implicated in
Pharaoh.	autophagy Disparate	https://doi.or	autophagy, glucose metabolism, and mitochondria I functions. To explore	male mice	IGF-1	Behavioural	Effect of IGF-1	cognitive decline IGF-1 plays a	Cognitive	pathological processes related to cognitive decline.
et al., (2020)	Central and Peripheral Effects of Circulating IGF-1 Deficiency on Tissue Mitochondrial Function	<u>g/10.1007/s1</u> 2035-019- 01821-4	the impact of reduced circulating IGF-1 levels on both central (brain) and peripheral (other tissues) mitochondria I function.	(C57Bl/6 and Igf1f/f (B6.129(FVB)- Igf1tm1Dlr/J) mice)	signalling, mitochon drial function	study on mice and mitochondial function and gene expression measurement s	on mitochondrial function	crucial role in central nervous system mitochondrial function and spatial learning. Age- related IGF-1 deficiency may increase brain susceptibility to damage and cognitive deficits.	function (radial arm water maze), glucose and insulin tolerance, mitochondrial function	significantly affect muscle mitochondria but increased fat metabolism. This could be due to increased growth hormone levels. IGF-1 deficiency impairs spatial and reversal learning, linked to reduced brain ATP and mitochondrial efficiency in the hippocampus. It also increased oxidative stress and stress- related genes in the hippocampus.
Piccin, et al., (2014)	Neural stem and progenitor cells in the aged	<u>https://doi.or</u> <u>g/10.1016/j.n</u> <u>eurobiolagin</u> <u>g.2014.01.02</u>	To examine the stability of the number of	mice (Young adult mice were aged 8 to 10-week-	Adult neural stem cell, stem cell	Transplantatio n studies	Proliferation of stem cell in the subependyma	Alterations in the microenvironm ent contribute	size of neural stem cell pool	The study challenges previous findings by showing that neural stem cell numbers remain stable in ageing. Changes in the stem

	subependyma are activated by the young niche	<u>6</u>	neural stem cells (NSCs) in the ageing subependym a. The perceived decline is attributed to a reduction in their ability to proliferate within the aged stem cell environment.	old and old age mice were 18 to 22-month- old)	niche, wnt signalling			to the reduced ability of the ageing brain to regenerate.		cell environment reduce their ability to divide, but this can be reversed by factors from younger brains. Old and young neural stem cells have similar intrinsic abilities for self-renewal and creating different cell types and can respond to signals from brains of different ages. Changes in signalling, especially Wnt signalling, contribute to this decline in the aged brain's stem cell response to injury.
Quattropa ni, et al., (2021)	Impact of Cognitive R eserve and Premorbid IQ on Cognitive a nd Functional Status in Older Outpatients	https://doi.or g/10.3390/br ainsci110708 24	To investigate the connections between Cognitive Reserve, premorbid IQ, physical and motor abilities, and cognitive and functional status indicators (handgrip strength, gait speed, daily autonomy, and frailty). To investigate relationships with 1-year follow-up	Human, age ≥65 years. N= 115. N=104 at follow-up mean age 80.26 years 68% female. Italy. Excluded people with major neurocognitiv e disorder or serious physical or sensory disabilities that would affect ability to complete assessments	Cognitive reserve, pre- morbid IQ	Observational cross- sectional study, with a follow-up assessment of cognitive status	Association of cognitive reserve and pre-morbid IQ with CF (not just cognition)	While cognitive reserve has been shown to delay cognitive decline even in the presence of neuropathology , its association with physical function is less specified although suggested by association of frailty with Cognitive reserve proxies such as education.	handgrip;	Cognitive reserve was associated with grip strength, gait speed and BADL, and pre- morbid IQ with IADL and marginally with frailty. There was a 3.3% average reduction in MMSE after one year. People with cognitive worsening had lower cognitive reserve, reduced gait speed and higher Frailty at baseline.

			cognitive status							
Raihan, et al., (2019)	SFRS11 Loss Leads to Aging- Associated Cognitive Decline by Modulating LRP8 and ApoE	https://doi.or g/10.1016/j.c elrep.2019.0 6.002	To assess the levels of SR proteins, particularly SRSF11, in the prefrontal cortex (PFC) of aged brains and in long-term cultured cells. SRSF11 exhibits a significant decrease in abundance with ageing in both in vivo and in vitro models.	C57BL/6J mice	RNA binding proteins, gene expressio n, cognitive decline	Behavioural assays and in vitro	SFRS11 protein's effect on learning and memory	Age-dependent loss of SFRS11 in the PFC reduces levels of ApoE and LRP8, leading to activation of the JNK pathway, ultimately influencing cognitive deficits	Learning and memory assays	SFRS11 levels are significantly reduced in the PFC of aged brains. Mice with SFRS11 deficiency in the PFC exhibit impaired learning and memory. SFRS11 directly interacted with LRP8 mRNA and apoE mRNA, stabilising these mRNAs and deactivating JNK signalling. Restoring LRP8 and apoE levels reduces enhanced JNK signalling in SFRS11-deficient cells and reversed ageing-related phenotypes caused by SFRS11 loss.
Ravache, et al., (2023)	Multisensory Stimulation Reverses Memory Impairment in Adrβ3KO Male Mice	https://doi.or g/10.3390/ij ms24131052 2	To investigate whether providing multisensory stimulation can improve memory deficits resulting from the inactivation of Adrβ3 (Adrβ3KO), which leads to the suppression of prolonged glial-	mice	environm ental enrichme nt, stimulatio n	21- and 86- day-old Adrβ3KO mice were exposed to an 8-week multisensory stimulation (MS)	Effects of multisensory stimulation on the memory of mice	Multisensory stimulation has a significant impact on improving performance in learning and memory tasks in animals through increased sensory input and problem- solving opportunities.	Behavioural tests (novel object recognition and social recognition), western blots	This study reinforced the positive impact of early stimulation (applied just after weaning) on cognition, preventing or delaying memory impairment associated with defects in neuronal signalling. Findings highlight the significant role of Adr β 3 in memory, particularly as ageing exacerbates memory issues in Adr β 3KO animals. The observed changes in glial cells and glutamate transporter expression suggest that alterations in astrocytic response may contribute to adrenergic modulation and induced cognitive deficits in Adr β 3KO mice.

Reichel, et al., (2017)	Age- related Cogniti ve Decline Coincides with Accelerated Volume Loss of the Dorsal but not Ventral Hippocampus in Mice	https://doi.or g/10.1002/hi po.22668	mediated inflammation To investigate variations in hippocampu s volume in relation to age-related declines in spatial learning abilities, both among different individuals and within the same individual.	male floxed R26R mice	Hippocam pus, brain, morpholo gy	Behavioural study combined with MRI	The association between hippocampal volume and cognitive impairment.	Cognitively poor performing mice show faster volume loss in the dorsal hippocampus compared to good performing mice.	Water cross maze, manganese- enhanced MRI of hippocampal volume	Both good performing and poor performing mice showed a decrease in absolute hippocampal volume over time. However, there was a significant difference between good and poor performing mice in the dorsal hippocampus, with poor performing mice experiencing a faster volume decrease towards the end of the study. This difference was not observed in the ventral hippocampus.
Resciniti, et al., (2023)	Depressive Symptoms Partially Mediate the Association of Frailty Phen otype Symptoms and Cognition f or Females but Not Males	https://doi.or g/10.1177/08 9826432211 00688	To determine if depressive symptoms play a mediating role in the connection between frailty and cognitive function, with a focus on sex differences.	Human; N= 3,705 at wave 2012, 57.7% female; mean age 75 years. From Health and Retirement Study (HRS),	Depressio n; sex; gender	Longitudinal cohort; mediation	Depression as a mediator between PF and CI.	Mental health factors and biomarkers such as chronic inflammation, mitochondrial dysfunction, and metabolomic markers, may contribute to the relationship between PF and CI. Depression, common in frail older adults, could partially account for the association between PF and CI. This connection	Global cognition. Frailty: Fried Phenotype for frailty; Depression: CES-D	Women were frailer and more depressed than men, while men had lower cognitive function. Over time, frailty was linked to declining cognition, even after accounting for confounding factors. Depression mediated the association between frailty and cognitive decline (11.1% of this relationship). Impact of frailty on cognitive decline was greater in men (0.15 greater decline per frailty symptom compared to women). Mediation effect of depression was significant for women only, at 11.7%.

Reutzel, et al., (2020)	Mitochondrial Function and Cognitive Performance during Aging: A Longitudinal Study in NMRI Mice	https://doi.or g/10.1155/20 20/4060769	To track the ageing process in the brains of female NMRI mice over time. This involved assessing brain mitochondria I function, cognitive abilities, and molecular markers at six-month intervals until the mice reached 24 months of age.	Female NMRI mice	Longitudi nal study, mitochon dria, cognitive performan ce, mice.	Longitudinal study (6 monthly to 24 months). Measured brain mitochondrial function, cognitive performance, and molecular markers.	Mitochonrial function, citrate synthase activity, protein quantification and mRNA expression of genes involved in mitochondrial biogenesis in NMRI mice as related to cognitive function.	may be due to reduced social and physical activity or shared vulnerability to physiological and psychological stressors. Link between the natural brain ageing process, which leads to declining cognitive abilities, and changes in energy metabolism and mitochondrial biogenesis.	Gene expression (ATP, mitochondria)	At 6 months, genes related to mitochondria (complex IV, creb- 1, β-AMPK, and Tfam) increased significantly. Brain ATP levels decreased notably by 18 months, aligning with reduced mitochondrial respiration observed in middle-aged mice, which corresponds to cognitive impairments. Gene expression associated with mitochondrial biogenesis (creb-1, PGC1-α, Nrf- 1, Tfam, GAP43, and SYP1) and the antioxidative defence system (Cat and SOD2) decreased starting at 18 months. BDNF expression peaked at 6 months.
Rietman, et al., (2019)	Antioxidants linked with physical, cogni tive and psychological f railty: Analysis of candidate biomarkers and markers derived from the MARK-	https://doi.or g/10.1016/j. mad.2018.04 .007	To identify specific biomarkers for three distinct frailty domains: physical, cognitive, and psychologica I. This	Human; Randomly recruited Age- Stratified, from General population (RASIG) and MARK-AGE studies aged 35–74	Antioxida nts, ß- cryptoxan thin, zeaxanthi n, carotenoi ds; self- reported health; inflammati	Cross- sectional study with multiple populations	Inflammation, oxidative stress	Different frailty domains may have different biomarkers	Health status, mood, mental health, handgrip strength, memory, cognitive flexibility, and processing speed. Biomarkers	Differences in biomarkers were observed between physically, cognitively, and psychologically frail individuals. PF individuals had lower levels of specific nutrients like a-carotene, selenium, ß-cryptoxanthin, and ß-carotene, along with higher monocyte levels. CF individuals had lower levels of ß- cryptoxanthin, zeaxanthin,

