
Region-based analysis with functional annotation identifies genes associated with cognitive function in 
South Asians from India  

Short title: Region-Based of Analysis Cognitive Function in India 

Hasan Abu-Amara,1 Wei Zhao,1,2 Zheng Li,3 Yuk Yee Leung,4 Gerard D. Schellenberg,4 Li-San Wang,4 Priya 
Moorjani, PhD,5,6 A.B. Dey,7 Sharmitha Dey,8 Xiang Zhou,3 Alden L. Gross,9 Jinkook Lee,10 Sharon L.R. 
Kardia,1 Jennifer A. Smith1,2* 

 

1. Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, 
United States of America 

2. Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, 
United States of America 

3. Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, United 
States of America 

4. Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman 
School of Medicine, University of Pennsylvania, United States of America 

5. Department of Molecular and Cell Biology, University of California, Berkeley, United States of America 
6. Center for Computational Biology, University of California, Berkeley, United States of America 
7. Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India 
8. Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India 
9. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins 

University, Baltimore, Maryland, United States of America 
10. Department of Economics, University of Southern California, Los Angeles, California, United States of 

America 
 

 
Abstract: 326 words 
Main text: 4758 words 
Tables: 4 
Figures: 3 
 
 
*Corresponding author: 
Jennifer A. Smith 
Email: smjenn@umich.edu  
 
 
 
Keywords: Genetics, genomics, region-based analysis, cognitive function, whole genome sequencing, South 
Asian  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.18.24301482doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.01.18.24301482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

The prevalence of dementia among South Asians across India is approximately 7.4% in those 60 years and 

older, yet little is known about genetic risk factors for dementia in this population. Most known risk loci for 

Alzheimer’s disease (AD) have been identified from studies conducted in European Ancestry (EA) but are 

unknown in South Asians. Using whole-genome sequence data from 2680 participants from the Diagnostic 

Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD), we performed a gene-based 

analysis of 84 genes previously associated with AD in EA. We investigated associations with the Hindi Mental 

State Examination (HMSE) score and factor scores for general cognitive function and five cognitive domains. 

For each gene, we examined missense/loss-of-function (LoF) variants and brain-specific promoter/enhancer 

variants, separately, both with and without incorporating additional annotation weights (e.g., deleteriousness, 

conservation scores) using the variant-Set Test for Association using Annotation infoRmation (STAAR). In the 

missense/LoF analysis without annotation weights and controlling for age, sex, state/territory, and genetic 

ancestry, three genes had an association with at least one measure of cognitive function (FDR q<0.1). APOE 

was associated with four measures of cognitive function, PICALM was associated with HMSE score, and 

TSPOAP1 was associated with executive function. The most strongly associated variants in each gene were 

rs429358 (APOE ε4), rs779406084 (PICALM), and rs9913145 (TSPOAP1). rs779406084 is a rare missense 

mutation that is more prevalent in LASI-DAD than in EA (minor allele frequency=0.075% vs. 0.0015%); the 

other two are common variants. No genes in the brain-specific promoter/enhancer analysis met criteria for 

significance. Results with and without annotation weights were similar. Missense/LoF variants in  some genes 

previously associated with AD in EA are associated with measures of cognitive function in South Asians from 

India. Analyzing genome sequence data allows identification of potential novel causal variants enriched in 

South Asians. 
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Introduction 

 Dementia is a group of neurological disorders characterized by cognitive impairment. In 2019, the 

estimated global economic costs of dementia was about $1.3 trillion USD [1]. The public health burden for 

dementia is borne disproportionately by lower- and middle-income countries, which harbor approximately 61% 

of affected individuals [1]. Over 50 million people worldwide have Alzheimer’s Disease (AD), the most 

prevalent form of dementia [2], and this number is projected to reach over 150 million by 2050 [3]. Cognitive 

decline, even without dementia, increases the need for costly personal and medical care. 

 While extensive research has focused on risk factors for later-life cognitive decline and dementia, there 

are still remaining questions regarding its etiology. For example, AD is a result of the accumulation of amyloid 

beta plaques and neurofibrillary tangles in the brain [4]. Amyloid beta and tau protein metabolism may be 

influenced by genetic variants that alter chemical properties or abundance of relevant proteins [5]. Heritability 

estimates for AD are high (60-80%) [6], indicating that the identification of AD-associated variants is critical 

for a deeper etiological understanding. Heritability of cognitive function is also relatively high across the life 

course (40-80%) [7]. However, the vast majority of genetic loci for measures of cognitive function and 

dementia were identified from studies conducted in European Ancestry (EA) participants. A deeper exploration 

of the genetic factors underlying late-life cognition and dementia in non-EA populations is now needed to both 

identify population-specific risk variants across the genome and gauge the relative importance of previously-

identified loci. 