	AGE study		approach sought to determine whether the mechanisms underlying these domains differ or not.	years. Analyses for physical and psychological frailty, N= 2128, mean age 62.8 & 57.8 years; analysis for cognitive frailty N=1944 Mean age = 64.3 years.	on; gender difference s				related to DNA, immunology, and oxidative stress. Frailty was assessed across three dimensions: physical, psychological, and cognitive.	cholesterol, a-tocopherol, and guanidinoacetate, and higher cytomegalovirus (CMV) antibody levels. Psychologically frail individuals had lower levels of a- carotene and tended to have lower education levels. Higher levels of ß-cryptoxanthin and zeaxanthin were associated with a lower risk of CF. Gender differences were also noted.
Rietman, et al., (2019)	Trajectories of (Bio)markers During the Development of Cognitive Fr ailty in the Doetinchem Cohort Study	https://doi.or g/10.3389/fn eur.2019.004 97	To investigate trajectories of (bio)markers in adults who developed CF compared to a control group of age- and sex-matched individuals who did not experience CF over a 15-year follow-up.	Human, aged 20-59 at baseline, n=4018 by final follow- up, Netherlands	Biomarker s	Longitudinal study, follow up every 5 years for 15 years	17 potentially relevant (bio)markers, including BMI, Alanine Transaminase (ALT), cholesterol, triglycerides	Used concept of vulnerable cognition (MCI) only as definition of CF. Hypothesised that these biomarkers would change differently in those who became CF over time than those who did not.	Global cognitive functioning: memory, information processing speed, cognitive flexibility. Enzymatic analysis of 17 biomarkers for cardiometaboli c, inflammatory, and oxidative stress.	No differences in (bio)marker trajectories between incident CF men and controls. Differences in the trajectories of total cholesterol, GGT and urea were noted for women who became CF compared to controls who did not, over time. However, the relation between these biomarkers and the development of CF is unclear.
Rivan, et al., (2019)	Cognitive frailt y among Malaysian older adults: baseline findings from the LRGS TUA cohort stu dy	https://doi.or g/10.2147/ci a.s211027	To determine the presence of CF and its associated factors among community- dwelling older adults from the	Human, Malaysia, n=815 (54.4% women), aged ≥60 years, MMSE of 14 and below excluded.	Biomarker s, nutrition, depressio n	Cross- sectional study	Clinical profile, anthropometry, fitness, dietary intake, biomarkers, depression.	Several factors are associated with CF, including depression, nutrition and social support	MMSE, CHS frailty criteria	Increasing age, depression, limitations in activities of daily living, low niacin intake, and insufficient social support were linked to CF.

			I		· · · · · ·					
			"LRGS- Towards Useful Aging (TUA)" longitudinal study.							
Robertson, et al., (2013)	Frailty and cog nitive impairme nt-A review of the evidence and causal mechanisms	https://doi.or g/10.1016/j.a rr.2013.06.0 04	To review the evidence for an association between frailty and CI and outline mechanisms that potentially underpin this relationship	Human	Inflammat ion, Alzheimer 's pathology, nutrition	Systematic review	AD pathology, hormones, nutrition, inflammation, cardiovascular risk, mental health	Cognitive impairment and frailty are linked and many mechanisms underlie the link	N/A	AD pathology (tangles and plaques) were associated with frailty levels 6 months before death. Decreased testosterone, insulin resistance, nutritional factors, IL-6, TNFalpha, CRP, small vessel disease, depression are all associated with CF.
Roda, et al., (2021)	Neuroprotectiv e Metabolites of Hericium erinaceus Promote Neuro-Healthy Aging	https://doi.or g/10.3390/ij ms22126379	The study aimed to examine the impact of a two-month oral supplementa tion with standardized extracts of Hericium erinaceus (He1), which includes specific compounds, on locomotor frailty and the cerebellum in aged mice.	C57BL-6J wild-type male mice	Inflammat ion, IL-6, oxidative stress	Supplementati on in aged mice. Behavioural assays and protein expression	The effects of Hericium erinaceus on locomotor functions and the mechanism by which it exerts these effects	Metabolites derived from Hericium erinaceus could modulate levels of proteins associated with inflammation and oxidative stress. This modulation results in improved locomotor functions.	Open arena test, emergence test, staining, fluorescence imaging	Untreated mice showed age- related declines in mean speed, particularly in the open arena test. Treated mice showed a significant improvement in the age-related decline in the emergence test. Untreated mice showed more brain shrinkage in the cerebellum than treated mice, which also exhibited positive changes such as reduced IL-6 positive cells, increased VEGF- immunoreactivity, decreased levels of SOD1, NOS2, and COX2, and increased levels of SIRT1.
Rogans- Watson, et al, (2020)	Premature frail ty, geriatric conditions and	<u>https://doi.or</u> g/10.1108/hc <u>s-05-2020-</u>	To evaluate frailty, geriatric	Human; N=33 PEH, London	premature frailty, inequalitie	Cross- sectional observational	Homelessness and associated multimorbidity	PEH may face health inequalities	Health-related factors including PF, CI	55% of PEH were frail, similar to 89-year-olds in the general population. Various geriatric

	multimorbidity among people experiencing homelessness: a cross- sectional obser vational study in a London hostel	<u>0007</u>	conditions, and multimorbidit y in individuals experiencing homelessne ss (PEH) using comprehensi ve geriatric assessment and compare these findings with the general population.	Hostel; 91% male; aged >30 mean age 55.7 years	s, homlessn ess	study		leading to premature ageing, which includes conditions such as PF and CI.	using the RUDAS scale, falls, risk of osteoporotic fractures, malnutrition risk (MUST tool), orthostatic hypotension, visual impairment, and functional impairment (ADLs).	conditions were prevalent, including falls, visual impairment, low grip strength, mobility issues. Cl in 45%. 39% were at high risk of malnutrition, 30% had no social contacts, 32% faced a high probability of osteoporotic fracture, and 39% struggled with one or more ADL. At an average age of 56, these individuals had more long-term conditions than average 90-year-olds in the general population.
Romine, et al., (2015)	The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation	https://doi.or g/10.1016/j.n eurobiolagin g.2015.01.00 <u>3</u>	To understand how the total number of neural stem cells (NSCs) and their proliferation rates change with age and investigate methods to restore NSC proliferation and neurogenesi s in the ageing brain.	Male C57 BL/6 mice	Neural progenitor cells, stem cell, mTOR	Immunohistoc hemistry	Proliferation of NSCs, activity of mTOR	Activating the mTOR signalling pathway rejuvenates neural stem cells (NSCs), promoting their growth and boosting neurogenesis in the aged hippocampus.	Number of NSCs	Decline in neurogenesis during ageing is primarily due to reduced proliferation of active NSCs, partly linked to compromised mTOR signalling activity. Quiescent NSCs in the hippocampus decrease slowly with age; active NSCs show a sharp decline becoming less active early in the ageing process 66-9 months). When the mTOR pathway is activated, it boosts NSC proliferation and supports neurogenesis in older mice.
Ruan et al., (2015)	Cognitive frailty , a novel target for the prevention of elderly dependency	https://doi.or g/10.1016/j.a rr.2014.12.0 04	To refine the framework for the definition and potential mechanisms of CF; to explore the	Human	Reversibl e cognitive frailty; potentially reversible cognitive frailty;	Non- systematic review/consen sus piece	CF is a heterogeneous age-related clinical syndrome of CI caused by PF and pre-PF).	Reversible CF = SCD and positive biomarkers resulting from physical factors. This may occur at	CDR	CF is influenced by a combination of general ageing processes, specific brain vulnerabilities, various risk factors, and shared pathological pathways with conditions like AD and vascular dementia. Understanding these factors is

			significance of suggestions for preventing the progression of CF.		subjective cognitive decline (SCD).			late stage pre- clinical AD or at the pre-MCI stage due to other causes. The CI of potentially reversible CF is MCI (CDR = 0.5)		crucial for preventing and managing cognitive frailty in ageing populations.
Ruan, et al, (2017)	Emerging biomarkers and screening for cognitive frailty	https://doi.or g/10.1007/s4 0520-017- 0741-8	To investigate CF and its subtypes through clinical and epidemiologi cal studies. To focuses on defining CF and its clinical criteria while also exploring potential biomarkers for its screening.	Human	Biomarker s	Narrative review	Biomarkers that are linked to CF.	Biomarkers that are associated with neurodegenera tive diseases such as AD can also be used to predict CF	N/A	CSF Amyloid beta 42 levels, ApoE screening, pTau levels, and FDG-PET are useful for screening non-AD CI. Additionally, markers like IL-6, CRP, and conditions like anaemia and sarcopenia can help detect both frailty and CI.
Ruan, et al., (2017)	Sexual dimorphism of frailty and co gnitive impairm ent: Potential underlying mechanisms	https://doi.or g/10.3892/m mr.2017.698 <u>8</u>	To examine gender differences in susceptibility to frailty and cognitive decline and explore the underlying mechanisms involved.	Human, mice	Sex difference s	Systematic review	Mechanisms behind the sex differences in CF	Sex differences in CF may be attributed to factors such as sex hormones, the HPA (hypothalamic- pituitary- adrenal) axis, and iron levels.	N/A	Frailty in both males and females is associated with relative deficiencies in anabolic hormones like IGF-1, DHEA(S), and free testosterone. Low testosterone levels are linked to frailty in older males. Estrogens and progesterone have protective effects against AD. Cortisol and IL-6 levels are connected to frailty, with cortisol having varying effects based on sex. Iron accumulation is associated with frailty and