 With over 1.4 billion people, India is the second most populous country in the world, and the public 

health burden of dementia is dramatically increasing as the population both grows and ages. The prevalence of 

dementia among South Asians living in India varies by geographic location and sociodemographic 

characteristics (e.g., rural vs. urban), and is approximately 7.4% among individuals 60 years and older [8]. 

While studies have indicated that older age, lower education, diabetes, obesity, and other factors increase risk of 

dementia in India [9], there has been little research on genetic risk factors. Therefore, it is unclear whether the 

same genes that have been associated with dementia and cognitive decline in EA have a similar influence on 
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dementia risk in South Asians. Likewise, there may be causal risk variants in known AD genes, or in other 

genes, that are unique to India.  

 Detection of rare variants associated with measures of cognitive function in non-EA populations may be 

difficult due the combination of increased genetic diversity and smaller sample sizes available for genetic 

research, which leads to a loss of power. Statistical power can be increased by grouping together variants within 

a gene or genomic region that have the same functional annotation, such as those that alter protein structure 

(e.g. loss of function (LoF) or missense variants) or those in regulatory elements (e.g. gene promoter or 

enhancer regions), which helps increase the likelihood of selecting probable causal variants [10].  

 In this study, we examined whether 84 genes previously associated with AD in EA are also associated 

with seven measures of cognitive function in 2,680 participants from the Diagnostic Assessment of Dementia 

for Longitudinal Aging Study of India (LASI-DAD), a nationally-representative study that includes diverse 

ethno-linguistic and geographic groups. From whole genome sequence (WGS) data, we selected missense/loss-

of-function (LoF) single-nucleotide variants (SNVs) and brain-specific promoter and enhancer SNVs within 

each gene. This work will help elucidate genetic variants associated with cognitive function in South Asians 

across India, which may play an important role in risk stratification and help guide intervention and treatment 

plans for those at risk for dementia in India. 

Methods 

Study population 

 LASI [11] is a nationally representative cohort of Indian adults who are at least 45 years of age. LASI-

DAD, an ancillary study investigating risk factors for dementia, enrolled 4,096 LASI participants from 18 states 

and union territories across India. Participants were selected by two-stage stratified random sampling across 

states/territories in India and with respect to cognitive impairment risk, with sampling strategy described 

elsewhere [12,13]. Briefly, participants were classified as low risk or high risk for cognitive impairment based 

on their performance on core cognitive tests conducted in the larger LASI cohort, or on proxy reports if the 

participant did not complete those tests. Then, an approximately equal number of respondents in the high risk 
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and low risk strata were randomly drawn from each state/territory with a target sample size proportionate to the 

population size. Participants underwent neurocognitive testing with tests logically and culturally adapted from 

tests present in the Harmonized Cognitive Assessment Protocol (HCAP) [12], informational interviews, and a 

blood draw to extract DNA for whole genome sequencing. A total of 2,680 participants with complete genotype 

and cognition data were included in the analysis.  

Whole-genome sequence data 

 Whole genome sequencing (WGS) at an average read depth of 30x was performed by MedGenome, Inc 

(Bangalore, India) using DNA extracted from blood samples from 2,762 LASI-DAD participants. Genotype 

calling and quality control (QC) were performed at the Genome Center for Alzheimer’s Disease (GCAD) at the 

University of Pennsylvania [14]. Briefly, sample-level quality control included checks for low coverage, sample 

contamination, sex discrepancies, concordance with previous genotype data, and duplicates [14]. After 

excluding control samples and samples with low quality and/or unresolved identity, a total of 2,680 samples 

were retained in the analysis. At the genotype level, each genotype was evaluated and set to missing if read 

depth was less than 10 (DP<10) or genotype quality score was less than 20 (GQ<20). At the variant level, a 

variant was excluded if it was monomorphic, was above the 99.8% Variant Quality Score Recalibration 

(VQSR) Tranche (the quality score was beyond the range that contains 99.8% of true variants), had a call rate ≤ 

80%, or had an average mean depth > 500 reads. We further removed variants that were in low complexity 

regions identified with the mdust program.[15] After quality control and filtering, we retained a total of 

71,109,961 autosomal bi-allelic variants that include 66,204,161 single nucleotide polymorphisms (SNPs) and 

4,905,800 indels. 

Principal component analysis and genetic relationship matrix 

We estimated genetic principal components (PCs) and the genetic relationship matrix (GRM) in 

GENESIS (version 2.26.0) [16,17]. For this analysis, we included variants with minor allele frequency (MAF) ≥ 

5% and pruned for LD (r2=0.1, window size=500kb) to select independent variants. Kinship coefficients were 

first estimated using “snpgdsIBDKING” function. Subsequently, genetic principal components (PCs) were 
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calculated using “PCair”, which estimates population structure while accounting for cryptic relatedness in the 

samples. Specifically, PCs were first estimated in a set of unrelated individuals (kinship cutoff = 0.044) to 

obtain robust variant weights, which were then used to project PCs in the rest of the sample. Following this, the 

genetic relationship matrix (GRM) was estimated using “PCrelate” by simultaneously adjusting the top 2 PCs to 

avoid potential confounding from population structure.  