Ruan, et al., (2018)	Targeting NAD(+) degradation: The therapeutic potential of flavonoids for Alzheimer's disease and cognitive fr ailty	https://doi.or g/10.1016/j.p hrs.2017.08. 010	To explore the inhibition of PARP and CD38 by polyphenolic flavonoids, as well as the activation of sirtuins in age-related diseases.	Human	Inflammat ion, NAD+, oxidative stress, sirtuins	Review	Flavonoids' effect on the NAD+-sirtuin axis and protective effects against CF.	Flavonoids that moderately inhibit PARP-1 and/or CD38, restore cellular NAD+ levels, and activate NAD+- dependent sirtuins have potential as interventions for preventing and treating CF.	N/A	cognitive decline, and gender differences in these factors may influence CF. Flavonoids suppress NADase activity by inhibiting ARTs/PARPs and CD38, and some inhibit human PARPs and CD38 in the submicromolar range. Daily oral administration of flavonoids reduced the expression of inflammatory mediators. Healthy people who had a naturally higher long term flavonoid intake showed better cognitive performance, and less cognitive decline in a follow-up study. Flavonoids improve cognitive function in rats and mice by reducing inflammation and oxidative stress.
Ruan, et al., (2020)	Prevalence of cognitive frailty phenotypes and associated factors in community- dwelling elderly population	https://doi.or g/10.1007/s1 2603-019- 1286-7	To investigate prevalence and associated sociodemogr aphic factors of reversible and potentially reversible types of CF	Human: N=5328 aged ≥60 years, mean age 71.36 years, 53.4% female.	Reversibl e and potentially reversible CF, sociodem ographic and psychoso cial risk factors	cross- sectional observational study	Differentiation in relation to what predicts reversible and potentially reversible CF. Sociodempogr aphic & Psychosocial risk factors	Differentiation of predictors of the different levels of reversibility in CF is important for potential interventions	Frailty: FRAIL scale. Cognition: Rapid Cognitive Screen, and Subjective Cognitive Decline scale. Reversible CF: simultaneous physical pre-PF or PF and pre- MCI SCD. Potentially reversible CF: combined presence of physical pre-PF or PF and MCI	Marital status, education and age were key predictors of CF. Reversible CF was more common in women with higher education.
Salas- Venegas,	Chronic consumption of	<u>https://doi.or</u> g/10.3389/fn	To investigate	female Wistar rats	Diet, neuroinfla	Longitudinal measures of	Obesity may affect	Obesity-related inflammation	Inflammatory status in CNS	Obesity-induced systemic inflammation triggers

et al.,	a hypercaloric	agi.2023.116	how chronic		mmation,	inflammatory	inflammatory	may affect the	(cortex and	neuroinflammation in brain
(2023)	diet increases	<u>2747</u>	consumption		inflamma	status of rats	status and	CNS, leading	hippocampus)	regions linked to memory and
	neuroinflamma		of a high-		geing	at 6 and 13	ageing	to	and serum.	learning, marked by increased
	tion and brain		calorie diet,			months old.	processes.	neuroinflammat	Memory was	senescent markers. Senescence
	senescence.		leading to				•	ion and the	evaluated	might contribute to the cognitive
	promoting		systemic					establishment	using the novel	impairments associated with
	cognitive		inflammation					of cellular	object	obesity.
	decline in		. induces					senescence	recognition	oboony.
	middle-aged		brain					which may be	test. Senescent	
	female Wistar		senescence					related to	markers were	
	rats		and its					cognitive	identified.	
	1815		effects on					decline in a	identined.	
			cognitive					middle-aged		
			decline in					female Wistar		
			female					rat model of		
			Wistar rats					obesity.		
	-		with obesity.			-				
Sargent, et		https://doi.or	То	Human	Inflammat	Systematic	Inflammatory	Cognition and	N/A	The study investigates numerous
al., (2018)	biological	<u>g/10.1016/j.a</u>	investigate		ion,	review	and immune	frailty have		types of markers for PF and CI:
	pathways	rr.2018.08.0	biological		protein,		markers,	often been		demographic factors (education,
	for frailty and c	<u>01</u>	and genomic		genetics,		protein	studied		income), health indicators (BMI,
	ognitive impair		factors		metabolis		markers,	separately but		chronic diseases, BP),
	ment:		associated		m,		clinical	many pathways		psychological factors (e.g.
	A systematic		with CI and		psychoso		markers,	link the two.		Depression); lifestyle factors (e.g
	review		PF and in		cial		genetic			alcohol intake, physical activity);
			ageing				markers			biological markers (cytokines (IL-
			individuals.							6, IL-8, IL1alpha), blood
			To identify							components (CD4, CD8, RBCs,
			common							WBCs), hormones (cortisol, IGF-
			mechanisms							1), lipids (LDL, ApoB, ApoA1),
			underlying							and genetic markers (SNPs in IL-
			these two							6, IL-1beta, TNF).
			significant							,
			age-related							
			conditions.							
Sargent, et	Anticholinergic	https://doi.or	То	Human,	Anticholin	Retrospective	Whether the	Anticholinergic	MMSE score	Anticholinergic burden (ACB)
al., (2020)	Drug	a/10.1093/ae	investigate	n=1453.	ergic,	cohort study	anticholinergic	drug use can	and the TMT	was linked to CI, PF and CF. This
, (()	Induced Cognit	rona/gly289	the	aged 20-102	drug,		class of drugs	worsen both	part A and B to	association might be explained
	ive and		association	from Italy,	medicatio		are associated	cognitive and	assess	by the neuroinflammatory effects
	Physical		between	anticholinergi	n		with onset of	physical	cognition. CHS	of ACB drugs, which can
	Impairment:		anticholinerg	c effect was	••		CF	function.	frailty criteria to	increase blood-brain barrier
	Results from		ic burden	assessed in			0.		assess frailty.	permeability and negatively
	the InCHIANTI		and: CI, PF	1155					assess namy.	impact cognitive function in older
			anu. UI, FF	1155						impact cognitive function in older

	Study		and CF.	individuals over 65.						adults.
Sargent, et. al, (2020)	Shared mechanisms for cognitive impairment and physical frailty: A model for complex systems	https://doi.or g/10.1002/trc 2.12027	To introduce an updated hypothesis regarding multi-system dysfunction, to provide a framework for better understandin g CF and other complex aging-related conditions.	Human, n=1453, Italy	Biomarker s, inflammati on, renal function, nutrition, immune function, genetics	Longitudinal study. Participants split into two groups: model I (defined impairment using global cognition) and model II (defined impairment using executive function).	Biomarkers, genomic predictors, neuroinflamma tory markers, metabolites, lipid metabolism, nutrition, renal, immune and hormone function	Cognitive frailty is a multifactorial disorder.	MMSE and TMT A and B; biomarkers.	Several genetic markers (SNPs) and various biomarkers including inflammatory markers (IL-1, IL-6, TNFalpha, ESR), nutrients (vitamin E, omega-6 and -3), lipids (LDL), metabolomic ceramides, and several blood and urine markers were associated with CF. Complex system model was compared with AD prediction models.
Scassellati , et al., (2020)	Molecular mechanisms in cognitive frailty: potential therapeutic targets for oxygen-ozone treatment	https://doi.or g/10.1016/j. mad.2020.11 1210	To elucidate the established molecular mechanisms influenced by O3 administratio n and explore how these mechanisms might be connected to CF.	Human	Treatment , inflammati on, oxidative stress, gut microbiot a	Non- systematic review	The mechanisms by which oxygen-ozone therapy may prove to be a suitable treatment for CF.	Oxygen-ozone therapy has many therapeutic effects and may prove effective in treatment of CF.	N/A	Inflammatory markers, oxidative stress and gut microbiota are linked to CF. Oxygen-ozone therapy can potentially mitigate inflammation, enhance antioxidant defences via Nrf2 signalling, and has shown benefits in gastrointestinal diseases. It may be a promising treatment for CF.
Scisciola, et al., (2021)	Sarcopenia and Cognitive Function: Role of Myokines in Muscle Brain Cross-Talk	https://doi.or g/10.3390/lif e11020173	To describe the role of myokines on brain function and their involvement in CI in sarcopenia.	Various	Sarcopeni a, myokines	Review	Role of myokines	Myokines (molecules produced and released by skeletal muscles), play a role in regulating brain functions such as mood, learning,	N/A	Review highlights interaction between muscles and the brain. Myokines enhance brain functions like cognition and memory. Sarcopenia, linked to muscle stem cell decline, may reduce myokine production, impacting brain function negatively. Exercise regulates myokines, influencing muscle metabolism and other organs.

Seib, et al., (2013)	Loss of Dickkopf-1 Restores Neurogenesis in Old Age and Counteracts Cognitive Decline	https://doi.or g/10.1016/j.s tem.2012.11. 010	To investigate whether increasing Wnt signalling by reducing Dkk1 levels can enhance neurogenesi s in the hippocampu s and counteract age-related cognitive decline.	3- and 18- month-old C57BL/6 mice, transgenic mice	Neurogen esis	Spatial learning tests and expression analyses	Whether loss of Dkk1 could restore neurogenesis and therefore cognitive function	locomotor activity, and neuronal protection. Increasing Wht signalling by reducing Dkk1 expression may mitigate age-related declines in neurogenesis and cognitive function.	T-maze test, active place avoidance paradigm, eight arm radial maze, GFP expression, mRNA and protein expression	Reducing Dkk1 expression led to a significant increase in the number of Wnt-expressing neural progenitor cells, and Nestin-Dkk1 mice exhibited a substantial increase in the number of newborn neurons compared to age-matched controls. Cognitive tests also showed that Dkk1 knockdown animals performed similarly to young animals, suggesting improved cognitive function in older mice with reduced Dkk1 expression.
Sharifi, et al., (2021)	Studying the relationship between cognit ive impairment and frailty phe notype: a cross-sectional analysis of the Bushehr Elderly Health (BEH) program	https://doi.or g/10.1007/s4 0200-021- 00847-7	To determine which aspects of the frailty phenotype are more strongly linked to CI.	Human; N=2,336; aged ≥60 years mean age 69.26 years; 51.44% female. Iran	Domains of frailty; Domains of cognitive function	Cross- sectional observational study within cohort	Over 20 neuro- inflammatory markers may be linked to both PF frailty and CI. The interaction between hormones from the hypothalamic- pituitary- adrenal axis and inflammatory factors may be a mechanism driving this association.	While the connection between PF and CI is well- established, there has not been an exploration of the associations between specific domains within each of these conditions.	Frailty: Fried Phentotype; Cognition: MiniCog (3 word recall and clock drawing); category fluency; MMSE; ADL and IADL; depression: PHQ-9.	Associations between CI and PF included male gender, diabetes, higher depression score, lower ADL and IADLs. Even after adjusting for various factors, there remained a significant association between CI and PF. Low physical activity, grip strength and gait speed, were linked to CI, while exhaustion and weight loss were not. Memory was not related to frailty, but executive functions were. Findings suggest that susceptibility of different cognitive domains varies by frailty status, offering new insights into development of both frailty and CI.
Shim, et al., (2020)	Motoric cogniti ve risk syndrome is	https://doi.or g/10.1016/j.a rchger.2019.	To investigate the	Human; N=2882, Korean frailty	Motoric Cognitive Risk	Cross sectional study within	MCR may be related to specific	MCR is characterised by both	Korean version of MMSE, comprehensive	MCR was associated with a lower education level, reduced physical activity and increased

	associated with processing speed and executive function, but not delayed free recall memory: The Korean frailty a nd aging cohort st udy (KFACS)	<u>103990</u>	relationship between Motoric Cognitive Risk Syndrome (MCR) and cognitive functional domains.	and aging cohort study (KFACS). Participants with dementia and other neurological impairments excluded. 52.0 % women, mean age: 75.9 years, 231 (8.02 %) met MCR criteria	syndrome ; executive function; frontal cortex.	cohort study	cognitive functions	subjective cognitive complaints (SCCs) and slow gait and shows high risk for dementia. A synergistic effect is proposed compared to slow gait or cognitive complaints alone.	cognitive battery. Gait speed and subjective cognitive impairment	falls history. There was no increase in MCR with age within the cohort and no sex difference. MCR was linked to increased risk of impairment in processing speed and executive function but not in delayed free recall memory or attention. In this Korean sample, individuals reported higher SCCs, which may have cultural influences, especially among women. Frontal and pre- frontal brain areas may be implicated in MCR.
Shin, et al., (2019)	Exercise, the Gut Microbiome, and Frailty	https://doi.or g/10.4235/ag mr.19.0014	To investigate whether alterations of the gut microbiome through exercise training can lead to healthy ageing.	Human	Microbio me, exercise	non- systematic review	Relationship between gut microbiota and cognitive frailty (CF). Exercise may improve CF by impacting gut microbiota.	Gut microbiota is associated with CF and exercise is able to modify the former, thereby preventing CF.	N/A	Older individuals with high frailty scores had reduced proportions of beneficial gut bacteria and an increased proportion of potentially harmful Enterobacteriaceae. Some gut bacteria can produce neurotoxins and amyloid peptides, which might be relevant to CF. Exercise training can increase beneficial bacteria and so potentially improve PF by altering gut microbiomes, especially those producing short-chain fatty acids (SCFAs).
Siejka, et al., (2022)	Frailty Is Associated with Cognitive Decline Independent of Cerebral Small Vessel Disease and Brain Atrophy	https://doi.or g/10.1093/ge rona/glac078	To investigate if baseline frailty is linked to cognitive decline over time, while accounting for cerebral small vessel	Human; community living, no dementia, mobile, aged 60-85 years. Tasmanian study of Cognition and Gait (TASCOG)	Cerebral small vessel disease cSVD	Longitudinal cohort study	Cerebral small vessel disease may be important in the relationship between PF and CI.	Frailty is linked to cognitive decline, dementia, and related brain issues like cSVD, beta- amyloid and tau buildup, and brain atrophy, but is	Cognitive domains: executive function; attention- processing speed; visuospatial ability; visual memory; verbal fluency;	Frailty was linked to cognitive decline over time even when controlling for cSVD, which is also associated with cognitive decline. cSVD had a more pronounced effect on cognitive decline in those with low levels of frailty in specific areas like attention and processing speed. This suggests that frailty plays a role in cognitive decline beyond

			disease (cSVD) and brain atrophy. To evaluate if relationships between cognitive decline, cSVD, and brain atrophy vary depending on the individual's frailty status.	N=330 at baseline, 242 at 2nd follow- up, median 4.4 years.				unclear if frailty affects cognition and dementia, separate from these brain pathologies.	working memory; verbal memory	its relationship with brain diseases. Frailty may reduce the point at which brain pathology shows as Cl.
Spehar, et al., (2020)	Restoring aged stem cell functionality: Current progress and future directions	https://doi.or g/10.1002/st em.3234	To examine dietary, treatment, and small molecule interventions that have shown evidence of improving the function of aged adult stem cells in various contexts.	Various animal models	Stem cells	Review	Decline in stem cells in different tissues and possible treatments	Stem cell dysfunction is a characteristic of ageing and is linked to the decline in physical and cognitive functions in humans and other mammals. Counteracting decline in stem cell function may affect physical and cognitive function.	N/A	Stem cell ageing results from a combination of internal and external factors. Chronic inflammation plays a role by increasing inflammatory molecules that impair stem cell function. ROS contribute to stem cell function reduction over time. Dysregulation of autophagy in stem cells can lead to harmful protein buildup. Importantly, many of these changes aren't permanent, offering potential for interventions to improve the function of ageing stem cells.
Su, et al., (2017)	CD44 Transmembran e Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem	https://doi.or g/10.1074/jb c.M116.7741 09	To examine the role of hyaluronic acid (HA) and CD44 in the regulation of adult	Wild type and CD44- null C57BL/6J;12 9 mice	CD44, hippocam pus, hyalurona n, neural stem cell (NSC), neurogen	Immunocytoc hemistry and Immunohistoc hemistry, western blotting, RT- PCR	Neural stem cell differentiation	Neurogenesis in the hippocampus declines with age and is associated with learning and memory.	NSC proliferation and differentiation	CD44-expressing neural stem cells (NSCs) possess self- renewal and multipotent capabilities and produce HA, which accumulates as an individual ages and may result in reduced neurogenesis which is then related to changes in

	Cell Quiescence and Differentiation		neurogenesi s and the role of HA in the age- related decline of neural stem cell (NSC) expansion and differentiatio n in the hippocampu S.		esis					learning and memory.
Sugimoto, et al., (2019)	Cross- Sectional Association Between Cognitive Frailty and White Matter Hyperintensity Among Memory Clinic Patients	https://doi.or g/10.3233/J AD-190622	To clarify the association between CF and WMH among memory clinic patients.	Human, n=333 (61.8% female), 65- 89 years, cognitively normal or MCI.	Brain structure, white matter hyperinte nsity	Cross sectional study	The association of WMHs with cognitive frailty	WMHs are expressions of cerebral small vessel disease and volumes of them in CF and PF may indicate that WMH could be a key factor underlying brain pathologies of CF.	Frieds Frailty phenotype, MMSE, intracranial volume (IC), parenchyma and WMH volume	Individuals with CF exhibited lower IC and brain volumes, higher volumes of WMHs and a higher ratio of WMH to parenchyma compared to those without CF.
Sugimoto, et al., (2022)	An update on cognitive frailty: Its definition, impact, associated factors and underlying mechanisms, and interventions	https://doi.or g/10.1111/ggi .14322	To comprehensi vely explore the operational definition of cognitive frailty, its consequenc es, contributing factors, underlying mechanisms , and	Human	Psychoso cial, brain changes, sleep	non- systematic review	Sociodemogra phic, psychological factors, functional status, co- morbidities, structural brain changes.	Many factors contribute to cognitive frailty.	N/A	The mechanisms underlying CF encompass a range of factors such as older age, sex, education, depression, subjective health, exercise, social participation, sleep problems, functional status, co-morbidities, and structural brain changes.

			potential interventions							
Sui, et al., 2022	Musculoskelet al Deficits and Cognitive I mpairment: Epidemiologica I Evidence and Biological Mechanisms	https://doi.or g/10.1007/s1 1914-022- 00736-9	To assess recent research (last three years), emphasising the relationship between the brain and the musculoskel etal system and to outline research directions to improve understandin g of these connections.	Human, mice	Musculos keletal	Non- systematic review	Links between Musculoskelet al deficits and CI and the shared mechanisms behind them	Musculoskeleta I deficits and Cl share pathophysiologi cal pathways and risk factors	N/A	Prolonged sedentary behaviour is associated with risk for CI. Exercise is related to cognitive and bone health. Osteocalcin, a protein from bone cells, may affect cognition. BDNF is a potentially important factor linking skeletal muscle and brain function and so cognition.
Tamura, et al., (2020)	Nutrition Management in Older Adults with Diabetes: A Review on the Importance of Shifting Prevention Strategies from Metabolic Syndrome to Frailty	https://doi.or g/10.3390/nu 12113367	The study aims to assess the shared mechanisms that underlie diabetes, cognitive impairment, and frailty, emphasising the importance of prevention strategies for these conditions.	Human	Diabetes, glucose, insulin, oxidative stress, inflammati on, mitochon dria	Non- systematic review	Reduced insulin secretion, insulin resistance, arteriosclerosis , chronic inflammation, oxidative stress, mitochondrial dysfunction, poor glycaemic control, decreased physical activity, and malnutrition	Diabetes, (type 1 or type 2), shares common traits in terms of aetiology, pathophysiolog y, and metabolic control with both frailty and cognitive impairment.	N/A	Insulin resistance, Arteriosclerosis and Brain White Matter Lesions, Chronic Inflammation (caused by IL-6, hyperglycemia), Oxidative Stress, and Mitochondrial Dysfunction, hyperglycemia and hypoglycemia (fluctuations in blood glucose level), physical activity are all risk factors for CF.