Measures of Cognitive Function 

 We analyzed seven measures of cognitive function including five cognitive domains (memory, 

orientation, language/fluency, executive function, and visuospatial function), general cognitive function 

constructed from the five cognitive domain scores, and the Hindi Mental State Exam (HMSE) score. The 

HMSE is a version of the Mini Mental State Exam dementia screener translated into Hindi. It is designed to be 

administered to participants from a population where a significant proportion of individuals are illiterate, and is 

scored as the sum of 22 items which totals to an integer between zero and 30, with a higher score indicating 

more cognitive intactness [18]. The five cognitive domain scores are factor scores of a collection of tests 

assigned to a broad domain of cognition as informed by Cattell-Horn-Carroll (CHC) theory of human cognitive 

abilities, with composite weights and tests described elsewhere [19]. The cognitive domain and general 

cognitive function scores were each estimated using item-response theory (IRT) and were normalized to a 

Gaussian distribution with mean of zero and variance of one in the full LASI-DAD subcohort [19]. 

Gene selection 

 We selected a total of 84 genes from the two largest genome-wide association studies (GWAS) for AD 

in EA (S1 Table)  [20,21], as well as TOMM40 and APOC1 which are proximal to APOE and are known to be 

associated with Alzheimer’s disease [22,23]. Briefly, Bellenguez et al. [20] performed a two-stage GWAS of 10 

case-control studies across Europe. Stage 1 included 39,106 clinically diagnosed AD cases, 46,828 proxy AD 

and dementia-related disorder (ADD) cases, and 401,577 controls. Stage 2 included 25,392 AD cases and 

276,086 controls. Bellenguez et al. identified 75 risk loci, of which 42 were novel. The authors then conducted 

pathway analysis and designed a gene prioritization algorithm to stratify loci according to their likelihood of 
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having a causal effect on ADD risk. For this study, we selected a total of 73 genes from Bellenguez et al. [20] 

including those that were labeled as known loci or those that were classified as having the highest likelihood of 

a causal effect on ADD (tier 1). Wightman et al. [21] conducted a meta-analysis of 13 studies of EA participants 

across the United States and Europe. The total sample size was 1,126,563 individuals, which included 90,338 

AD cases (46,613 were proxy cases) and 1,036,225 controls (318,246 were proxy controls). For this study, we 

selected 45 genes from independent 38 loci that reached genome-wide significance (p<5×10−8) in Wightman et 

al. There was an overlap of 36 genes between the two AD GWAS. See Supplemental Methods for additional 

details on selecting genes within the identified AD loci (S1 Methods). 

 Gene boundaries were defined by GRCh38.p14 in NCBI Gene, which uses NCBI RefSeq to annotate 

gene positions. We selected all SNVs within the gene start and stop positions for the missense/LoF analysis. For 

the brain-specific promoter/enhancer analysis, we selected SNVs within a ± 20 kb buffer of the gene’s 

transcription start site. Only genes with at least two missense/LoF or promoter/enhancer SNVs (defined below) 

within the region were included in the final analysis.  

Definition of missense/LoF and promoter/enhancer SNVs 

 We followed similar definitions of missense/LoF SNVs, promoter SNVs, and enhancer SNVs as Li et 

al.[24] Briefly, we used the Variant Effect Predictor (VEP) [25] and LOFTEE [26] with GENCODE as the 

transcript annotation reference to identify missense and LoF SNVs, respectively. We additionally classified 

missense and LoF variants based on the confidence of their predicted function. LoF SNVs were annotated as 

either high confidence or low confidence using LOFTEE, and missense SNVs were assigned a REVEL score. 

REVEL scores are generated through an ensemble method to measure the pathogenicity of a missense SNV 

[27], with higher scores indicating greater likelihood of causing diseases. Missense SNVs with REVEL 

score>0.5 are considered to have high confidence. Next, we used the WGS Annotator (WGSA) v0.95 pipeline 

[28] to define promoter SNVs as those that fell within ± 5kb of a gene’s transcription start site with at least one 

H3K4me3 annotation for brain tissues (E067-E074, E081, E082) from the ENCODE database. We defined 

enhancer SNVs as those that fell within ± 20kb of the gene’s transcription start site and overlapped with an 

enhancer defined by EnhancerFinder in the brain.  
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Annotation selection 

 For both the missense/LoF and promoter/enhancer analyses, we included all SNVs that had no missing 

annotation weights, regardless of minor allele frequency (S2 Methods). Annotation weights were retrieved 

using WGSA v0.95 [28]. We selected a subset of annotations similar to Li et al. [24], including those that 

predicted deleteriousness, predicted impact on the protein, and that summarized evolutionary conservation. For 

missense/LoF SNVs, we used CADD_raw_rankscore, a measure of variant deleteriousness combining multiple 

genomic features of each variant [29]; GERP_RS_rankscore, a measure of variant conservation [30]; 

Eigen.phred, a measure of variant deleteriousness using an unsupervised learning method [31]; and 

fathmm.MKL_coding_rankscore, a score from a machine learning method incorporating other annotations to 

predict deleteriousness of the variant from coding variants [32]. For promoter/enhancer SNVs, we used 

CADD_raw_rankscore [29], GERP_RS_rankscore [30], Eigen.PC.phred [31], 

fathmm.MKL_non.coding_rankscore [32], and GenoCanyon_rankscore, a measure of variant conservation [33]. 