[1	1	1					1		
Tarantini, et al., (2018)	Treatment with the mitochondrial- targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascula r endothelial function and improves cognition in aged mice	https://doi.or g/10.1111/ac el.12731 https://doi.or	To test the hypothesis that reducing mitochondria I oxidative stress could have positive effects on neurovascul ar coupling responses in an ageing mouse population.	24-month-old C57BL/6 mice	cerebral circulation ; endotheli al dysfunctio n; oxidative stress; vascular cognitive impairme nt	Experimental model organism study. Mice were treated with a cell- permeable, mitochondria- targeted antioxidant peptide (SS- 31; 10 mg kg- 1 day-1, i.p.) or vehicle for 2 weeks.	Antioxidants, mitochondria, microvascular changes,	Mitochondria- targeted antioxidants could act as potential pharmacologic al agents to protect microvasculatu re and potentially prevent or treat age-related vascular cognitive impairment.	Neurovascular coupling was assessed by measuring CBF responses (laser speckle contrast imaging) evoked by contralateral whisker stimulation.	Mitochondrial-targeted antioxidant SS-31 improved neurovascular coupling responses, enhanced cognitive functions, and reduced mitochondrial oxidative stress in aged mice, suggesting its potential for countering age- related cerebrovascular dysfunction and cognitive decline.
Tarantini, et al., (2019)	Treatment with the poly(ADP- ribose) polymerase inhibitor PJ-34 improves cerebromicrov ascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging.	https://doi.or g/10.1007/s1 1357-019- 00101-2	To investigate whether inhibiting the activity of PARP-1, similar to using NAD+ precursor nicotinamide mononucleot ide (NMN), could have protective effects on neurovascul ar function in ageing.	Male C57BL/6 mice	Oxidative stress, ROS, Endotheli al dysfunctio n, Functiona I hyperemi a	Experimental model organism study; behavioural and in vivo measurement s	Neurovascular coupling	Increased consumption of NAD+ by activated poly (ADP-ribose) polymerase (PARP-1).may be a potential mechanism responsible for the age-related decline in cellular NAD+ levels within the neurovascular unit.	Endothelial function in the aorta, neurovascular coupling responses, radial arms water maze.	Neurovascular coupling responses were impaired in aged mice. Treatment with PJ-34 improved these responses by enhancing endothelial nitric oxide (NO)-mediated vasodilation, leading to better spatial working memory. This treatment also enhanced endothelium- dependent relaxation of aorta rings. These findings suggest that PARP-1 activation, possibly by reducing NAD+, impacts endothelial dysfunction and neurovascular uncoupling, which worsen cognitive decline.
Ticinesi, et al., (2018)	Gut microbiota, cog nitive frailty an d dementia in older	https://doi.or g/10.2147/Cl A.S139163	To review current research on changes in gut	Human, mice	Gut microbiot a	Systematic review	The effect of gut microbiota alterations on CF.	Microbiota diversity and the presence of specific species can	N/A	Aged mice with spatial memory deficits show heightened systemic inflammation and specific changes in their cecal microbiota, marked by an

	individuals: a systematic review		microbiota related to CF, MCI, and dementia. To examine the impact of probiotic interventions on cognitive symptoms in both animal models of ageing and human subjects.					impact CF. Probiotic interventions are a potential approach to mitigate this condition.		overabundance of bacterial taxa. Mice predisposed to AD exhibit distinct microbiota and people with dementia also display reduced microbiota diversity. Probiotic treatment in mice has demonstrated the potential to mitigate cognitive decline. Impact of probiotics on human cognition remains uncertain.
Toth et al., (2014)	IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice	https://doi.or g/10.1038/jc bfm.2014.15 6	To investigate whether IGF- 1 plays a role in regulating myogenic constriction in cerebral arteries and whether low levels of circulating IGF-1 can hinder the functional adaptation of these arteries to high blood pressure, as occurs with ageing.	Male mice homozygous for a floxed exon 4 of the lgf1 gene (lgf1f/f)	Cerebral blood flow, neuroinfla mmation, IGF-1	behavioural, in vivo and in vitro	Cerebral blood flow (CBF) in response to IGF-1 deficiency	Deficiency in IGF-1 impairs brain autoregulatory protection in hypertensive mice, which could potentially worsen cerebromicrova scular damage and neuroinflammat ion, resembling effects of ageing.	Learning capacity (elevated plus maze), Cerebrovascul ar autoregula -tion, BP, Integrity of Blood–Brain Barrier, Inflammatory gene Expression in Hippocampus, Microglia Activation	Hypertensive control mice displayed extended CBF autoregulation and increased pressure-induced tone in middle cerebral arteries (MCAs). However, hypertensive mice lacking IGF-1 exhibited disruption in autoregulation and did not increase myogenic tone in MCAs. Mechanisms of adaptation were impaired in hypertensive IGF-1-deficient mice. This autoregulatory dysfunction likely contributed to blood-brain barrier disruption, and neuroinflammation neuroinflammation, ultimately affecting cerebrovascular decline associated with CI.
Tou, et al., (2021)	Associations of fat mass and muscle	<u>https://doi.or</u> g/10.1371/jo urnal.pone.0	To investigate relationship	Human, N= 535, 57.6% female. Aged	Sarcopeni a, Obesity,	Cross- sectional observational	Differences between sarcopenia,	There are various contradictions	FMI (total body fat/height ²), BMI, body	The initially significant, the association between SO and CI lost significance after accounting

	function but not lean mass with cognitive i mpairment: The Yishun Study	<u>256702</u>	between sarcopenic obesity (SO) and cognitive function, considering global cognition and specific cognitive domains. To analyse how individual components of SO are associated with CI.	21-90 years, Singapore.	Sarcopeni c obesity, Cognitive domains, Fat Mass Index (FMI)	study	obesity, and SO in relation to physical and cognitive function and frailty indices. Insulin resistance and endothelial dysfunction	in the obesity and cognition literature possibly related to use of BMI (which does not distinguish fat from lean mass) and use of global cognitive measures, not specific domains.	composition measurements, e.g. body fat percentage, appendicular lean mass, using DXA. Sarcopenia = low muscle mass and poor muscle strength/ physical performance. Obesity = top two quintiles of FMI. Cognitive function: RBANS (immediate memory, visuospatial/co nstructional abilities, language, attention, delayed memory).	for various factors. CI was associated with low muscle strength, poor physical function, and obesity. Obesity, especially when combined with reduced muscle strength or slow gait speed, showed higher odds of CI. Coexistence of low muscle strength or slow gait and obesity was linked to greater odds of impairment in various cognitive domains, emphasising the role of muscle function in cognitive health. This connection may be influenced by systemic inflammation and insulin resistance associated with increased adipose tissue.
Uryash, et al., (2020)	Memory and Learning Deficits Are Associated with Ca 2+ Dyshomeostas is in Normal Aging	https://doi.or g/10.3389/fn agi.2020.002 24	To investigate the role of ER Ca2+ leak through RyR receptors and Ca2+ influx via TRPC channels in the age- related dysregulatio n of resting	Mice: Male and female 3–4-months (Young), 12– 14-months (Middle Age), and 24–26- months (Aged) C57BL6J mice	Calcium, memory deficits	Experimental animal model study: Behaviour, intracellular calcium homeostasis in cortical neurons in vivo and hippocampal neurons in vitro.	Ca2+ homeostasis in the brain with age	Intracellular calcium dysregulation is a significant mechanism responsible for cognitive deficits observed in normal ageing and neurodegenera tive diseases.	Ca2+ concentration in cortical and hippocampal neurons, cognitive function using Morris water maze	Age-related elevation of intracellular resting calcium levels ([Ca2+]r) in cortical and hippocampal neurons is associated with increased calpain activity and reduced cell viability. Removing extracellular calcium or using specific treatments reduced [Ca2+]r, lowered calpain activity, increased cell viability, and improved cognitive deficits in middle-aged and aged mice.

Vatanabe, et al., (2022)	A systematic review and meta-analysis on cognitive frailty in community- dwelling older adults: risk and associated factors.	https://doi.or g/10.1080/13 607863.2021 .1884844	intracellular calcium levels. To identify factors associated with cognitive frailty (CF) and assess its impact on the incidence of dementia and	Human.	Sociodem ographic; health; blood- brain	Systematic review; meta- analysis; longitudinal	CF is associated with dementia and mortality	Mechanisms may include sociodemograp hic, health or biological- related elements	N/A	Various factors were associated with CF, including older age, history of falls, sociodemographic factors (e.g., low schooling, male gender, single marital status, rural residence), health-related factors (e.g., low social support, low physical activity), blood-brain alterations (e.g., inflammation, WMHs, A1c levels, eGFR, and specific nutrients), and various health issues (e.g., depression,
Vicente, et al., (2020)	The dietary inflammatory index (DII®) and its association with cognition, frailty, and risk of disabilities in older adults: A systematic review	https://doi.or g/10.1016/j.c Inesp.2020.1 0.003	mortality. To examine the relationship between the Dietary Inflammatory Index (DII®) and frailty, cognition, and risk of disability in older adults. To discuss suitability of the DII® in assessing older adults.	Human	Systemic inflammati on; dietary inflammati on index; inflamma ging; immunos enescenc e, gut microbiot a changes	Systematic review	Immune changes associated with ageing (Inflammaging, immunosenesc ence). Role of senescent macrophages in releasing excessive inflammatory cytokines. Inflammaging in adipose tissue and the gut. Changes in gut microbiota.	Nutrition plays a crucial role in managing inflammaging, affecting muscles and the brain.	N/A	psychological disorders, chronic diseases, polypharmacy). No studies examined frailty and cognition simultaneously. Research consistently demonstrated that a higher DII was associated with increased odds of frailty or pre-frailty. and predicted risk of developing disabilities within three years of follow-up. In studies on cognition, a higher DII was linked to cognitive decline, poor memory, and an elevated risk of dementia in longitudinal data.
Visconte, et al, (2023)	Plasma microglial- derived extracellular vesicles are increased in frail patients	https://doi.or g/10.1007/s1 1357-023- 00746-0	To investigate the association between frailty status and total	Human, 20 MCI, 20 AD patients and 20 controls	Extracellu lar vesicles	Laboratory analysis of extracellular vesicles (EVs), particularly neural-derived	changes in EV concentration and size	EVs are cell communication messengers found in biological fluids, making them promising	EV concentration, Canevelli Frailty Index	Concentration of MDVs was higher in MCI group than in controls. There were more EVs in frail controls and Frail MCI group than non-frail groups but no difference between frail and non-frail AD groups. Non-frail

	with Mild Cognitive Impairment and exert a neurotoxic effect.		plasma extracellular vesicles (EVs) in individuals with or without MCI or Alzheimer's disease (AD).			(NDVs) and microglial- derived (MDVs) EVs in plasma of individuals in frail and non- frail MCI and AD groups		for age-related biomarker research.		controls had more NDVs than any other group. NDVs may decrease in CI and MDVs increase in frailty. Results shed light on the role of EVs in CF.
Wang, et al., (2022)	Social support and subsequent co gnitive frailty d uring a 1-year follow-up of older people: the mediating role of psychological distress	https://doi.or g/10.1186/s1 2877-022- 02839-5	To investigate whether reduced social support is associated with higher risk of CF among older individuals and whether this relationship is mediated by psychologica I distress.	Human, n=2785, 64% female, aged ≥60 years, mean age 69 years, China.	Social support, psycholog ical distress,	Longitudinal study. Followed up after 1 year	Whether social support affects onset of CF	Lower social support is linked to CF and psychological distress may be one of the mechanisms behind this	Social support rating scale, MMSE, Fried frailty, Kessler Psychological Distress scale (K10).	Participants with CF on follow-up had lower social support scores. Social support was negatively associated with psychological distress and CF. Psychological distress partially mediated the relationship between social support and CF, suggesting support reduces risk of CF via its impact on psychological health.
Wang, et al., (2019)	Aqueous extracts of Se- enriched Auricularia auricular attenuates D- galactose- induced cognitive deficits, oxidative stress and neuroinflamma tion via	https://doi.or g/10.1016/j.n eulet.2019.0 4.002	To explore the protective effects of aqueous extracts of Selenium- enriched Auricularia auricular (AESAA) on ageing mice induced by d-galactose	Mice	Oxidative stress, Neuroinfla mmation, Selenium	Behavioural and molecular studies in mice	Effects of supplementing mice with aqueous extracts of Selenium- enriched Auricularia auricular (AESAA) in countering the ageing effects induced by d- galactose (D-	AESAA showed protective effects against memory impairment, oxidative stress, and inflammation induced by d- galactose, achieved through the modulation of	Morris water maze (MWM) Antioxidant enzyme activities and oxidative stress levels in the hippocampus. Pro- inflammatory cytokine levels; hippocampal protein levels.	AESAA supplementation improved d-galactose-induced cognitive deficits in the Morris water maze test. It also reduced oxidative stress and pro- inflammatory cytokine levels in the hippocampus. AESAA inhibited the overexpression of RAGE, p-Erk, p-JNK, and p-P38 in the hippocampus and suppressed p-NF-κB and p-IκBα activation. Overall, AESAA shows promise in mitigating CI, oxidative damage, and

	suppressing RAGE/MAPK/ NF-ĸB pathway		(D-gal). It sought to investigate the underlying mechanism behind these protective effects.				gal).	the RAGE/MAPK/N F-ĸB pathway, shedding light on the potential anti-ageing mechanisms of selenocompou nds.		neuroinflammation via the RAGE/MAPK/NF-кВ pathway.
Waters, et al., (2020)	Sex-specific muscle and metabolic biomarkers associated with gait speed and cognitive tr ansitions in older adults: a 9-year follow- up	https://doi.or g/10.1007/s1 <u>1357-020-</u> <u>00163-7</u>	To investigate whether changes in gait speed and cognitive function observed in old age could be reversed or improved over a 9- year period within a 20- year cohort study.	Human, N=600, 64% females, age ≥60 years, free of major medical conditions, living independentI y	Biomarker s	Longitudinal study, annual follow-up for 9 years	The possible relationships between biomarkers and gait speed and cognitive transitions.	Metabolic biomarkers may predict transitions between low and normal gait speed and cognitive function. There may be distinct biomarkers for men and women.	Modified MMSE, 25ft gait speed	Sex-specific muscle and metabolic biomarkers were associated with gait speed and cognitive transitions. Biomarkers differ between men and women: Metabolic markers were associated with cognitive transitions in men only. In women, maintaining gait speed is associated with lower body fat and in men with lower lactate dehydrogenase associated with higher cholesterol; In women, maintaining normal cognitive function is associated with lower lactate dehydrogenase (in men this was with higher appendicular skeletal muscle mass) and Improving cognition with higher leptin and lower triglyceride levels in both men and women. Harmful gait speed transitions are associated with IGF-1 in men and leptin in women. No biomarkers were associated with harmful cognitive transitions.
Weinrich, et al., (2017)	Improving mitochondrial function significantly reduces metabolic, visual, motor and cognitive d	https://doi.or g/10.1016/j.n eurobiolagin g.2017.08.01 <u>6</u>	To investigate the role of mitochondria I function in ageing and health.	Drosophila model.	Drosophil a, mitochon dria, long wavelengt h light treatment, 670nm,	Metabolic, visual, motor and cognitive assays.	Effect of daily exposure to 670 nm light on mitochondrial metabolism. Impact on functional	Long wavelength light (670 nm) is known to extend drosophila lifespan and improve aged	Changes in ATP in Drosophila	Exposure to 670-nm light, daily over the one week, increased ATP production and mitochondrial DNA content, and reduced levels of ROS. Memory, mobility and visual function were improved.

	ecline in aged Drosophila melanogaster				near infrared, metabolis m, motor function, cognitive function.		senescence in old flies, in metabolism, sensory functions, locomotor abilities, and cognitive abilities.	mobility. Mitochondrial metabolism is improved by longwave light exposure which may have impacts on senescence.		
Wilhelm, et al., (2017)	Neuronal inhibition of the autophagy nucleation complex extends life span in post- reproductive C. elegans	<u>https://doi.or</u> g/10.1101/ga d.301648.11 <u>7</u>	To identify regulators of post- reproductive longevity	C. elegans	Autophag y	RNAi screen in worms	Genes involved in post- reproductive longevity	Autophagy may turn from advantageous to harmful in the context of an age- associated dysfunction	Genetic regulators of post- reproductive longevity.	By analysing pha-4 downstream, authors discovered that disabling genes involved in the initial phases of autophagy, up to vesicle nucleation, like bec-1, significantly extends both lifespan and healthspan.
Wong, et al., (2021)	Age-related changes in hippocampal- dependent synaptic plasticity and memory mediated by p75 neurotrophin receptor.	https://doi.or g/10.1111/ac el.13305	To investigate how the p75 receptor is involved in age-related changes in synaptic plasticity within the hippocampu s.	Male p75NTR knockout (KO) mice	Synaptic plasticity, hippocam pus, p75	Animal model study, Behavioural and in vitro	Synaptic plasticity and memory	The p75 neurotrophin receptor (p75NTR) may be a potential regulator of age-related changes in brain plasticity.	Expression of p75NTR in hippocampus, BDNF, MAPK, behavioural tagging	Mice lacking the p75NTR demonstrated resistance to age- related alterations in plasticity and associative memory. This suggests that p75NTR plays a crucial role in age-dependent disruptions of hippocampal homeostatic plasticity by influencing various signalling pathways, including those involving BDNF, MAPK, Arc, and RhoA-ROCK2-LIMK1-cofilin. Targeting p75NTR may mitigate age-related memory and cognitive function deficits.
Wrigley, et al., (2017)	Insulin-Like Growth Factor 1: At the Crossroads of Brain Development and Aging	https://doi.or g/10.3389/fn cel.2017.000 14	To explore the role of IGF1 (Insulin-like Growth Factor 1) in brain development	Various	Insulin- like growth factor 1, neurodev elopment	Review	Role of IGF-1 during development and ageing	Ageing is associated with a decline in growth hormone and IGF1 signalling. This reduced IGF1 activity	N/A	Falls in IGF1 levels with ageing are associated with cognitive decline. While IGF1 and its derivatives have shown promise in alleviating symptoms of certain neuropsychiatric disorders linked to abnormal neurodevelopment, their role in neurodegenerative

			and ageing.					might contribute to age-related changes., but mutations decreasing IGF1 signalling can significantly extend lifespan, creating uncertainty about IGF1's		diseases remains unclear, with conflicting findings regarding whether increased or decreased IGF1 signalling contributes to disease pathogenesis.
Wu, et al., (2015)	Cognitive Function in Individuals with Physical Frailty but Without Dementia or Cognitive Complaints: Results From the I-Lan Longitudinal Aging Study	https://doi.or g/10.1016/j.j amda.2015.0 7.013	To investigate whether "understated cognitive impairment" is present in pre-frail or frail individuals. To investigate cognitive domains that may be susceptible to PF.	1839 community residents aged 50 - 89 years (mean 63.4). Excluding peopl with subjective cognitive complaints	Slow gait speed, muscle strength, nonmemo ry cognitive domains.	Cross- sectional Observational cohort study	Relationships between specific PF and specific CI Domains.	role in ageing. Understanding the more specific relationships between aspects of PF and of cognitive function may provide a new approach to evaluating the pathogenesis of the relationship between PF and CI.	Frailty: Fried, for frailty; Cognition: MMSE, Verbal learning task, Boston Naming task, Verbal fluency, Taylor Complex figure test, backward digit span and clock drawing test.	Slowness and weakness were the most significant frailty domains associated with CI. Susceptible cognitive domains emphasised nonmemory domains for the pre-frail participants, but more significantly frail people also had memory impairment.
Xie, et al., (2021)	Prevalence and risk factors of the co- occurrence of physical frailty and cognitive impairment in Chinese community- dwelling older adults	https://doi.or g/10.1111/hs c.13092	To determine prevalence of the co- occurrence of PF and Cl (i.e. CF); to identify associated sociodemogr aphic, psychosocial	Human, N = 1585, aged ≥ 75 years. Excluded those with diagnosis of dementia	Prevalenc e, depressio n, social participati on, social support, sedentary lifestyle, sleep problems	Cross sectional Observational study	Risk factors for co-occurrence of PF & CI: age, depression, social participation, social support, sedentary lifestyle, sleep.	Given the reversibility of CF, it is important to understand the association of modifiable risk factors to enable potential interventions.	Fried Frailty phenotype, MMSE stratified by education, Sociodemogra phics: age, gender, education level, marital status, income, living	Older age, number of comorbidities, depression, lack of social support, sedentary behaviour and insomnia all increased the likelihood of the co-occurrence of PF and Cl. Social participation was associated with a lower risk. Other than very old age (over 86), depression and sedentary behaviour showed the highest