Genome-wide ranks of the associated annotation scores were used to generate the Phred scores (i.e., the 

logarithmically transformed annotation score percentiles) required for STAAR analysis. 

Statistical methods 

 All analyses were conducted in R (ver. 4.2.0). WGS data were converted from VCF files to SeqArray 

GDS format using SNPRelate [34] and SeqArray [35] R packages. We then used the variant-Set Test for 

Association using Annotation infoRmation (STAAR) v0.9.6.1 to perform gene-based analysis using functional 

annotations for missense/LoF (including all variants except low-confidence LoF), missense/LoF (high 

confidence variants only), and promoter/enhancer regions separately [36]. In STAAR, linear mixed models 

were used to test each gene region for association with each of the seven measures of cognitive function 

separately, both with and without annotation weights. Model 1 adjusted for age, sex, state or union territory, and 

the first ten principal components of global ancestry. Model 2 additionally adjusted for educational attainment, 

rural or urban residence, and literacy status (yes/no). Each model incorporated a genetic relatedness matrix to 
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account for relatedness between subjects, and geographic state or union territory was used to define 

heterogeneous variances within the linear mixed model. 

 For each gene, both with and without including annotation weights for the SNVs, we examined the 

STAAR p-value which is calculated from modified SKAT-(1,1), SKAT-(1,25), Burden-(1,1), Burden-(1,25), 

ACAT-V(1,1) and ACAT-V(1,25) tests. For analyses with and without annotation weights, separately, a 

Benjamini-Hochberg FDR q<0.1 was used to declare significance.  

 For each gene region that was associated with a measure of cognitive function at FDR q<0,1, we next 

performed a single variant analysis to identify the variants most strongly associated using a score test in 

STAAR. The same models from the gene-based analysis were used for single variant analysis. For the SNV 

with the lowest p-value within each identified gene, we compared the allele frequency in LASI-DAD to that 

found in EA samples registered in gnomAD v3 [37] to examine whether risk alleles were enriched in LASI-

DAD. 

Results 
 The LASI-DAD analytic sample had a mean age of 69.6 (SD=7.3) years (Table 1). The majority of 

participants could not read or write (56.4%), lived in rural areas (63.3%), and had less than lower secondary 

education (75%). Mean HMSE score was 22.7 (SD=5.4) (S2 Table). 

Table 1: Characteristics of the LASI-DAD analytic sample (N=2,680) 

Covariate Count (%) or 
Mean (SD) 

Age (years)  69.6 (7.3) 
Sex (female) 1408 (52.5) 
Literacy (cannot read or write) 1511 (56.4) 
Location  
   Rural 1697 (63.3) 
   Urban 983 (36.7) 
Education  
   Less than lower secondary 2004 (75) 
   Upper secondary & vocational training 578 (22) 
   Tertiary 98 (4) 
HMSE score 22.7 (5.4) 
HMSE = Hindi Mental State Exam, LASI-DAD = Longitudinal Aging Study in India – Diagnostic Assessment of Dementia 
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 We next characterized the distribution of the annotation weights across missense/LoF SNVs and 

promoter/enhancer SNVs. The missense/LoF SNVs exhibited relatively little variation for almost all 

annotations and tended to be high. For these annotations, which were on a scale from 0 to 1, the median score 

ranged from 0.97 to 0.99 (S3 Table). The promoter/enhancer SNVs showed greater variation across annotation 

weights and tended to be lower (S4 Table). The Eigen-Phred and Eigen-PC-Phred rank scores had more 

variation and relatively low weights for missense variants, but low variation and higher weights for 

promoter/enhancer variants, due to their calculation with different training data for each functional class of 

variant (S Methods).  

Missense/loss-of-function (LoF) analysis 

 Of the 84 genes selected for analysis, 79 had at least two missense/LoF SNVs with complete 

annotations, and the median number of missense/LoF SNVs across the genes was 21 (Table 2). In Model 1, 16 

genes were nominally associated with at least one measure of cognitive function (p<0.05, S5 Table), with 3 

genes associated at FDR q<0.1 in the analysis without annotation weights (Table 3). Specifically, APOE was 

associated with HMSE score (FDR q=0.08), general cognitive function (FDR q=0.04) , executive function (FDR 

q=0.07), and orientation (FDR q=0.07). PICALM was associated with HMSE score (FDR q=0.08), and 

TSPOAP1 was associated with executive function (FDR q=0.07). In Model 2, which additionally adjusts for 

rural/urban location, literacy, and education, 20 genes were nominally associated with at least one measure of 

cognitive function (p<0.05, S6 Table), and PICALM was significantly associated with HMSE score after 

correction for multiple testing (FDR q=0.098) in the analysis without annotation weights (Table 3).  

Table 2: Five-number summary of variants in Missense/Loss-of-Function and Promoter/Enhancer analyses  

Analysis Min. Q1 Median Q3 Max. Number 
of 

Genes 

# 
SNVs 
With 
MAF 
> 0 

Total # 
SNVs 

Analyzed* 

Missense/LoF 2 14.5 22 39 178 79 2515 2512 
   Missense 2 14 21 38 167 79 2447 2444 
   LoF 1 1 1 2 11 36 68 68 
Promoter/Enhancer 6 61 93 127 265 77 7402 7370 
   Promoter 6 59 91 125 231 77 7108 7077 
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   Enhancer 29 37.25 48 62 88 10 509 508 
SNV = single nucleotide variant, MAF = minor allele frequency, LoF = loss-of-function, Q1 = quartile 1, Q3 = quartile 3. 
*SNVs were analyzed if they met the definition for inclusion for the analysis indicated, had a MAF > 0, and had a complete set of 
annotation weights. 
Total number of SNVs is the number of unique SNVs analyzed across all genes selected for analysis.  
 
Table 3: Genes with FDR q<0.1 in Missense/LoF Analysis 

Gene Model # of 
Variants 
Analyzed 

P-value  
(without annotation 

weights) 

P-value  
(with annotation 

weights) 
HMSE Score 
   APOE Model 1 20 9.5x10-4* 0.001* 
   PICALM Model 1 16 0.002* 0.002* 
  PICALM Model 2 16 0.001* 0.001* 
General Cognitive Function 
   APOE Model 1 20 5.6x10-4* 7.8E10-4* 
Executive Function     
   APOE Model 1 20 0.002* 0.002* 
   TSPOAP1 Model 1 89 0.002* 0.004* 
Orientation     
   APOE Model 1 20 9.3x10-4* 0.001* 
HMSE = Hindi Mental State Exam, FDR = false discovery rate 
Genes were included if either the P-value without annotation weights or P-value with annotation weights was <0.05 in Model 1. P-values<0.05 are in 
bold. *FDR q-values<0.1   
 

As shown in Table 3, the results were similar when we used annotation weights. At FDR q<0.1, APOE 

was associated with HMSE score (FDR q=0.08) and general cognitive function (FDR q=0.07), and PICALM 

was associated with HMSE score (FDR q=0.08). In Model 2, at FDR q<0.1, PICALM was associated with 

HMSE score (FDR q=0.09).  

 For each gene associated with a cognitive measure at FDR q<0.1, we examined associations between 

each SNV within the gene region, without annotation weights, and the cognitive outcome of interest (Table 4). 

As expected, the most strongly associated variant in Model 1 within APOE for all measures of cognitive 

function was rs429358 (HMSE p=2.9x10-4, general cognitive function p=1.4x10-4, executive function p=4.1x10-

4, orientation p=2.4x10-4; Fig 1, S1-S3 Figs), which is the missense variant in exon 4 of APOE that changes 

cysteine to arginine and differentiates the APOE ε4 allele from ε2 and ε3. Removal of this SNV results in 

APOE losing significance. For TSPOAP1 in Model 1, the most strongly associated variant with executive 

function was rs9913145 (Model 1 p=5.7x10-4), a missense variant in exon 17 that changes glutamine to arginine 

(Fig 2). This variant had a MAF of 0.15 in LASI-DAD, and a MAF of 0.12 in EA samples in gnomAD, which 

indicates that the minor allele is relatively common both in LASI-DAD and in EA populations. In PICALM in 
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Model 1 and Model 2, the most strongly associated SNV with HMSE was rs779406084 (Model 1 p=4.2x

Model 2 p=1.6x10-4), a missense variant in exon 19 that changes threonine to methionine (Fig 3, S4 Fig)

Rs779406084 was in high LD with all missense/LoF SNVs in PICALM (|D’|=1) but was not correlated w

other missense/LoF SNV in the gene (r2<<0.2) including with the one other missense/LoF SNV with p<0

This SNV has a CADD score of 24, indicating that it is in the top 0.4th percentile of all deleterious SNVs

has a MAF of 7.5x10-4 in LASI-DAD. While very rare, this variant occurs more often in LASI-DAD com

to EA samples in gnomAD (EA MAF=1.5x10-5). 