Xue, et al.,	Integrating	https://doi.or	and health behaviour factors.	Human, mice	Review,	Non-	Age-related	A decrease in	arrangement (living alone or not); Health: co-morbidity, polypharmacy, morbidities; depression Social participation (volunteering and social support, sedentary behaviours, self-reported sleep problems. N/A	ORs (3.88 and 2.69 respectively).
Xue, et al., (2019)	Integrating Frailty and Cognitive Phenotypes: Why, How, Now What?	https://doi.or g/10.1007/s1 3670-019- 0279-z	lo clarity the concept of frailty concerning reserve and resilience, explore connections and mechanisms between PF and CI, examine three interconnect ed phenotypes, and consider using biomarkers to enhance the precision and validation of these phenotypes.	Human, mice	Review, mitochon drial function	Non- systematic review	Age-related decline in mitochondrial function.	A decrease in mitochondrial function is an initiator of CF.	N/A	Mice with mitochondrial dysfunctions exhibit altered responses to acute psychological stress, affecting neuroendocrine, inflammatory, metabolic, and transcriptional processes. Human studies similarly link mitochondrial function to stress- response, including the immune system, the HPA axis, and the sympathetic nervous system. Chronic inflammation, characterised by an imbalance between pro-inflammatory and anti-inflammatory cytokines, appears to play a pivotal role in these processes.

Yang, et al., (2017)	Age-related decline in BubR1 impairs adult hippocampal neurogenesis	https://doi.or g/10.1111/ac el.12594	To investigate if age-depend ent regulation of BubR1 (a mitotic checkpoint kinase, involved in neurogenesi s) plays a possible role in hippocampal neurogenesi s.	Adult BubR1 H/H mice with reduced hippocampal BubR1 levels.	Adult neurogen esis, hippocam pus	In situ hybridisation, q-PCR, immunohistoc hemistry	Hippocampal neurogenesis in response to BubR1	The identification of BubR1 as a crucial factor in regulating stages of neurogenesis suggests that it might play a significant role in controlling age-related hippocampal pathology.	Reduced cell proliferation in the subgranular zone, decrease in the density of EdU+NeuN+ mature new neurons	BubR1 expression decreases with natural ageing in mice, and progeroid mice with low BubR1 levels display impaired neural progenitor proliferation and maturation, resulting in reduced production of new neurons. BubR1 may be an important regulator in age-related changes in the hippocampus, associated with cognitive ageing.
Yamazaki, et al., (2014)	Glial Dysfunction Causes Age- Related Memory Impairment in Drosophila	https://doi.or g/10.1016/i.n euron.2014. 09.039	To demonstrate that reducing protein kinase A (PKA) reduces age- related memory impairment by decreasing the activity of pyruvate carboxylase (PC), a metabolic enzyme in glial cells that increases with ageing	Drosophila	Glial dysfunctio n, insulin signalling	Molecular and behaviour studies in Drosophila	Oxidative damage and age-related memory impairment	Increased PC activity causes age-related memory impairment through a mechanism independent of oxidative damage.	Learning memory assay, RT-PCR	Glial PC activity rises with ageing, contributing to age- related memory decline. Lowering its activity improves memory. This process seems not to be associated with oxidative stress.
Yin, et al., (2014)	Longevity Manipulations Differentially	https://doi.or g/10.1523/J NEUROSCI.	To show that serotonin (5- HT) and	C. elegans	serotonin e, dopamine	Experimental model organism	Changes in the neurotransmitt er levels in	Serotonin and dopamine reductions with	gene expression, RNAi, RT-PCR,	Dietary restriction maintains healthy behaviours in aged worms which involves sustaining

	Affect Serotonin/Dop amine Level and Behavioral Deterioration in Aging Caenorhabditis elegans	<u>4013-</u> <u>13.2014</u>	dopamine (DA) level decrease with age in C. elegans and investigate the impacts of longevity manipulation s.			study	ageing C. elegans	age cause behavioural deterioration. Different Longevity manipulations may influence this.	lifespan, mating behaviour	a high 5-HT/DA level, and increased the 5-HT/DA level in wild-type and daf-2(e1370) worms had improved behavioural function with age.
Yin, et al., (2017)	Genetic variation in glia-neuron signalling modulates ageing rate	https://doi.or g/10.1038/na ture24463	To investigate the genetic factors underlying the natural variation in ageing rates among different wild strains of C. elegans.	C. elegans	Genetics	Experimental model organism study. Lifespans and behavioural assays	The genetic basis of variation in ageing rates in C. elegans	DNA polymorphisms in <i>rgba-</i> 1 and <i>npr-</i> 28 influence the rate of age- related decline of worm mating behaviour	Ageing rates, mating behaviour.	The study found that single nucleotide polymorphisms (SNPs) in rgba-1 gene play a role in the ageing rates of male C. elegans worms. Downregulation of npr-28 increased levels of BAS-1 and prevented the age-related decline in mating efficiency in these worms. Cells with a specific allele of npr-28 showed lower responses to RGBA-1-2b. Both npr-28 and rgba-1 appear to function in the same signalling pathway. Additionally, the presence of SIR-2.1 is necessary for the effects of RGBA-1-NPR- 28 signalling on the decline of virility in ageing males.
Yoshiura et al., 2022	Brain structural alterations and clinical features of cognitive frai lty in Japanese community- dwelling older adults: the Arao study (JPSC-AD)	https://doi.or g/10.1038/s4 1598-022- 12195-4	To develop a reliable method for distinguishin g between CF, PF, and MCI based on established clinical or neuroimagin g characteristi	Human, community living older people. N=883 in 4 groups (1) no MCI, PF (n = 27); (2) no PF, MCI (n = 119); (3) CF (MCI + PF) (n = 21), (4)	Small vessel disease, White matter hyperinte nsities and hypointen sities, balance, depressio n, medial	Cross- sectional study combining physical, cognitive, neuropsychiat ric, and multisequence magnetic resonance imaging (MRI) evaluations.	Unique features of CF that distinguish from PF or MCI alone.	Distinguishing CF from just PF or MCI using clinical features and MRI could open the door to potential interventions.	Physical, cognitive, neuropsychiatri c, and multisequence magnetic resonance imaging (MRI) evaluations differentiating between groups	CF has unique features like worse balance, more severe depression, and signs of severe cerebrovascular disease. These individuals are at a high risk of developing dementia due to both Alzheimer's and cerebrovascular pathologies. Preventive interventions should focus on factors like physical performance, depression, and vascular health to delay or prevent dementia in this group.

			CS.	normal controls (n = 716).	temporal lobe volumes					
Yousef, et al., (2015)	Age- Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis	https://doi.or g/10.1002/st em.1943	To show that various BMP (bone morphogene tic protein) growth factors and their downstream signalling components become more active as individuals age in the hippocampal neural stem cell (NSC) niche, and this increased activity hampers cell proliferation.	Mice: Young (2–3 month old) and old (18–24 month old) C57BL6/J male	Neural stem cell; Neurogen esis, BMP signalling	Immunohistoc hemistry, RT- PCR	BMP signalling, neurogenesis in hippocampus	BMP signalling reversibly inhibits the capacity of stem cells in the aged brain to contribute to neurogenesis	neural stem cell proliferation	BMP signalling increases in the ageing mouse hippocampus, limiting growth of neural progenitor cells. When BMP signalling was reduced in older mice through genetic changes, it increased the growth of neural stem cells and led to more neurogenesis in their hippocampus.
Yuan, et. al, (2020)	Two conserved epigenetic regulators prevent healthy ageing	https://doi.or g/10.1038/s4 1586-020- 2037-y	To uncover shared epigenetic factors that inhibit the ageing process, potentially providing insights into promoting a healthy ageing experience.	Transgenic C.elegans, C57BL/6J mice null for Baz2b	Epigeneti cs, mitochon dria	RNAi screen in worms	Decline of BAS-1 protein, responsible for serotonin and dopamine synthesis, leads to age- related loss of these neurotransmitt ers and behavioural decline.	Two conserved genes, BAZ- 2/BAZ2B and SET-6/EHMT1, negatively impact healthy ageing. Deleting these genes promotes healthy ageing by enhancing mitochondrial function and cognitive	Fluorescent imaging of BAS-1 expression, pharyngeal pumping, open field test, Barnes maze test, novel- location recognition	The study found 59 compounds that can keep BAS-1 protein levels stable as animals age, with 10 of them linked to age- related neurodegeneration in humans. Downregulation of 20 of these compounds improved the behaviour of older worms, and BAZ-2 and SET-6 stood out as important. They also had a significant impact on mitochondrial activity, increasing ATP production and reducing oxygen consumption in both young and old worms. Deleting