 

  

Figure 1. Plot of missense/loss-of-function SNVs in APOE in Model 1 for Hindi Mental State Exam 
(HMSE) score with no annotation weights. Left Y-axis: -log10(p-value) from association between SNV
HMSE score, adjusting for age, sex, state/territory, the first 10 principal components of genetic ancestry, 
accounting for relatedness (random effect) and heteroscedastic variances among state/territory; Right Y-a
SNV recombination rate based on HapMap GRCh38 South Asian sample (SAS); X-axis: chromosomal lo
and gene regions; LD r2 color code: degree of linkage disequilibrium with index (most strongly associated
SNV, rs429358 (purple diamond). Grey points indicate no LD information present in the reference panel.
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Figure 2. Plot of missense/loss-of-function SNVs in TSPOAP1 gene in Model 1 for executive functio
Y-axis: -log10(p-value) from association between SNV and executive function, adjusting for age, sex, 
state/territory, the first 10 principal components of genetic ancestry; and accounting for relatedness and 
heteroscedastic variances among state/territory; Right Y-axis: SNV recombination rate based on HapMap
GRCh38 SAS; X-axis: chromosomal location and gene regions; r2 color code: degree of linkage disequili
with index (most strongly associated) SNV, rs9913145 (purple diamond). Grey points indicate no LD 
information present in the reference panel. No annotation weights were used to generate p-value.  

 

 

Figure 3. Plot of missense/loss-of-function SNVs in PICALM gene in Model 1 for HMSE score. Left 
axis: -log10(p-value) from association between SNV and Hindi Mental State Exam (HMSE) score, adjust
age, sex, state/territory, the first 10 principal components of genetic ancestry; and accounting for relatedn
and heteroscedastic variances among state/territory; Right Y-axis: SNV recombination rate based on Hap
GRCh38 SAS; X-axis: chromosomal location and gene regions; r2 color code: degree of linkage disequili
with index (most strongly associated) SNV, rs779406084 (purple diamond). Grey points indicate no LD 
information present in the reference panel. No annotation weights were used to generate p-values. 

 

Table 4: Sentinel SNVs from genes with FDR q<0.1 in Model 1 or Model 2 of the Missense/LoF analysis with
annotation weights 

Cognitive 
Function 

Model rsID ID Gene Allele 
(effect 

direction) 

AF in  
LASI-
DAD 

AF in 
EA 

gnomAD 

SNV 
Functional 
Annotation 

Position 
in Gene 

HMSE 
Score 

Model 
1 

rs429358 19:44908684:T:C APOE C (-) 0.11 0.15 Missense Exon 4 2

HMSE 
Score 

Model 
1 

rs779406084 11:85974781:G:A PICALM A (-) 0.00075 0.000015 Missense Exon 19 4

HMSE 
Score 

Model 
2 

rs779406084 11:85974781:G:A PICALM A (-) 0.00075 0.000015 Missense Exon 19 1

General 
Cognitive 
Function 

Model 
1 

rs429358 19:44908684:T:C APOE C (-) 0.11 0.15 Missense Exon 4 1

Executive 
Function 

Model 
1 

rs429358 19:44908684:T:C APOE C (-) 0.11 0.15 Missense Exon 4 4

Executive 
Function 

Model 
1 

rs9913145 17:58312371:T:C TSPOAP1 C (+) 0.15 0.12 Missense Exon 17 5

Orientation Model 
1 

rs429358 19:44908684:T:C APOE C (-) 0.11 0.15 Missense Exon 4 2

AF = allele frequency, HMSE = Hindi Mental State Exam, SNV = single nucleotide variant, FDR = false discovery rate, LoF = loss-of-func

= European ancestry, LASI-DAD = Longitudinal Aging Study in India – Diagnostic Assessment of Dementia 
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High-confidence missense/LoF analysis 

Of the 84 genes analyzed, 51 had at least two high-confidence LoF or missense SNVs with REVEL>0.5. 

In Model 1, 8 genes were nominally associated with at least one measure of cognitive function (p<0.05, S7 

Table), but none were significant after correction for multiple testing (FDR q>0.1). In Model 2, 10 genes were 

also nominally associated with at least one measure of cognitive function (p<0.05, S8 Table) with four genes 

overlapping from Model 1 (ABI3, APOE, DGKQ, and INPP5D), but none were significant after correction for 

multiple testing (FDR q>0.1). For both analyses, the results did not change substantively when annotation 

weights were incorporated.  

Promoter/enhancer analysis 

Of the 84 genes analyzed, 77 had at least two brain-specific promoter or enhancer SNVs with complete 

annotation weights, and the median number of brain-specific promoter/enhancer SNVs across the genes was 93 

(Table 2). In Models 1 and 2, 21 and 22 genes, respectively, were nominally associated with at least one 

measure of cognitive function without annotation weights (p<0.05), but none were associated after multiple 

testing correction (all FDR q>0.1, S9 and S10 Tables). When we incorporated annotation weights, 18 genes in 

Model 1 and 22 genes in Model 2 were nominally associated with at least one measure of cognitive function, 

but again none were associated after multiple testing correction (all FDR q>0.1, S9 and S10 Tables), with 18 

and 20 genes being nominally associated with at least one measure of cognitive function with and without 

annotation weights, respectively. In Model 1, USP6NL, INPP5D, and KAT8 were no longer nominally 

associated with any measure of cognitive function after incorporation of annotation weights. In Model 2, EGFR 

and APOE were no longer nominally associated with any measure of cognitive function after incorporation of 

annotation weights, but APOC1 and SORT1 became nominally associated. 

Discussion 
 We performed a gene-based analysis examining the association between missense/LoF and brain-

specific enhancer and promoter variants in previously-identified AD-associated genes and seven measures of 
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cognitive function in South Asians across India. Using only missense/LoF variants, three genes were associated 

with at least one measure of cognitive function after multiple testing correction, including APOE with multiple 

cognitive measures. However, no genes were associated in the brain-specific promoter and enhancer analysis. 

The most strongly associated variants were missense SNVs with high predicted deleteriousness. One of the 

most significantly associated missense variants was very rare, yet appeared to be enriched in LASI-DAD 

compared to EA samples in public databases. 

 We found that APOE is significantly associated with HMSE score, general cognitive function, executive 

function, and orientation in the missense/LoF analysis in Model 1. Apolipoprotein E (APOE) facilitates 

cholesterol and phospholipid transfer between cells, and complexes with amyloid β proteins in the brain for 

removal, inhibiting the amyloid β plaque formation necessary for AD onset [38]. APOE alleles confer different 

risks for Alzheimer’s disease. Relative to the ε3 allele, ε4 is associated with increased risk of Alzheimer’s 

disease in EA [39], and the ε4/ε4 genotype is also associated with cognitive decline in those with Alzheimer’s 

disease [40]. In our analytic sample from LASI-DAD, the ε4 allele frequency is estimated to be approximately 

10.9%, which is less than reported frequency among EA samples in the US (14%) [41] and while not common 

is still frequent. The ε4 allele has somewhat different associations with AD risk across races/ethnicities, with ε4 

and associated variant effects being stronger in EA populations compared to African-Americans [42]. Rs429358 

is used to differentiate between ε3 and ε4 alleles in APOE, and has a CADD score of 16.6, which places it in the 

top 2nd percentile of deleterious SNVs. Although previous studies with a subset of the current LASI-DAD 

sample did not find an association between cognitive function and rs429358 [17,43], this was likely due to 

smaller sample size and/or less regional variation in the previous studies. Our reported associations with APOE 

are not surprising as working memory and executive function deficits are often early markers of AD [44].  

 Phosphatidylinositol binding clathrin assembly protein (PICALM) facilitates endocytosis of APP [45], 

which is needed to form β-amyloid plaques that lead to AD. PICALM was found to be associated with cognitive 

function in EA samples [46]. PICALM variants identified in EA have had mixed associations in East Asian 

samples, with which the South Asian population of India shares ancestry [47]. For example, some variants 
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identified as associated with AD in a large meta-analysis of Chinese GWAS near PICALM [48]were not found 

to be associated in smaller Indian studies [49]. We found that the sentinel SNV in PICALM for HMSE score is 

rs779406084, a very rare variant with a high CADD score at 24, placing it in the top 0.2th percentile of all 

deleterious SNVs. To our knowledge, this is the first study that reports an association with rs779406084 and 

cognitive function. This is likely due to the rarity of this variant in EA samples (MAF=1.5x10-5) and an 

association was likely found in our study due to its comparatively higher frequency in LASI-DAD 

(MAF=7.5x10-4).  Further work is needed to elucidate the specific effects of this variant on the protein and 

replication in other cohorts is needed.  

 Translocator protein (TSPO) associated protein 1 (TSPOAP1) regulates calcium channels in nerve 

synapses [50]. It interacts with the protein TSPO which is involved in inflammation pathways [51]. TSPOAP1 

variants were associated with AD in a large transethnic AD GWAS [52]. The sentinel SNV of TSPOAP1 in 

LASI-DAD was rs9913145, which has a CADD score of 1.12 indicating that it is not strongly deleterious. This 

variant is slightly more common in LASI-DAD (MAF=0.15) compared to EA samples (MAF=0.12). To our 

knowledge, this variant has not otherwise been reported to have an association with cognitive function or 

dementia. Given the relatively low CADD score of the variant and the relatively common frequency in EA 

samples, this variant may tag a haplotype specific to South Asians within TSPOAP1 that is associated with 

executive function.  