								behaviour through regulation of H3K9 methylation levels at specific genes.		Baz2b improved brain mitochondrial function and enhanced learning and memory in older mice.
Yuan, et al., (2022)	The transitions and predictors of cognitive frai Ity with multi- state Markov model: a cohort study	https://doi.or g/10.1186/s1 2877-022- 03220-2	To use a continuous- time multi- state Markov model to calculate the probabilities of transitioning between CI, PF and CF states. Additionally, this analysis aims to identify potential factors that can predict these transitions.	Human, n=4051 (45% female), aged > 60, China	Life satisfactio n, sex, depressio n, multimorb idity	Longitudinal study, followed up at 2 and 4 years	The risk factors associated with transition to CF in older adults	Different factors influence the transition from CI to CF to that from PF to CF.	Telephone interview of cognitive status, Fried frailty phenotype	In individuals with PF, the risk of developing CF was higher for women, those with rural household registration, and those experiencing depression, while literacy lowers the risk. For individuals with CI at the beginning, the risk of progressing to CF is higher if they have multimorbidity, express dissatisfaction with life, and have a history of falls.
Zhang, et al., (2021)	Prevalence and Associated Risk Factors of Cognitive Frailty: A Systematic Review and Meta-Analysis	https://doi.or g/10.3389/fn agi.2021.755 926	To understand CF's prevalence and associated factors.	Human, community dwelling	Nutrition, psychoso cial, gender, meta- analysis	Systematic review	The risk factors linked to CF in community- dwelling older adults.	There are many risk factors associated with cognitive frailty	N/A	Age, gender, lower engagement in activities, negative emotional state including depression, lower level of education, lower social participation, insomnia, higher body fat, lower albumin, lower vitamin D, thinner calf circumference were all associated with CF in community-dwelling adults
Zhang, et al., (2022)	Pet ownership and cognitive fr ailty among Chinese rural older adults	https://doi.or g/10.1016/j.s ocscimed.20 22.115100	To investigate the link between social loss	Human, N=2638, aged 60-85 years, China (rural)	Social loss, bereavem ent; widowhoo	Cross- sectional observational study, survey	Pet ownership in bereavement might help alleviate some	The loss of a lifetime partner in old age can pose considerable	Fried frailty phenotype; MMSE adjusted for education.	Social loss, or the disruption of social ties as in bereavement, can significantly impact CF. The stress-buffering effect model suggests that during stressful life

	who experienced a social loss: Is there a sex difference?		and cognitive frailty in older adults and assess whether pet ownership is protective against the negative effects of social loss on cognitive frailty among older Chinese men and women.		d; widowed; isolation, loneliness , pet ownership		of the loneliness and stress associated with such losses.	health risks, potentially leading to frailty and Cl. Pet ownership, providing consistent and comforting companionship , may help alleviate the impact on CF.	sociodemograp hic covariates; pet ownership during the last year	events, individuals who can rely on emotional support are better equipped to reduce the negative health effects of stressors. Pet ownership may alleviate the impact of loneliness and social loss.
Zhang, et al., (2022)	The Association between Number of Teeth and Cognitive Frailty in Older Adults: A Cross- Sectional Study	https://doi.or g/10.1007/s1 2603-022- 1783-y	To explore the association between number of teeth and CF in older adults.	Human, American, n=1531 (52.7% female), community- dwelling, aged ≥60 years, mean age 69.67 years.	Teeth, oral health	Cross- sectional study	The link between number of teeth and CF	A lower number of teeth in older age has been associated with frailty and dementia.	Wechsler Adult Intelligence Scale III Digit- Symbol Coding Test, number of teeth, Mitnitski frailty index (accumulation of deficits)	The results show the association between a higher number of teeth and reduced probability of CF in both men and women. Nutritional deficits, oral microbiota and psychosocial impacts of loss of teeth were all suggested as potential mechanisms linking tooth loss to CF.
Zhao, et al., (2022)	Longitudinal Relationship Between Frailty and Cognitive Impairment in Chinese Older Adults: A Prospective Study	https://doi.or g/10.1177/07 <u>3346482211</u> <u>18352</u>	Does frailty predict CI longitudinally ? And does CI predict frailty?	Human, Analysis 1: n=1657, analysis 2: 1545. 32.6% women;	Longitudi nal, trajectory	Longitudinal analysis, 3 years, large cohort study	Direction of trajectory	Co-occurrence of frailty and CI (i.e. CF) is driven by the accumulation of deficits associated with PF, so the predictive relationship would only be expected to work in one direction.	Frailty index and MMSE, plus ADLs	Frailty was a risk factor for CI but CI was not a risk factor for frailty, over time. As well as frailty being a predictor of CI, ADLs and hearing loss were also predictors.

Zhou, et al., (2021)	Aged Brains Express Less Melanocortin Receptors, Which Correlates with Age-Related Decline of Cognitive Functions	https://doi.or g/10.3390/m olecules262 06266	To explore the Melanocortin receptor subtypes that may contribute to enhanced cognitive function.	Rats: young (6 months) and aged (23 months) male Fischer 344 rats	Protein expressio n, receptor, signalling	Spatial learning and protein expression	Potential links between cognitive function and expression of melanocortin receptors (MCRs)	There may be age-related differences in the signalling and function of MCRs in rats. Elevated expression and increased signalling of MCRs in the frontal cortex and hippocampus of aged rats could potentially contribute to improved cognitive functions in these animals.	Morris water maze, membrane binding	Aged rats exhibit lower levels of MCR expression in the occipital lobe, hippocampus, and midbrain compared to young rats (6 months old). Notably, specific MCRs, such as MC1R and MC3R in the hippocampus, as well as MC1R and MC5R in the frontal cortex and hypothalamus, show significant correlations with spatial learning in the maze task.
Zhou, et. al, (2022)	Potential association between frailty and pTau in community- dwelling older adults	https://doi.or g/10.1186/s1 2877-022- 03454-0	To examine relationship between cognition related biomarkers and PF.	Human, community sample, N= 375, 56% women. Mean age =70 yearsExclude d dementia	cognition biomarker s, P-Tau	Observational cross- sectional study. Blood analysis	Cognition related biomarkers in older adults: tTau, pTau (Thr181), NFL, Aβ40, Aβ42, S100B 1, VLP- 1, AD7cNTP, βAPP, CHI3L1, sCR1 and hFABP.	p-Tau is related to a range of pathways that may affect weight loss and insulin signalling, as well as to neurofibrillary tangles associated with cognition	PF, C of age, sex, education, ethnicity, marital status; smoking, disability in ADLs, falls, number of chronic conditions; depression, nutritional status	p-Tau was related to frailty, but other plasma biomarkers were not, including beta amyloid, often seen as a marker for AD. This would need to be confirmed with cerebrospinal fluid too.
Zhuang, et, al, 2020	Accelerated age-related decline in hippocampal neurogenesis in mice with noise-induced hearing loss is	https://doi.or g/10.18632/a ging.103898	To understand how age and acquired peripheral hearing loss affect neurogenesi	male CBA/J mice	hearing loss, hippocam pal neurogen esis, microglial degenerat	Evaluated hippocampal neurogenesis and microglial morphology in the auditory brain and hippocampus	Effect of noise induced hearing loss	Acquired hearing loss speeds up age- related decline in hippocampal neurogenesis and may be linked to	Hippocampal neurogenesis and microglial morphology	In mice with noise-induced hearing loss, the age-related decline in hippocampal neurogenesis was accelerated. Additionally, prolonged microglial activation was observed in various auditory regions from 1 to 12 months post-noise

associated with hippocampal microglial degeneration	s in the hippocampu s and explore the underlying mechanisms	ion	at various time points post-noise exposure using immunofluore scence labelling.	microglial degeneration, potentially leading to neurodegenera tion.	exposure, and microglial deterioration in the hippocampus was correlated with the age- related decline in hippocampal neurogenesis.
---	--	-----	--	--	---

Abbreviation key (alphabetical order): AD: Alzheimer's disease; ADL: Activities of Daily Living; BADL: Basic Activities of Daily Living; BDNF: Brain derived neurotrophic factor; BMI: Body Mass Index; BP: Blood Pressure; CamCog: Cognitive section of the Cambridge examination of mental disorders of the elderly; CBF: Cerebral Blood Flow; CDR: Clinical Dementia Rating scale; CDT: Clock Drawing Test; CF: Cognitive Frailty; CHS: Cardiovascular Health Study frailty phenotype (Fried et al., 2001); CI: Cognitive Impairment; CNS: Central Nervous System; CSF: Cerebrospinal fluid; CSVD: Cerebral Small Vessel Disease; DII: Dietary Inflammatory Index; DSST: Digit Symbol Substitution Test; EE: Environment Enrichment; EV: Extracellular Vesicles; HR-QoL: Health Related Quality of Life; IADL: Instrumental Activities of Daily Living; MCI: Mild Cognitive Impairment; MCR: Motor Cognitive Risk syndrome; MDV: Microglial Derived vesicles; MMSE: Mini-Mental State Exam; MNA: Mini Nutritional Assessment; MNA-SF: Mini Nutritional Assessment- Short Form; MoCA: Montreal Cognitive Assessment; NART: National Adult Reading Test; NDV: Neuro-Derived Vesicles; OR: Odds Ratio; PCDS: Physio-Cognitive Decline Syndrome; PD: Psychological Distress; PEH: People/Person Experiencing Homelessness; PF: Physical Frailty; RAVLT: Rey Auditory Verbal Learning Test; RBANS: Repeatable Battery for Neuropsychological Status; ROS: Reactive Oxygen species; SF-36: Short Form Health Related Quality of Life assessment; SO: Sarcopenic Obesity; SPMSQ: Short Portable Mental Status Questionnaire; SPPB: Short Physical Performance Battery; TMT A and B: Trail Making Test parts A and B; TOI: Trio of Impairment; WASI: Weschler Abbreviated Scale of IQ; WMH: White Matter Hyperintensity.