We found no associations between brain-specific promoter and enhancer SNVs within the known AD 

genes and any of the measures of cognitive function in our sample after multiple testing correction. This is 

likely due to promoter/enhancer SNVs having more subtle effects on AD gene expression compared to the 

potentially more deleterious effects from missense/LoF SNVs. We also found that annotation weights did not 

substantively change our analysis results. This may be because the missense/LoF variants had relatively small 

variance in their annotation weights and tended to be high, resulting in little additional statistical information.  

We found many genes that were nominally associated with each measure of cognitive function in the 

missense/LoF analysis and brain-specific promoter/enhancer analysis. Genes associated with multiple cognitive 
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measures include ADAM17, OTULIN, and ABCA7, which are involved in amyloid-β metabolism or in immune 

signaling [38,53,54]. In both Model 1 and Model 2, ABCA7, ADAM17, APOE, OTULIN, and TSPOAP1 were all 

at least nominally associated with three or more measures of cognitive function. These genes all play a role in 

cholesterol and APP metabolism (ABCA7, ADAM17, APOE) or are involved in inflammation pathways 

(OTULIN, TSPOAP1). 

Similar gene-based analysis studies were conducted in EA samples. One large genome-wide gene-based 

AD study conducted in the UK BioBank on different categories of rare missense/LoF variants found that three 

gene regions were associated with AD parent proxy cases, including TOMM40/APOE [55]. Notably, detection 

of these regions depended on resolving variants into categories of high confidence and predicted loss-of-

function effects. Another gene-based AD analysis conducted in the ADES-FR study found that protein-

truncating rare variants and strictly damaging rare variants in TREM2, ABCA7, and SORL1 were associated with 

early-onset AD, but not with late onset AD [56]. Given that the previous studies focused on very specific 

classes of rare variants in EA samples, it is no surprise that these genes were also at least nominally associated 

in our study.  

Although many genes were nominally associated in our analysis, few genes were significant after 

correction for multiple testing. This could be in part because we selected genes associated with AD, which may 

have weaker effects on cognitive function changes that precede AD. Further, the genes were identified through 

GWAS which excels in identifying primarily non-functional common variants which may be correlated with 

causal variants. In this study, >95% of our analyzed variants were rare (MAF<5%). Although we focused on 

variants more likely to be causal, it is possible that the sentinel SNPs identified in the GWAS were not tagging 

variants in the functional classes we examined, and that more genes would have reached significance if 

common, non-functional variation was included in our analysis. Further, the genes identified were in large 

cohorts of EA. Genetic differences between EA and South Asians, including allele frequency and linkage 

disequilibrium, could have contributed to the lack of findings. Another explanation is that genetic associations 

with cognitive function may be attenuated in this population due to more heterogeneity in environmental factors 

across India, such as sociodemographics, socio-cultural factors, and air pollution, each of which is associated 
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with cognitive function [57–61]. Finally, the tendency toward associations being nominally significant, but not 

significant after multiple testing correction, may be a result of the smaller sample size.   

  One limitation of this study is that we examined only two classes of functional annotations. It may be 

that variants with other functional consequences besides missense/LoF and promoter/enhancer variants could 

influence associations with cognitive function. Another limitation is that we could not include insertion/deletion 

variants in this analysis, as annotation weights are not available; however, it is possible that these variants may 

have more deleterious effects on proteins and their removal may have attenuated signal. Additionally, the LASI-

DAD cohort design oversamples LASI participants with higher cognitive impairment risk, which may result in 

different observed genetic associations with cognitive function compared to studies sampled in other ways [17]. 

Finally, cognitive measures may have been biased due to administering the tests in many different languages 

[43]. However, no systematic bias with respect to language has been detected in LASI-DAD [62]. 

Our study also has several strengths. The prioritization and aggregation of SNVs based on their actual or 

predicted functional consequences likely increased signal for associations between the genes and cognitive 

function by focusing on variants that are more likely to have causal effects. Gene-based analysis with functional 

annotation also more directly links SNVs disease etiology, allowing a greater understanding of the types of 

variation within these genes that contribute to cognitive function. Additionally, to our knowledge, our study is 

the first to examine gene-based, rare variant associations with cognitive function in South Asians living in India. 

Thus, this work addresses an important health disparity in an understudied population [63]. Furthermore, our 

cohort presented a unique genetic environment to study potentially novel associations with understudied genetic 

variants due to its large genetic heterogeneity, unique subpopulations, and unique genetic ancestry 

[43,47,64,65].  Finally, we examined several measures of cognitive function, which allows us to determine 

which specific cognitive domains are associated with each gene. 

 In conclusion, we found that three genes (APOE, PICALM, and TSPOAP1) associated with Alzheimer’s 

disease in EA are also associated with measure of cognitive functions in South Asians living in India, with the 

association primarily driven by missense/LoF SNVs. Associations were in part driven by rare, deleterious 
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alleles, including a very rare SNV enriched in LASI-DAD compared to EA. Future functional studies are 

needed to verify and characterize SNVs found within this study. 
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